Journal articles on the topic 'Sparse Accelerator'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Sparse Accelerator.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Xie, Xiaoru, Mingyu Zhu, Siyuan Lu, and Zhongfeng Wang. "Efficient Layer-Wise N:M Sparse CNN Accelerator with Flexible SPEC: Sparse Processing Element Clusters." Micromachines 14, no. 3 (February 24, 2023): 528. http://dx.doi.org/10.3390/mi14030528.
Full textLi, Yihang. "Sparse-Aware Deep Learning Accelerator." Highlights in Science, Engineering and Technology 39 (April 1, 2023): 305–10. http://dx.doi.org/10.54097/hset.v39i.6544.
Full textXu, Jia, Han Pu, and Dong Wang. "Sparse Convolution FPGA Accelerator Based on Multi-Bank Hash Selection." Micromachines 16, no. 1 (December 27, 2024): 22. https://doi.org/10.3390/mi16010022.
Full textZheng, Yong, Haigang Yang, Yiping Jia, and Zhihong Huang. "PermLSTM: A High Energy-Efficiency LSTM Accelerator Architecture." Electronics 10, no. 8 (April 8, 2021): 882. http://dx.doi.org/10.3390/electronics10080882.
Full textYavits, Leonid, and Ran Ginosar. "Accelerator for Sparse Machine Learning." IEEE Computer Architecture Letters 17, no. 1 (January 1, 2018): 21–24. http://dx.doi.org/10.1109/lca.2017.2714667.
Full textTeodorovic, Predrag, and Rastislav Struharik. "Hardware Acceleration of Sparse Oblique Decision Trees for Edge Computing." Elektronika ir Elektrotechnika 25, no. 5 (October 6, 2019): 18–24. http://dx.doi.org/10.5755/j01.eie.25.5.24351.
Full textVranjkovic, Vuk, Predrag Teodorovic, and Rastislav Struharik. "Universal Reconfigurable Hardware Accelerator for Sparse Machine Learning Predictive Models." Electronics 11, no. 8 (April 8, 2022): 1178. http://dx.doi.org/10.3390/electronics11081178.
Full textGowda, Kavitha Malali Vishveshwarappa, Sowmya Madhavan, Stefano Rinaldi, Parameshachari Bidare Divakarachari, and Anitha Atmakur. "FPGA-Based Reconfigurable Convolutional Neural Network Accelerator Using Sparse and Convolutional Optimization." Electronics 11, no. 10 (May 22, 2022): 1653. http://dx.doi.org/10.3390/electronics11101653.
Full textDey, Sumon, Lee Baker, Joshua Schabel, Weifu Li, and Paul D. Franzon. "A Scalable Cluster-based Hierarchical Hardware Accelerator for a Cortically Inspired Algorithm." ACM Journal on Emerging Technologies in Computing Systems 17, no. 4 (June 30, 2021): 1–29. http://dx.doi.org/10.1145/3447777.
Full textLiu, Sheng, Yasong Cao, and Shuwei Sun. "Mapping and Optimization Method of SpMV on Multi-DSP Accelerator." Electronics 11, no. 22 (November 11, 2022): 3699. http://dx.doi.org/10.3390/electronics11223699.
Full textVranjkovic, Vuk, and Rastislav Struharik. "Hardware Acceleration of Sparse Support Vector Machines for Edge Computing." Elektronika ir Elektrotechnika 26, no. 3 (June 27, 2020): 42–53. http://dx.doi.org/10.5755/j01.eie.26.3.25796.
Full textLiu, Peng, and Yu Wang. "A Low-Power General Matrix Multiplication Accelerator with Sparse Weight-and-Output Stationary Dataflow." Micromachines 16, no. 1 (January 16, 2025): 101. https://doi.org/10.3390/mi16010101.
Full textWang, Deguang, Junzhong Shen, Mei Wen, and Chunyuan Zhang. "Efficient Implementation of 2D and 3D Sparse Deconvolutional Neural Networks with a Uniform Architecture on FPGAs." Electronics 8, no. 7 (July 18, 2019): 803. http://dx.doi.org/10.3390/electronics8070803.
