Academic literature on the topic 'Spalling'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Spalling.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Spalling"
Lee, Chang Soon, In Shik Cho, Young Shik Pyoun, and In Gyu Park. "Study of Inner Micro Cracks on Rolling Contact Fatigue of Bearing Steels Using Ultrasonic Nano-Crystalline Surface Modification." Key Engineering Materials 462-463 (January 2011): 979–84. http://dx.doi.org/10.4028/www.scientific.net/kem.462-463.979.
Full textFigueiredo, B., J. Vatcher, J. Sjöberg, and D. Mas Ivars. "Effects of the initial stress and spalling strength on spalling around deposition holes and tunnels." IOP Conference Series: Earth and Environmental Science 1124, no. 1 (January 1, 2023): 012110. http://dx.doi.org/10.1088/1755-1315/1124/1/012110.
Full textQiao, Rujia, Yinbo Guo, Hang Zhou, and Huihui Xi. "Explosive Spalling Mechanism and Modeling of Concrete Lining Exposed to Fire." Materials 15, no. 9 (April 26, 2022): 3131. http://dx.doi.org/10.3390/ma15093131.
Full textZhao, Jie, Jian Jun Zheng, and Gai Fei Peng. "Modeling of Vapor Pressure Build-Up in Heated High-Performance Concrete." Applied Mechanics and Materials 204-208 (October 2012): 3691–94. http://dx.doi.org/10.4028/www.scientific.net/amm.204-208.3691.
Full textTian, Kai Pei, Yang Ju, Hong Bin Liu, Jin Hui Liu, Li Wang, Peng Liu, and Xi Zhao. "Effects of Silica Fume Addition on the Spalling Phenomena of Reactive Powder Concrete." Applied Mechanics and Materials 174-177 (May 2012): 1090–95. http://dx.doi.org/10.4028/www.scientific.net/amm.174-177.1090.
Full textPRESTON, F. W. "THEORY OF SPALLING*." Journal of the American Ceramic Society 16, no. 1-12 (October 17, 2006): 131. http://dx.doi.org/10.1111/j.1151-2916.1933.tb19208.x.
Full textBuravova, Svetlana. "Erosion spalling mechanism." Wear 157, no. 2 (September 1992): 359–70. http://dx.doi.org/10.1016/0043-1648(92)90072-g.
Full textZhao, Jie, Jian Jun Zheng, and Gai Fei Peng. "Fire Spalling Modeling of High Performance Concrete." Applied Mechanics and Materials 52-54 (March 2011): 378–83. http://dx.doi.org/10.4028/www.scientific.net/amm.52-54.378.
Full textWang, Kaiyun, Wanming Zhai, Kaikai Lv, and Zaigang Chen. "Numerical Investigation on Wheel-Rail Dynamic Vibration Excited by Rail Spalling in High-Speed Railway." Shock and Vibration 2016 (2016): 1–11. http://dx.doi.org/10.1155/2016/9108780.
Full textChen, Jun. "Effect of Transient Creep on the Structural Performance of Reinforced Concrete Walls under Fire." Buildings 14, no. 2 (February 2, 2024): 406. http://dx.doi.org/10.3390/buildings14020406.
Full textDissertations / Theses on the topic "Spalling"
MOTTA, BERNARDO HEISLER. "THE CONTEMPORARY NARRATIVE AND INTERACTIVE DIGITAL TECHNOLOGIES: SPALLING, DECENTRALIZATION, SLIDING AND MULTIPLICATION OF CHARACTERS` SPALLING." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2005. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=7661@1.
Full textEssa pesquisa tem como objetivo analisar a descentralização, fragmentação, deslizamento e multiplicação da identidade dos personagens na ficção literária e cinematográfica contemporânea. A hipótese que norteia o trabalho é a de que estas transformações, na forma em que vêm se apresentando, estão intimamente relacionadas a um outro fenômeno, decorrente das possibilidades criadas pelas novas tecnologias digitais, o da interatividade. Assim, a pesquisa debruça-se sobre a inter-relação entre as narrativas de ficção digitais e as narrativas de ficção na literatura e no cinema contemporâneo.
