Academic literature on the topic 'Sparse features'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Sparse features.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Sparse features"
Caragea, Cornelia, Adrian Silvescu, and Prasenjit Mitra. "Combining Hashing and Abstraction in Sparse High Dimensional Feature Spaces." Proceedings of the AAAI Conference on Artificial Intelligence 26, no. 1 (September 20, 2021): 3–9. http://dx.doi.org/10.1609/aaai.v26i1.8117.
Full textSimion, Georgiana. "Sparse Features for Finger Detection." Advanced Engineering Forum 8-9 (June 2013): 535–42. http://dx.doi.org/10.4028/www.scientific.net/aef.8-9.535.
Full textKronvall, Ted, Maria Juhlin, Johan Swärd, Stefan I. Adalbjörnsson, and Andreas Jakobsson. "Sparse modeling of chroma features." Signal Processing 130 (January 2017): 105–17. http://dx.doi.org/10.1016/j.sigpro.2016.06.020.
Full textHe, Wangpeng, Peipei Zhang, Xuan Liu, Binqiang Chen, and Baolong Guo. "Group-Sparse Feature Extraction via Ensemble Generalized Minimax-Concave Penalty for Wind-Turbine-Fault Diagnosis." Sustainability 14, no. 24 (December 14, 2022): 16793. http://dx.doi.org/10.3390/su142416793.
Full textBanihashem, Kiarash, Mohammad Hajiaghayi, and Max Springer. "Optimal Sparse Recovery with Decision Stumps." Proceedings of the AAAI Conference on Artificial Intelligence 37, no. 6 (June 26, 2023): 6745–52. http://dx.doi.org/10.1609/aaai.v37i6.25827.
Full textXing, Zhan, Jianhui Lin, Yan Huang, and Cai Yi. "A Feature Extraction Method of Wheelset-Bearing Fault Based on Wavelet Sparse Representation with Adaptive Local Iterative Filtering." Shock and Vibration 2020 (July 25, 2020): 1–20. http://dx.doi.org/10.1155/2020/2019821.
Full textWei, Wang, Tang Can, Wang Xin, Luo Yanhong, Hu Yongle, and Li Ji. "Image Object Recognition via Deep Feature-Based Adaptive Joint Sparse Representation." Computational Intelligence and Neuroscience 2019 (November 21, 2019): 1–9. http://dx.doi.org/10.1155/2019/8258275.
Full textYANG, B. J. "DOMINANT EIGENVECTOR AND EIGENVALUE ALGORITHM IN SPARSE NETWORK SPECTRAL CLUSTERING." Latin American Applied Research - An international journal 48, no. 4 (October 31, 2018): 323–28. http://dx.doi.org/10.52292/j.laar.2018.248.
Full textSUN, JUN, WENYUAN WANG, QING ZHUO, and CHENGYUAN MA. "DISCRIMINATORY SPARSE CODING AND ITS APPLICATION TO FACE RECOGNITION." International Journal of Image and Graphics 03, no. 03 (July 2003): 503–21. http://dx.doi.org/10.1142/s0219467803001135.
Full textGrimes, David B., and Rajesh P. N. Rao. "Bilinear Sparse Coding for Invariant Vision." Neural Computation 17, no. 1 (January 1, 2005): 47–73. http://dx.doi.org/10.1162/0899766052530893.
Full textDissertations / Theses on the topic "Sparse features"
Strohmann, Thomas. "Very sparse kernel models: Predicting with few examples and few features." Diss., Connect to online resource, 2006. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3239405.
Full textRadwan, Noha [Verfasser], and Wolfram [Akademischer Betreuer] Burgard. "Leveraging sparse and dense features for reliable state estimation in urban environments." Freiburg : Universität, 2019. http://d-nb.info/1190031361/34.
Full textHata, Alberto Yukinobu. "Road features detection and sparse map-based vehicle localization in urban environments." Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/55/55134/tde-08062017-090428/.
