Academic literature on the topic 'Space tracking'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Space tracking.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Space tracking"

1

Madren, Carrie. "Tracking Turtles from Space." Scientific American 307, no. 1 (June 19, 2012): 27. http://dx.doi.org/10.1038/scientificamerican0712-27.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Danelljan, Martin, Gustav Hager, Fahad Shahbaz Khan, and Michael Felsberg. "Discriminative Scale Space Tracking." IEEE Transactions on Pattern Analysis and Machine Intelligence 39, no. 8 (August 1, 2017): 1561–75. http://dx.doi.org/10.1109/tpami.2016.2609928.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Egeland, Olav. "Task Space Tracking for Manipulators." Modeling, Identification and Control: A Norwegian Research Bulletin 6, no. 2 (1985): 91–101. http://dx.doi.org/10.4173/mic.1985.2.3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Villagrán de León, Juan Carlos. "Tracking climate change from space." UN Chronicle 46, no. 4 (April 17, 2012): 80–83. http://dx.doi.org/10.18356/a629940b-en.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Krüger, Volker, and Dennis Herzog. "Tracking in object action space." Computer Vision and Image Understanding 117, no. 7 (July 2013): 764–89. http://dx.doi.org/10.1016/j.cviu.2013.02.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Stergiou, Chrysovalantis. "Tracking down space and time." Metascience 22, no. 3 (May 15, 2013): 587–90. http://dx.doi.org/10.1007/s11016-013-9800-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Aume, Cameron, Keith Andrews, Shantanu Pal, Alice James, Avishkar Seth, and Subhas Mukhopadhyay. "TrackInk: An IoT-Enabled Real-Time Object Tracking System in Space." Sensors 22, no. 2 (January 13, 2022): 608. http://dx.doi.org/10.3390/s22020608.

Full text
Abstract:
Nowadays, there is tremendous growth in the Internet of Things (IoT) applications in our everyday lives. The proliferation of smart devices, sensors technology, and the Internet makes it possible to communicate between the digital and physical world seamlessly for distributed data collection, communication, and processing of several applications dynamically. However, it is a challenging task to monitor and track objects in real-time due to the distinct characteristics of the IoT system, e.g., scalability, mobility, and resource-limited nature of the devices. In this paper, we address the significant issue of IoT object tracking in real time. We propose a system called ‘TrackInk’ to demonstrate our idea. TrackInk will be capable of pointing toward and taking pictures of visible satellites in the night sky, including but not limited to the International Space Station (ISS) or the moon. Data will be collected from sensors to determine the system’s geographical location along with its 3D orientation, allowing for the system to be moved. Additionally, TrackInk will communicate with and send data to ThingSpeak for further cloud-based systems and data analysis. Our proposed system is lightweight, highly scalable, and performs efficiently in a resource-limited environment. We discuss a detailed system’s architecture and show the performance results using a real-world hardware-based experimental setup.
APA, Harvard, Vancouver, ISO, and other styles
8

Makin, A. D. J., and T. Chauhan. "Memory-guided tracking through physical space and feature space." Journal of Vision 14, no. 13 (November 14, 2014): 10. http://dx.doi.org/10.1167/14.13.10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Dirkx, D., R. Noomen, P. N. A. M. Visser, L. I. Gurvits, and L. L. A. Vermeersen. "Space-time dynamics estimation from space mission tracking data." Astronomy & Astrophysics 587 (March 2016): A156. http://dx.doi.org/10.1051/0004-6361/201527524.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Liu Xi-Min, Liu Li-Ren, Sun Jian-Feng, Lang Hai-Tao, Pan Wei-Qing, and Zhao Dong. "Fine tracking in space laser communication." Acta Physica Sinica 54, no. 11 (2005): 5149. http://dx.doi.org/10.7498/aps.54.5149.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Space tracking"

1

Grelck, John, Eldon Ehrsam, and James A. Means. "Space Tracking Systems/ Options Study." International Foundation for Telemetering, 1994. http://hdl.handle.net/10150/611727.