Full textHe, Pengzhou, Yazheng Tu, Tianyou Bao, Çetin Çetin Koç, and Jiafeng Xie. "HSPA: High-Throughput Sparse Polynomial Multiplication for Code-based Post-Quantum Cryptography." ACM Transactions on Embedded Computing Systems 24, no. 1 (December 10, 2024): 1–24. https://doi.org/10.1145/3703837.
Full textXIAO, Hao, Kaikai ZHAO, and Guangzhu LIU. "Efficient Hardware Accelerator for Compressed Sparse Deep Neural Network." IEICE Transactions on Information and Systems E104.D, no. 5 (May 1, 2021): 772–75. http://dx.doi.org/10.1587/transinf.2020edl8153.
Full textLi, Jiajun, Shuhao Jiang, Shijun Gong, Jingya Wu, Junchao Yan, Guihai Yan, and Xiaowei Li. "SqueezeFlow: A Sparse CNN Accelerator Exploiting Concise Convolution Rules." IEEE Transactions on Computers 68, no. 11 (November 1, 2019): 1663–77. http://dx.doi.org/10.1109/tc.2019.2924215.
Full textLi, Fanrong, Gang Li, Zitao Mo, Xiangyu He, and Jian Cheng. "FSA: A Fine-Grained Systolic Accelerator for Sparse CNNs." IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 39, no. 11 (November 2020): 3589–600. http://dx.doi.org/10.1109/tcad.2020.3012212.
Full textYang, Tao, Zhezhi He, Tengchuan Kou, Qingzheng Li, Qi Han, Haibao Yu, Fangxin Liu, Yun Liang, and Li Jiang. "BISWSRBS: A Winograd-based CNN Accelerator with a Fine-grained Regular Sparsity Pattern and Mixed Precision Quantization." ACM Transactions on Reconfigurable Technology and Systems 14, no. 4 (December 31, 2021): 1–28. http://dx.doi.org/10.1145/3467476.
Full textWu, Di, Xitian Fan, Wei Cao, and Lingli Wang. "SWM: A High-Performance Sparse-Winograd Matrix Multiplication CNN Accelerator." IEEE Transactions on Very Large Scale Integration (VLSI) Systems 29, no. 5 (May 2021): 936–49. http://dx.doi.org/10.1109/tvlsi.2021.3060041.
Full textLiu, Qingliang, Jinmei Lai, and Jiabao Gao. "An Efficient Channel-Aware Sparse Binarized Neural Networks Inference Accelerator." IEEE Transactions on Circuits and Systems II: Express Briefs 69, no. 3 (March 2022): 1637–41. http://dx.doi.org/10.1109/tcsii.2021.3119369.
Full textSun, Yichun, Hengzhu Liu, and Tong Zhou. "Sparse Cholesky Factorization on FPGA Using Parameterized Model." Mathematical Problems in Engineering 2017 (2017): 1–11. http://dx.doi.org/10.1155/2017/3021591.
Full textWang, Renping, Shun Li, Enhao Tang, Sen Lan, Yajing Liu, Jing Yang, Shizhen Huang, and Hailong Hu. "SH-GAT: Software-hardware co-design for accelerating graph attention networks on FPGA." Electronic Research Archive 32, no. 4 (2024): 2310–22. http://dx.doi.org/10.3934/era.2024105.
Full textXie, Xiaoru, Jun Lin, Zhongfeng Wang, and Jinghe Wei. "An Efficient and Flexible Accelerator Design for Sparse Convolutional Neural Networks." IEEE Transactions on Circuits and Systems I: Regular Papers 68, no. 7 (July 2021): 2936–49. http://dx.doi.org/10.1109/tcsi.2021.3074300.
Full textLai, Bo-Cheng, Jyun-Wei Pan, and Chien-Yu Lin. "Enhancing Utilization of SIMD-Like Accelerator for Sparse Convolutional Neural Networks." IEEE Transactions on Very Large Scale Integration (VLSI) Systems 27, no. 5 (May 2019): 1218–22. http://dx.doi.org/10.1109/tvlsi.2019.2897052.
Full textLu, Yuntao, Chao Wang, Lei Gong, and Xuehai Zhou. "SparseNN: A Performance-Efficient Accelerator for Large-Scale Sparse Neural Networks." International Journal of Parallel Programming 46, no. 4 (October 3, 2017): 648–59. http://dx.doi.org/10.1007/s10766-017-0528-8.