Full textNo contexto de veículos autônomos, a localização é um dos componentes fundamentais, pois possibilita tarefas como ultrapassagem, direção assistida e navegação autônoma. A presença de edifícios e o mau tempo interferem na recepção do sinal de GPS que consequentemente dificulta o uso de tal tecnologia para a localização de veículos dentro das cidades. Alternativamente, a localização com suporte aos mapas vem sendo empregada para estimar a posição sem a dependência do GPS. Nesta solução, a posição do veículo é dada pela região em que ocorre a melhor correspondência entre o mapa do ambiente e a leitura do sensor. Antes da criação dos mapas, características dos ambientes devem ser extraídas a partir das leituras dos sensores. Dessa forma, guias e sinalizações horizontais têm sido largamente utilizados para o mapeamento. Entretanto, métodos de mapeamento urbano geralmente necessitam de repetidas leituras do mesmo lugar para compensar as oclusões. A construção de representações precisas dos ambientes é essencial para uma adequada associação dos dados dos sensores como mapa durante a localização. De forma a evitar a necessidade de um processo manual para remover obstáculos que causam oclusão e áreas não observadas, propõe-se um método de localização de veículos com suporte aos mapas construídos a partir de observações parciais do ambiente. No sistema de localização proposto, os mapas são construídos a partir de guias e sinalizações horizontais extraídas a partir de leituras de um sensor multicamadas. As guias podem ser detectadas mesmo na presença de veículos que obstruem a percepção das ruas, por meio do uso de regressão robusta. Na detecção de sinalizações horizontais é empregado o método de limiarização por Otsu que analisa dados de reflexão infravermelho, o que torna o método insensível à variação de luminosidade. Dois tipos de mapas são empregados para a representação das guias e das sinalizações horizontais: mapa de grade de ocupação (OGM) e mapa de ocupação por processo Gaussiano (GPOM). O OGM é uma estrutura que representa o ambiente por meio de uma grade reticulada. OGPOM é uma representação contínua que possibilita a estimação de áreas não observadas. O método de localização por Monte Carlo (MCL) foi adaptado para suportar os mapas construídos. Dessa forma, a localização de veículos foi testada em MCL com suporte ao OGM e MCL com suporte ao GPOM. No caso do MCL baseado em GPOM, um novo modelo de verossimilhança baseado em função densidade probabilidade de distribuição multi-normal é proposto. Experimentos foram realizados em ambientes urbanos reais. Mapas do ambiente foram gerados a partir de dados de laser esparsos de forma a verificar a reconstrução de áreas não observadas. O sistema de localização foi avaliado por meio da comparação das posições estimadas comum GPS de alta precisão. Comparou-se também o MCL baseado em OGM com o MCL baseado em GPOM, de forma a verificar qual abordagem apresenta melhores resultados.
Pundlik, Shrinivas J. "Motion segmentation from clustering of sparse point features using spatially constrained mixture models." Connect to this title online, 2009. http://etd.lib.clemson.edu/documents/1252937182/.
Full textQuadros, Alistair James. "Representing 3D shape in sparse range images for urban object classification." Thesis, The University of Sydney, 2013. http://hdl.handle.net/2123/10515.
Full textMairal, Julien. "Sparse coding for machine learning, image processing and computer vision." Phd thesis, École normale supérieure de Cachan - ENS Cachan, 2010. http://tel.archives-ouvertes.fr/tel-00595312.
Full textAbbasnejad, Iman. "Learning spatio-temporal features for efficient event detection." Thesis, Queensland University of Technology, 2018. https://eprints.qut.edu.au/121184/1/Iman_Abbasnejad_Thesis.pdf.
Full textLakemond, Ruan. "Multiple camera management using wide baseline matching." Thesis, Queensland University of Technology, 2010. https://eprints.qut.edu.au/37668/1/Ruan_Lakemond_Thesis.pdf.
Full textUmakanthan, Sabanadesan. "Human action recognition from video sequences." Thesis, Queensland University of Technology, 2016. https://eprints.qut.edu.au/93749/1/Sabanadesan_Umakanthan_Thesis.pdf.
Full textDhanjal, Charanpal. "Sparse Kernel feature extraction." Thesis, University of Southampton, 2008. https://eprints.soton.ac.uk/64875/.
Full textBooks on the topic "Sparse features"
Flexible Sparse Learning of Feature Subspaces. [New York, N.Y.?]: [publisher not identified], 2017.
Find full textDiPietro, Vincent. Unusual Mars surface features. 4th ed. Glen Dale, Md: Mars Research, 1988.
Find full textSchommers, W. Cosmic secrets: Basic features of reality. Singapore: World Scientific, 2012.
Find full textDavis, James E. Environmental satellites: Features and acquisition plans. Edited by Thompson Gregory F and United States. General Accounting Office. New York: Nova Novinka, 2012.
Find full textEliseeva, Elena. Khudozhestvennoe prostranstvo v otechestvennykh igrovykh filʹmakh XX veka. Moskva: "Starklaĭt", 2012.