Full text
Abstract:
International Telemetering Conference Proceedings / October 17-20, 1994 / Town & Country Hotel and Conference Center, San Diego, California
This paper presents the findings of the Space Tracking Systems/Options Study (STS/OS) and indicates its impact on the telemetering community. The STS/OS was commissioned by Air Force Test & Evaluation (AF/TE) to develop a long range plan (vision and roadmap) for the AF Test & Evaluation (T&E) community to ensure affordable capabilities (telemetry, tracking and commanding) for the future (2003-2008). The study was conducted by the Air Force Materiel Command (AFMC), Space & Missile Systems Center (SMC), Detachment 9, at Vandenberg AFB (VAFB), with support from the primary AFMC T&E centers, the Air Force Operational Test & Evaluation Command (AFOTEC), and the Air Force Space Command (AFSPC). Both "open air" aeronautical and astronautical test needs were considered. The study solicited requirements for existing and future programs, extrapolated existing and planned test capabilities out into the future, then compared the two to identify future shortfalls in capabilities and specific actions that are necessary to insure that the future program needs can be met. Three critical types of testing were identified that cannot be satisfied with existing or planned instrumentation. These are: large area testing (LAT), over the horizon testing (OTH), and space weapons testing (SWT). A major deficiency was also uncovered in end game scoring for air and space intercepts, where inadequate capability exists to perform the required vector miss-distance measurement. This paper is important to the telemetering community because it identifies the Global Positioning System (GPS) as the primary time space position information (TSPI) system for all future open air testing. GPS provides a passive capability that permits each vehicle to determine its own precise TSPI. Means must be provided, however, for the vehicle to relay its position to the appropriate range control center. The paper shows that the problems with down linking telemetry, aircraft buss data, digital audio, digital video, and TSPI collectively represent the need for a very capable datalink. Likewise, the need to uplink commands, synthetic targets, synthetic backgrounds, and target control information also represents the need for a very capable datalink. With its extensive expertise in RF linkages, the telemetering community is ideally suited to address this need for a robust datalink for the future of T&E.
APA, Harvard, Vancouver, ISO, and other styles
2

Turner, W. C., and R. A. Potter. "UNATTENDED SPACE-DIVERSITY TELEMETRY TRACKING ANTENNA SYSTEM." International Foundation for Telemetering, 1994. http://hdl.handle.net/10150/608826.

Full text
Abstract:
International Telemetering Conference Proceedings / October 17-20, 1994 / Town & Country Hotel and Conference Center, San Diego, California
A remotely-operated ground telemetry tracking and receiving station is described. The station, operating in a space-diversity mode, is capable of reception and tracking both at VHF and at UHF. The station can be configured and operated from a distance of 240 km using a wide-band land data link. Uplink command at VHF is included as part of the station.
APA, Harvard, Vancouver, ISO, and other styles
3

Graziani, Alberto <1980&gt. "Troposphere Calibration Techniques for Deep Space Probe Tracking." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2010. http://amsdottorato.unibo.it/3023/.