This research has as objective to analyze the decentralization, spalling, sliding and multiplication of the identity of the characters in contemporary literary and cinematographic fiction. The hypothesis that guides this work is of that these transformations are intimately related to another phenomenon, linked to the possibilities created by the new digital technologies, the interactivity. The research then leans over the relations between the fictional digital narratives and the fictional narratives in contemporary literature and cinema.
Connolly, Raymond J. "The spalling of concrete in fires." Thesis, Aston University, 1995. http://publications.aston.ac.uk/14310/.
Full textJansson, Robert. "Fire Spalling of Concrete : Theoretical and Experimental Studies." Doctoral thesis, KTH, Betongbyggnad, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-128378.
Full textQC 20130911
Nguyen, Thang Dinh. "Theoretical study of thermal spalling of brittle materials." Diss., Virginia Polytechnic Institute and State University, 1986. http://hdl.handle.net/10919/77905.
Full textPh. D.
Jansson, Robert. "Material properties related to fire spalling of concrete /." Lund : Division of Building Materials, Lund Institute of Technology, Lund University, 2008. http://www.byggnadsmaterial.lth.se/.
Full textJerabek, Jakub, Allessandra Keil, Jens Schoene, Rostislav Chudoba, Josef Hegger, and Michael Raupach. "Experimental and Numerical Analysis of Spalling Effect in TRC Specimens." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2009. http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1244046893347-05461.
Full textThiruchelvam, Chellathurai. "Deterioration and spalling of high strength concrete at elevated temperatures." Thesis, City University London, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.274476.
Full textLopes, Christian Raposo. "Spalling e DoP em alvos metálicos : estudos analíticos e numéricos." Master's thesis, Universidade de Aveiro, 2009. http://hdl.handle.net/10773/2493.
Full textAs constantes formas de ameaça requerem o desenvolvimento constante de mecanismos de protecção, capazes de suster ataques de diversos tipos. Estes mecanismos devem possuir qualificações de segurança elevadas, visando a protecção de pessoas, veículos ou infraestruturas. O desenvolvimento tecnológico de sistemas de protecção inovadores permite acompanhar a evolução do tipo, tecnologia e performance das ameaças (armas, projécteis, explosivos, etc.). Consequentemente, é de grande importância o desenvolvimento de meios capazes de avaliar a capacidade de absorção de impacto dos referidos sistemas de protecção, sistemas esses que devem fornecer a resistência necessária ao impacto de ameaça. Neste trabalho procura-se estudar o comportamento ao impacto balístico de sistemas de protecção metálicos. Estudam-se numericamente os factores que influenciam a capacidade de absorção de energia de um alvo. Apresenta-se uma investigação detalhada das características de absorção de impacto de alvos com diferentes espessuras, impactados por projécteis com forma de ponta cilíndrica, hemisférica, cónica e ogival. Analisa-se a influência de vários parâmetros que afectam a capacidade de absorção de energia do alvo, tais como, a energia cinética de impacto, a forma de ponta do projéctil, as espessuras e os modos de cedência dos alvos. Faz-se a caracterização do comportamento mecânico ao impacto do aço Weldox 460 E, recorrendo ao programa de elemento finitos Abaqus. Evidencia-se, através da análise dos resultados numéricos, a dependência do modo de cedência do alvo em relação ao tipo de projéctil utilizado. Verifica-se um aumento da velocidade de limite balístico com o aumento da espessura do alvo, induzindo um aumento da capacidade de protecção deste. Denota-se a influência da forma de ponta do projéctil e da velocidade inicial de impacto na variação da velocidade residual do projéctil. Ilustra-se o aumento de absorção de energia por parte do alvo, com o aumento de espessura deste. É ainda notória uma absorção de energia de forma mais rápida para projécteis com configuração cilíndrica, verificando-se o inverso em projécteis de configuração ogival. ABSTRACT: The constant forms of threat require the constant development of protection systems capable of sustaining various types of attacks. These mechanisms