Find full text1965-, Carlson Laura Anne, and Zee Emile van der, eds. Functional features in language and space: Insights from perception, categorization, and development. Oxford: Oxford University Press, 2005.
Find full textJ, Müller Hermann, and Deutsche Forschungsgemeinschaft, eds. Neural binding of space and time: Spatial and temporal mechanisms of feature-object binding. Hove, East Sussex: Psychology Press, 2001.
Find full textCrompton, John L. The proximate principle: The impact of parks, open space and water features on residential property values and the property tax base. 2nd ed. Ashburn, Va: National Recreation and Park Association, 2004.
Find full textDoorn, Niels van. Digital spaces, material traces: Investigating the performance of gender, sexuality, and embodiment on internet platforms that feature user-generated content. [S.l]: [s.n.], 2009.
Find full textDynamic feature space modelling, filtering, and self-tuning control of stochastic systems: A systems approach with economic and social applications. Berlin: Springer-Verlag, 1985.
Find full textBook chapters on the topic "Sparse features"
Ranzato, Marc’Aurelio, Y.-Lan Boureau, Koray Kavukcuoglu, Karol Gregor, and Yann LeCun. "Learning Hierarchies of Sparse Features." In Encyclopedia of the Sciences of Learning, 1880–84. Boston, MA: Springer US, 2012. http://dx.doi.org/10.1007/978-1-4419-1428-6_1880.
Full textZou, Yuan, and Teemu Roos. "Sparse Logistic Regression with Logical Features." In Advances in Knowledge Discovery and Data Mining, 316–27. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31753-3_26.
Full textHaker, Martin, Thomas Martinetz, and Erhardt Barth. "Multimodal Sparse Features for Object Detection." In Artificial Neural Networks – ICANN 2009, 923–32. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-04277-5_93.
Full textCarneiro, Gustavo, and David Lowe. "Sparse Flexible Models of Local Features." In Computer Vision – ECCV 2006, 29–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11744078_3.
Full textUjaldon, M., E. L. Zapata, B. M. Chapman, and H. P. Zima. "Data-parallel Language Features for Sparse Codes." In Languages, Compilers and Run-Time Systems for Scalable Computers, 253–64. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4615-2315-4_19.
Full textRebecchi, Sébastien, Hélène Paugam-Moisy, and Michèle Sebag. "Learning Sparse Features with an Auto-Associator." In Growing Adaptive Machines, 139–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-55337-0_4.
Full textBarata, Catarina, Mário A. T. Figueiredo, M. Emre Celebi, and Jorge S. Marques. "Local Features Applied to Dermoscopy Images: Bag-of-Features versus Sparse Coding." In Pattern Recognition and Image Analysis, 528–36. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-58838-4_58.
Full textGaur, Yashesh, Maulik C. Madhavi, and Hemant A. Patil. "Speaker Recognition Using Sparse Representation via Superimposed Features." In Lecture Notes in Computer Science, 140–47. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-45062-4_19.
Full textZhang, Ziming, Jiawei Huang, and Ze-Nian Li. "Learning Sparse Features On-Line for Image Classification." In Lecture Notes in Computer Science, 122–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-21593-3_13.
Full textDu, Jianhao, Weihua Sheng, Qi Cheng, and Meiqin Liu. "Proactive 3D Robot Mapping in Environments with Sparse Features." In Advances in Visual Computing, 773–82. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-14249-4_74.
Full textConference papers on the topic "Sparse features"
Metwally, Ahmed, and Michael Shum. "Similarity Joins of Sparse Features." In SIGMOD/PODS '24: International Conference on Management of Data. New York, NY, USA: ACM, 2024. http://dx.doi.org/10.1145/3626246.3653370.
Full textChang, Jen-Hao Rick, Aswin C. Sankaranarayanan, and B. V. K. Vijaya Kumar. "Random Features for Sparse Signal Classification." In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2016. http://dx.doi.org/10.1109/cvpr.2016.583.
Full textGe, Tiezheng, Qifa Ke, and Jian Sun. "Sparse-Coded Features for Image Retrieval." In British Machine Vision Conference 2013. British Machine Vision Association, 2013. http://dx.doi.org/10.5244/c.27.132.
Full textIglesias, Gonzalo, Adrià de Gispert, and Bill Byrne. "Transducer Disambiguation with Sparse Topological Features." In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA, USA: Association for Computational Linguistics, 2015. http://dx.doi.org/10.18653/v1/d15-1273.