Full text
Abstract:
Ground-based Earth troposphere calibration systems play an important role in planetary exploration, especially to carry out radio science experiments aimed at the estimation of planetary gravity fields. In these experiments, the main observable is the spacecraft (S/C) range rate, measured from the Doppler shift of an electromagnetic wave transmitted from ground, received by the spacecraft and coherently retransmitted back to ground. If the solar corona and interplanetary plasma noise is already removed from Doppler data, the Earth troposphere remains one of the main error sources in tracking observables. Current Earth media calibration systems at NASA’s Deep Space Network (DSN) stations are based upon a combination of weather data and multidirectional, dual frequency GPS measurements acquired at each station complex. In order to support Cassini’s cruise radio science experiments, a new generation of media calibration systems were developed, driven by the need to achieve the goal of an end-to-end Allan deviation of the radio link in the order of 3×〖10〗^(-15) at 1000 s integration time. The future ESA’s Bepi Colombo mission to Mercury carries scientific instrumentation for radio science experiments (a Ka-band transponder and a three-axis accelerometer) which, in combination with the S/C telecommunication system (a X/X/Ka transponder) will provide the most advanced tracking system ever flown on an interplanetary probe. Current error budget for MORE (Mercury Orbiter Radioscience Experiment) allows the residual uncalibrated troposphere to contribute with a value of 8×〖10〗^(-15) to the two-way Allan deviation at 1000 s integration time. The current standard ESA/ESTRACK calibration system is based on a combination of surface meteorological measurements and mathematical algorithms, capable to reconstruct the Earth troposphere path delay, leaving an uncalibrated component of about 1-2% of the total delay. In order to satisfy the stringent MORE requirements, the short time-scale variations of the Earth troposphere water vapor content must be calibrated at ESA deep space antennas (DSA) with more precise and stable instruments (microwave radiometers). In parallel to this high performance instruments, ESA ground stations should be upgraded to media calibration systems at least capable to calibrate both troposphere path delay components (dry and wet) at sub-centimetre level, in order to reduce S/C navigation uncertainties. The natural choice is to provide a continuous troposphere calibration by processing GNSS data acquired at each complex by dual frequency receivers already installed for station location purposes. The work presented here outlines the troposphere calibration technique to support both Deep Space probe navigation and radio science experiments. After an introduction to deep space tracking techniques, observables and error sources, in Chapter 2 the troposphere path delay is widely investigated, reporting the estimation techniques and the state of the art of the ESA and NASA troposphere calibrations. Chapter 3 deals with an analysis of the status and the performances of the NASA Advanced Media Calibration (AMC) system referred to the Cassini data analysis. Chapter 4 describes the current release of a developed GNSS software (S/W) to estimate the troposphere calibration to be used for ESA S/C navigation purposes. During the development phase of the S/W a test campaign has been undertaken in order to evaluate the S/W performances. A description of the campaign and the main results are reported in Chapter 5. Chapter 6 presents a preliminary analysis of microwave radiometers to be used to support radio science experiments. The analysis has been carried out considering radiometric measurements of the ESA/ESTEC instruments installed in Cabauw (NL) and compared with the requirements of MORE. Finally, Chapter 7 summarizes the results obtained and defines some key technical aspects to be evaluated and taken into account for the development phase of future instrumentation.
APA, Harvard, Vancouver, ISO, and other styles
4

Ntawiniga, Frédéric. "Head Motion Tracking in 3D Space for Drivers." Thesis, Université Laval, 2008. http://www.theses.ulaval.ca/2008/25229/25229.pdf.