should have high safety qualifications concerning the protection of people, vehicles or buildings. The development of innovative security systems can follow the evolution of type, technology and performance of the threats (weapons, projectiles, explosives, etc.). Therefore it is of extreme importance the development of means capable of evaluating the impact absorption capability of the before mentioned protection systems, which should be able to provide the resistence needed for the impact of a threat. This work presents a study of the behavior of metal protection systems against a ballistic impact where the afecting factors of the energy absorption capability of a target are numerically analysed. A detailed investigation of the impact absorption characteristics of a target with different thickness when collided by projectiles with blunt, hemispherical, conical and ogival noses is presented. Influence of various parameters afecting the energy absorption capability of the target, such as the kinetic energy of the impacting projectile, its nose shape, failure mode and thickness is studied. The mechanical behavior under an impact loading of Weldox 460 E steel is analysed using the finite element program Abaqus. It is possible to verify the dependence of the failure mode of the target on the type of projectile being used. Along with the increasement of the thickness of the target it is observed that the same happens to its energy absorption and to the ballistic limit velocity. The projectile nose shape and the initial velocity of impact affect its residual velocity. It is also noticed a faster absorption of energy by the target for projectiles with blunt noses, with the opposite happening for the ones with ogival noses.
Yanko, William Andrew. "Experimental and numerical evaluation of concrete spalling during extreme thermal loading." [Gainesville, Fla.] : University of Florida, 2004. http://purl.fcla.edu/fcla/etd/UFE0006380.
Full textKhoylou, Naysan. "Modelling of moisture migration and spalling behaviour in non-uniformly heated concrete." Thesis, Imperial College London, 1997. http://hdl.handle.net/10044/1/7317.
Full textBooks on the topic "Spalling"
Connolly, Raymond John. The spalling of concrete in fires. Birmingham: Aston University. Department of Civil Engineering, 1995.
Find full textCenter, NASA Glenn Research, ed. A deterministic interfacial cyclic oxidation spalling model. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 2002.
Find full textCenter, NASA Glenn Research, ed. A deterministic interfacial cyclic oxidation spalling model. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 2002.
Find full textKelkar, Ajit Dhundiraj. Analyses of quasi-isotropic composite plates under quasi-static point loads simulating low-velocity impact phenomena. Norfolk, Va: Old Dominion University, 1985.
Find full textCenter, Lewis Research, ed. The effect of 0.1 atomic percent Zirconium on the cyclic oxidation behavior of Ý-NiAl for 3000 hours at 1200⁰C. Cleveland, Ohio: National Aeronautics and Space Administration, Lewis Research Center, 1988.
Find full textCenter, Lewis Research, ed. The effect of 0.1 atomic percent Zirconium on the cyclic oxidation behavior of Ý-NiAl for 3000 hours at 1200⁰C. Cleveland, Ohio: National Aeronautics and Space Administration, Lewis Research Center, 1988.
Find full textCenter, Lewis Research, ed. The effect of 0.1 atomic percent Zirconium on the cyclic oxidation behavior of b□-s□gbb□-s□s-NiAl for 3000 hours at 1200b□-s□p0b□-s□sC. Cleveland, Ohio: National Aeronautics and Space Administration, Lewis Research Center, 1988.
Find full textBlickensderfer, Robert. Laboratory tests of spalling, breaking, and abrasion of wear-resistant alloys used in mining and mineral processing. Avondale, MD: U.S. Dept. of the Interior, Bureau of Mines, 1985.
Find full textBV, Hoogovens Groep. Mathematical model for the determination of thermal spalling in refractory material on basis of the practical relationship of the appearance of rupture, physical properties and physical conditions. Luxembourg: Commission of the European Communities, 1985.
Find full textD, Sheffler K., Ortiz Milton, and Lewis Research Center, eds. Thermal barrier coating life prediction model development: Phase 1, final report. Cleveland, Ohio: NASA Lewis Research Center, 1989.