Full textChakrabarti, Ayan, and Keigo Hirakawa. "Effective separation of sparse and non-sparse image features for denoising." In ICASSP 2008 - 2008 IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, 2008. http://dx.doi.org/10.1109/icassp.2008.4517745.
Full textYin, Chong, Siqi Liu, Vincent Wai-Sun Wong, and Pong C. Yuen. "Learning Sparse Interpretable Features For NAS Scoring From Liver Biopsy Images." In Thirty-First International Joint Conference on Artificial Intelligence {IJCAI-22}. California: International Joint Conferences on Artificial Intelligence Organization, 2022. http://dx.doi.org/10.24963/ijcai.2022/220.
Full textZhang, Xiaowang, Qiang Gao, and Zhiyong Feng. "InteractionNN: A Neural Network for Learning Hidden Features in Sparse Prediction." In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/602.
Full textKaarna, A. "Sparse Coded Spatial Features from Spectral Images." In 2006 IEEE International Symposium on Geoscience and Remote Sensing. IEEE, 2006. http://dx.doi.org/10.1109/igarss.2006.949.
Full textOzcelikkale, Ayca. "Sparse Recovery with Non-Linear Fourier Features." In ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2020. http://dx.doi.org/10.1109/icassp40776.2020.9054050.
Full textSainath, Tara N., David Nahamoo, Bhuvana Ramabhadran, Dimitri Kanevsky, Vaibhava Goel, and Parikshit M. Shah. "Exemplar-based Sparse Representation phone identification features." In ICASSP 2011 - 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2011. http://dx.doi.org/10.1109/icassp.2011.5947352.
Full textReports on the topic "Sparse features"
Borgwardt, Stefan, Walter Forkel, and Alisa Kovtunova. Finding New Diamonds: Temporal Minimal-World Query Answering over Sparse ABoxes. Technische Universität Dresden, 2019. http://dx.doi.org/10.25368/2023.223.
Full textBlundell, S. Micro-terrain and canopy feature extraction by breakline and differencing analysis of gridded elevation models : identifying terrain model discontinuities with application to off-road mobility modeling. Engineer Research and Development Center (U.S.), April 2021. http://dx.doi.org/10.21079/11681/40185.
Full textNaikal, Nikhil, Allen Yang, and S. S. Sastry. Informative Feature Selection for Object Recognition via Sparse PCA. Fort Belvoir, VA: Defense Technical Information Center, April 2011. http://dx.doi.org/10.21236/ada543168.
Full textRainey, Katie, and Ana Ascencio. Sparse Representation and Dictionary Learning as Feature Extraction in Vessel Imagery. Fort Belvoir, VA: Defense Technical Information Center, December 2014. http://dx.doi.org/10.21236/ada613963.
Full textHorvath, Ildiko. Investigating repeatable ionospheric features during large space storms and superstorms. Fort Belvoir, VA: Defense Technical Information Center, August 2014. http://dx.doi.org/10.21236/ada609369.
Full textVeth, Mike, and Meir Pachter. Correspondence Search Mitigation Using Feature Space Anti-Aliasing. Fort Belvoir, VA: Defense Technical Information Center, January 2007. http://dx.doi.org/10.21236/ada473005.
Full textBonnie, David John, and Kyle E. Lamb. MarFS: A Scalable Near-POSIX Name Space over Cloud Objects – New Features. Office of Scientific and Technical Information (OSTI), November 2016. http://dx.doi.org/10.2172/1333128.
Full textMéndez-Vizcaíno, Juan C., and Nicolás Moreno-Arias. A Global Shock with Idiosyncratic Pains: State-Dependent Debt Limits for LATAM during the COVID-19 pandemic. Banco de la República, October 2021. http://dx.doi.org/10.32468/be.1175.
Full textSlotiuk, Tetiana. CONCEPT OF SOLUTIONS JOURNALISM MODEL: CONNOTION, FUNCTIONS, FEATURES OF FUNCTIONING. Ivan Franko National University of Lviv, March 2021. http://dx.doi.org/10.30970/vjo.2021.50.11097.
Full textJackiewicz, Jason. Automatic Recognition of Solar Features for Developing Data Driven Prediction Models of Solar Activity and Space Weather. Fort Belvoir, VA: Defense Technical Information Center, July 2012. http://dx.doi.org/10.21236/ada563097.
Full text