Full textMelham, R. "A systolic accelerator for the iterative solution of sparse linear systems." IEEE Transactions on Computers 38, no. 11 (1989): 1591–95. http://dx.doi.org/10.1109/12.42132.
Full textLi, Tao, and Li Shen. "A sparse matrix vector multiplication accelerator based on high-bandwidth memory." Computers and Electrical Engineering 105 (January 2023): 108488. http://dx.doi.org/10.1016/j.compeleceng.2022.108488.
Full textZhu, Chaoyang, Kejie Huang, Shuyuan Yang, Ziqi Zhu, Hejia Zhang, and Haibin Shen. "An Efficient Hardware Accelerator for Structured Sparse Convolutional Neural Networks on FPGAs." IEEE Transactions on Very Large Scale Integration (VLSI) Systems 28, no. 9 (September 2020): 1953–65. http://dx.doi.org/10.1109/tvlsi.2020.3002779.
Full textWang, Zixiao, Ke Xu, Shuaixiao Wu, Li Liu, Lingzhi Liu, and Dong Wang. "Sparse-YOLO: Hardware/Software Co-Design of an FPGA Accelerator for YOLOv2." IEEE Access 8 (2020): 116569–85. http://dx.doi.org/10.1109/access.2020.3004198.
Full textHumble, Ryan, William Colocho, Finn O’Shea, Daniel Ratner, and Eric Darve. "Resilient VAE: Unsupervised Anomaly Detection at the SLAC Linac Coherent Light Source." EPJ Web of Conferences 295 (2024): 09033. http://dx.doi.org/10.1051/epjconf/202429509033.
Full textLiang, Zhongwei, Xiaochu Liu, Guilin Wen, and Jinrui Xiao. "Effectiveness prediction of abrasive jetting stream of accelerator tank using normalized sparse autoencoder-adaptive neural fuzzy inference system." Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 234, no. 13 (June 26, 2020): 1615–39. http://dx.doi.org/10.1177/0954405420927582.
Full textShimoda, Masayuki, Youki Sada, and Hiroki Nakahara. "FPGA-Based Inter-layer Pipelined Accelerators for Filter-Wise Weight-Balanced Sparse Fully Convolutional Networks with Overlapped Tiling." Journal of Signal Processing Systems 93, no. 5 (February 13, 2021): 499–512. http://dx.doi.org/10.1007/s11265-021-01642-6.
Full textWang, Miao, Xiaoya Fan, Wei Zhang, Ting Zhu, Tengteng Yao, Hui Ding, and Danghui Wang. "Balancing memory-accessing and computing over sparse DNN accelerator via efficient data packaging." Journal of Systems Architecture 117 (August 2021): 102094. http://dx.doi.org/10.1016/j.sysarc.2021.102094.
Full textZhao, Yunping, Jianzhuang Lu, and Xiaowen Chen. "A Dynamically Reconfigurable Accelerator Design Using a Sparse-Winograd Decomposition Algorithm for CNNs." Computers, Materials & Continua 66, no. 1 (2020): 517–35. http://dx.doi.org/10.32604/cmc.2020.012380.
Full textLiu, Zhi-Gang, Paul N. Whatmough, and Matthew Mattina. "Systolic Tensor Array: An Efficient Structured-Sparse GEMM Accelerator for Mobile CNN Inference." IEEE Computer Architecture Letters 19, no. 1 (January 1, 2020): 34–37. http://dx.doi.org/10.1109/lca.2020.2979965.
Full textPham, Duc-An, and Bo-Cheng Lai. "Dataflow and microarchitecture co-optimisation for sparse CNN on distributed processing element accelerator." IET Circuits, Devices & Systems 14, no. 8 (November 1, 2020): 1185–94. http://dx.doi.org/10.1049/iet-cds.2019.0225.
Full textZhang, Min, Linpeng Li, Hai Wang, Yan Liu, Hongbo Qin, and Wei Zhao. "Optimized Compression for Implementing Convolutional Neural Networks on FPGA." Electronics 8, no. 3 (March 6, 2019): 295. http://dx.doi.org/10.3390/electronics8030295.
Full textLiu, Chester, Sung-Gun Cho, and Zhengya Zhang. "A 2.56-mm2 718GOPS Configurable Spiking Convolutional Sparse Coding Accelerator in 40-nm CMOS." IEEE Journal of Solid-State Circuits 53, no. 10 (October 2018): 2818–27. http://dx.doi.org/10.1109/jssc.2018.2865457.