Find full textBook chapters on the topic "Spalling"
Silverton, Craig D., and Paul Dougherty. "Spalling." In Encyclopedia of Trauma Care, 1492–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-29613-0_401.
Full textHan, Baoguo, Liqing Zhang, and Jinping Ou. "Anti-Spalling Concrete." In Smart and Multifunctional Concrete Toward Sustainable Infrastructures, 191–222. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4349-9_10.
Full textHu, Huan, Renwei Mao, and Katsuyuki Sakuma. "Controlled Spalling Technology." In Flexible, Wearable, and Stretchable Electronics, 173–84. First edition. | Boca Raton : CRC Press, 2020. | Series: Devices, circuits, & systems: CRC Press, 2020. http://dx.doi.org/10.1201/9780429263941-7.
Full textBidžević, Irfan, Sanin Džidić, and Ahmed El Sayed. "Spalling of Concrete." In Lecture Notes in Networks and Systems, 75–91. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-43056-5_7.
Full textLo Monte, F., and R. Felicetti. "Spalling Sensitivity Test on Concrete." In Lecture Notes in Civil Engineering, 512–23. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-78936-1_37.
Full textWoodburn, Peter, Mike Deevy, Ivy Wang, Jiajie Zhu, Michael Boyd, and Nicole Hoffman. "Train fire spalling risk assessment." In High Speed Two (HS2): Infrastructure Design and Construction (Volume 1), 193–215. London: ICE Publishing, 2021. http://dx.doi.org/10.1680/hs2.65765.193.
Full textRawat, S., Y. X. Zhang, and C. K. Lee. "Spalling Resistance of Hybrid Polyethylene and Steel Fiber-Reinforced High-Strength Engineered Cementitious Composite." In Lecture Notes in Civil Engineering, 321–25. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-3330-3_33.
Full textBoth, C., G. M. Wolsink, and A. J. Breunese. "Spalling of concrete tunnel linings in fire." In (Re)Claiming the Underground Space, 227–31. London: Routledge, 2022. http://dx.doi.org/10.1201/9780203741184-41.
Full textSmialek, James L. "Predicting Material Consumption by Cyclic Oxidation Spalling Models." In Materials Lifetime Science & Engineering, 147–54. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118788035.ch14.
Full textDawood, T., Z. Zhu, and T. Zayed. "Detection and Quantification of Spalling Distress in Subway Networks." In Proceedings of the 21st International Symposium on Advancement of Construction Management and Real Estate, 607–15. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-6190-5_55.
Full textConference papers on the topic "Spalling"
Cummings, Scott M., and Cameron P. Lonsdale. "Wheel Spalling Literature Review." In ASME 2008 Rail Transportation Division Fall Technical Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/rtdf2008-74010.
Full textZhang, Xuhui, Bowen Liu, Wei Zhang, Qiuchi Chen, and Caiqian Yang. "Shear Behavior of Corroded RC Beams Considering Concrete Spalling Damage." In IABSE Congress, New York, New York 2019: The Evolving Metropolis. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2019. http://dx.doi.org/10.2749/newyork.2019.1485.
Full textSakuma, Katsuyuki, Huan Hu, Stephen W. Bedell, Bucknell Webb, Steven Wright, Ken Latzko, Marlon Agno, and John Knickerbocker. "Flexible Piezoresistive Sensors Fabricated by Spalling Technique." In 2018 International Flexible Electronics Technology Conference (IFETC). IEEE, 2018. http://dx.doi.org/10.1109/ifetc.2018.8583971.
Full textPel, L. "Spalling of concrete as studied by NMR." In 2nd International RILEM Symposium on Advances in Concrete through Science and Engineering. RILEM Publications, 2006. http://dx.doi.org/10.1617/2351580028.107.
Full textColl, Pablo Guimera, Rico Meier, and Mariana Bertoni. "Dynamics of Crack Propagation during Silicon Spalling." In 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC). IEEE, 2018. http://dx.doi.org/10.1109/pvsc.2018.8548314.
Full textDedmon, Steven L. "The Process of Spalling in Railroad Wheels." In ASME 2011 Rail Transportation Division Fall Technical Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/rtdf2011-67030.
Full textO'Connor, B. M., E. S. Akucewich, and D. R. Clark. "Development of a Laboratory Hypoid Gear Spalling Test." In International Fuels & Lubricants Meeting & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1997. http://dx.doi.org/10.4271/973252.
Full textAVERBACH, B., S. VAN PELT, and P. PEARSON. "Initiation of spalling in aircraft gas turbine bearings." In 26th Joint Propulsion Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1990. http://dx.doi.org/10.2514/6.1990-2291.
Full textGailly, B., and J. Petit. "Influence of the microstructure on armor steel spalling." In Proceedings of the conference of the American Physical Society topical group on shock compression of condensed matter. AIP, 1996. http://dx.doi.org/10.1063/1.50639.
Full textCummings, Scott M., and Patricia Schreiber. "Wheel Spalling: Simulation of High Speed Wheel Slip." In ASME 2008 Rail Transportation Division Fall Technical Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/rtdf2008-74011.
Full textReports on the topic "Spalling"
Bertoni, Mariana. Sound Assisted Low Temperature Spalling: Upscaling and Throughput. Office of Scientific and Technical Information (OSTI), March 2023. http://dx.doi.org/10.2172/1963713.
Full textVarma, Amit H., Jan Olek, Christopher S. Williams, Tzu-Chun Tseng, Dan Huang, and Tom Bradt. Post-Fire Assessment of Prestressed Concrete Bridges in Indiana. Purdue University, 2021. http://dx.doi.org/10.5703/1288284317290.
Full textTseng, Tzu-Chun, and Amit H. Varma. Synthesis Study: Repair and Durability of Fire-Damaged Prestressed Concrete Bridge Girders. Purdue University, 2022. http://dx.doi.org/10.5703/1288284317378.
Full textSchulte, Kevin. High-Efficiency, Low-Cost III-V Solar Cells by Dynamic Hydride Vapor Phase Epitaxy Coupled with Rapid, Polishing-Free Wafer Reuse through Orientation-Optimized (110) Spalling. Office of Scientific and Technical Information (OSTI), July 2021. http://dx.doi.org/10.2172/1806554.
Full textRobinson, W., Jeremiah Stache, Jeb Tingle, Carlos Gonzalez, Anastasios Ioannides, and James Rushing. Naval expeditionary runway construction criteria : P-8 Poseidon pavement requirements. Engineer Research and Development Center (U.S.), April 2023. http://dx.doi.org/10.21079/11681/46857.
Full textBaah, Prince. Implementing Epoxy Injection in Concrete Overlaid Bridge Decks. Purdue University, 2023. http://dx.doi.org/10.5703/1288284317588.
Full textKo, Yu-Fu, and Jessica Gonzalez. Fiber-Based Seismic Damage and Collapse Assessment of Reinforced Concrete Single-Column Pier-Supported Bridges Using Damage Indices. Mineta Transportation Institute, August 2023. http://dx.doi.org/10.31979/mti.2023.2241.
Full textGilkey, Amy P., Clifford W. Hansen, John F. Schatz, David Keith Rudeen, and David L. Lord. DRSPALL :spallings model for the Waste Isolation Pilot Plant 2004 recertification. Office of Scientific and Technical Information (OSTI), February 2006. http://dx.doi.org/10.2172/883469.
Full textBrosnahan and DeVries. PR-317-10702-R01 Testing for the Dilation Strength of Salt. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), December 2011. http://dx.doi.org/10.55274/r0010026.
Full textKicker, Dwayne Curtis, Courtney G. Herrick, Todd Zeitler, Bwalya Malama, David Keith Rudeen, and Amy P. Gilkey. DRSPALL: Impact of the Modification of the Numerical Spallings Model on Waste Isolation Pilot Plant Performance Assessment. Office of Scientific and Technical Information (OSTI), January 2016. http://dx.doi.org/10.2172/1235212.
Full text