Full textAimar, Alessandro, Hesham Mostafa, Enrico Calabrese, Antonio Rios-Navarro, Ricardo Tapiador-Morales, Iulia-Alexandra Lungu, Moritz B. Milde, et al. "NullHop: A Flexible Convolutional Neural Network Accelerator Based on Sparse Representations of Feature Maps." IEEE Transactions on Neural Networks and Learning Systems 30, no. 3 (March 2019): 644–56. http://dx.doi.org/10.1109/tnnls.2018.2852335.
Full textQian, Cheng, Bruce Childers, Libo Huang, Hui Guo, and Zhiying Wang. "CGAcc: A Compressed Sparse Row Representation-Based BFS Graph Traversal Accelerator on Hybrid Memory Cube." Electronics 7, no. 11 (November 7, 2018): 307. http://dx.doi.org/10.3390/electronics7110307.
Full textBian, Haoqiong, Tiannan Sha, and Anastasia Ailamaki. "Using Cloud Functions as Accelerator for Elastic Data Analytics." Proceedings of the ACM on Management of Data 1, no. 2 (June 13, 2023): 1–27. http://dx.doi.org/10.1145/3589306.
Full textChen, Xi, Chang Gao, Zuowen Wang, Longbiao Cheng, Sheng Zhou, Shih-Chii Liu, and Tobi Delbruck. "Exploiting Symmetric Temporally Sparse BPTT for Efficient RNN Training." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 10 (March 24, 2024): 11399–406. http://dx.doi.org/10.1609/aaai.v38i10.29020.
Full textWeng, Yui-Kai, Shih-Hsu Huang, and Hsu-Yu Kao. "Block-Based Compression and Corresponding Hardware Circuits for Sparse Activations." Sensors 21, no. 22 (November 10, 2021): 7468. http://dx.doi.org/10.3390/s21227468.
Full textXu, Shiyao, Jingfei Jiang, jinwei Xu, and Xifu Qian. "Efficient SpMM Accelerator for Deep Learning: Sparkle and Its Automated Generator." ACM Transactions on Reconfigurable Technology and Systems, June 7, 2024. http://dx.doi.org/10.1145/3665896.
Full textHwang, Soojin, Daehyeon Baek, Jongse Park, and Jaehyuk Huh. "Cerberus: Triple Mode Acceleration of Sparse Matrix and Vector Multiplication." ACM Transactions on Architecture and Code Optimization, March 17, 2024. http://dx.doi.org/10.1145/3653020.
Full textXie, Kunpeng, Ye Lu, Xinyu He, Dezhi Yi, Huijuan Dong, and Yao Chen. "Winols: A Large-Tiling Sparse Winograd CNN Accelerator on FPGAs." ACM Transactions on Architecture and Code Optimization, January 31, 2024. http://dx.doi.org/10.1145/3643682.
Full textWang, Bo, Sheng Ma, Shengbai Luo, Lizhou Wu, Jianmin Zhang, Chunyuan Zhang, and Tiejun Li. "SparGD: A Sparse GEMM Accelerator with Dynamic Dataflow." ACM Transactions on Design Automation of Electronic Systems, November 27, 2023. http://dx.doi.org/10.1145/3634703.
Full textSoltaniyeh, Mohammadreza, Richard P. Martin, and Santosh Nagarakatte. "An Accelerator for Sparse Convolutional Neural Networks Leveraging Systolic General Matrix-Matrix Multiplication." ACM Transactions on Architecture and Code Optimization, April 25, 2022. http://dx.doi.org/10.1145/3532863.
Full textSoltaniyeh, Mohammadreza, Richard P. Martin, and Santosh Nagarakatte. "An Accelerator for Sparse Convolutional Neural Networks Leveraging Systolic General Matrix-Matrix Multiplication." ACM Transactions on Architecture and Code Optimization, April 25, 2022. http://dx.doi.org/10.1145/3532863.
Full textDel Sarto, Nicola, Diane A. Isabelle, Valentina Cucino, and Alberto Di Minin. "Engaging with startups through corporate accelerators: the case of H‐FARM's White Label Accelerator." R&D Management, July 9, 2024. http://dx.doi.org/10.1111/radm.12705.
Full text