Full text
Abstract:
Ce travail présente un système de vision par ordinateur capable de faire un suivi du mouvement en 3D de la tête d’une personne dans le cadre de la conduite automobile. Ce système de vision par ordinateur a été conçu pour faire partie d'un système intégré d’analyse du comportement des conducteurs tout en remplaçant des équipements et des accessoires coûteux, qui sont utilisés pour faire le suivi du mouvement de la tête, mais sont souvent encombrants pour le conducteur. Le fonctionnement du système est divisé en quatre étapes : l'acquisition d'images, la détection de la tête, l’extraction des traits faciaux, la détection de ces traits faciaux et la reconstruction 3D des traits faciaux qui sont suivis. Premièrement, dans l'étape d'acquisition d'images, deux caméras monochromes synchronisées sont employées pour former un système stéréoscopique qui facilitera plus tard la reconstruction 3D de la tête. Deuxièmement, la tête du conducteur est détectée pour diminuer la dimension de l’espace de recherche. Troisièmement, après avoir obtenu une paire d’images de deux caméras, l'étape d'extraction des traits faciaux suit tout en combinant les algorithmes de traitement d'images et la géométrie épipolaire pour effectuer le suivi des traits faciaux qui, dans notre cas, sont les deux yeux et le bout du nez du conducteur. Quatrièmement, dans une étape de détection des traits faciaux, les résultats 2D du suivi sont consolidés par la combinaison d'algorithmes de réseau de neurones et la géométrie du visage humain dans le but de filtrer les mauvais résultats. Enfin, dans la dernière étape, le modèle 3D de la tête est reconstruit grâce aux résultats 2D du suivi et ceux du calibrage stéréoscopique des caméras. En outre, on détermine les mesures 3D selon les six axes de mouvement connus sous le nom de degrés de liberté de la tête (longitudinal, vertical, latéral, roulis, tangage et lacet). La validation des résultats est effectuée en exécutant nos algorithmes sur des vidéos préenregistrés des conducteurs utilisant un simulateur de conduite afin d'obtenir des mesures 3D avec notre système et par la suite, à les comparer et les valider plus tard avec des mesures 3D fournies par un dispositif pour le suivi de mouvement installé sur la tête du conducteur.
This work presents a computer vision module capable of tracking the head motion in 3D space for drivers. This computer vision module was designed to be part of an integrated system to analyze the behaviour of the drivers by replacing costly equipments and accessories that track the head of a driver but are often cumbersome for the user. The vision module operates in five stages: image acquisition, head detection, facial features extraction, facial features detection, and 3D reconstruction of the facial features that are being tracked. Firstly, in the image acquisition stage, two synchronized monochromatic cameras are used to set up a stereoscopic system that will later make the 3D reconstruction of the head simpler. Secondly the driver’s head is detected to reduce the size of the search space for finding facial features. Thirdly, after obtaining a pair of images from the two cameras, the facial features extraction stage follows by combining image processing algorithms and epipolar geometry to track the chosen features that, in our case, consist of the two eyes and the tip of the nose. Fourthly, in a detection stage, the 2D tracking results are consolidated by combining a neural network algorithm and the geometry of the human face to discriminate erroneous results. Finally, in the last stage, the 3D model of the head is reconstructed from the 2D tracking results (e.g. tracking performed in each image independently) and calibration of the stereo pair. In addition 3D measurements according to the six axes of motion known as degrees of freedom of the head (longitudinal, vertical and lateral, roll, pitch and yaw) are obtained. The validation of the results is carried out by running our algorithms on pre-recorded video sequences of drivers using a driving simulator in order to obtain 3D measurements to be compared later with the 3D measurements provided by a motion tracking device installed on the driver’s head.
APA, Harvard, Vancouver, ISO, and other styles
5

Jerome, Richard Carleton University Dissertation Engineering Electrical. "Performance analysis of space-based radar tracking techniques." Ottawa, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Dundar, Ismail Ugur. "Improvement of a Space Surveillance Tracking Analysis Tool." Thesis, Luleå tekniska universitet, Rymdteknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-71905.

Full text
Abstract:
Since the beginning of space exploration, the amount of space debris has increased with thedevelopment of new space technologies. In fact, when a collision happens, new space debris aregenerated. Hence, collision risk between space debris and operational satellites rises. The purpose ofa surveillance network system consists of the detection of space objects, their classification and theirtracking. To avoid collisions, space debris objects’ orbit must be computed with sufficient accuracy. The goal of this thesis is the improvement of a pre-existing Space Surveillance and Tracking AnalysisTool. The tool is able to simulate different observation scenarios for radar or optical observer,which can be space-based or ground-based. To enhance the orbit determination, an ExtendedSquare Root Information Filter is implemented and incremented with a Smoother. Smoothers havebeen implemented for the existing filters as well, such as the Extended Kalman Filter and theUnscented Kalman Filter. A bias estimation method was added as part of the OD for all filter types.Additionally, different outlier detection methods were implemented for the automatic detection ofoutliers within the measurement data. To find the optimum orbit determination interval, differentscenarios were considered in LEO, MEO and GEO orbits. The methods were implemented anddifferent scenarios for validation will be discussed. A wide discussion on the methods implementationand their validation on different scenarios is presented, together with a comparison of the orbitdetermination results with the other filters. All the recently implemented features increase the efficiency of the tool to simulate the differentscenarios and enhance the tracking of space debris objects.
APA, Harvard, Vancouver, ISO, and other styles
7

Fiusco, Francesco. "Improvement of a Space Surveillance and Tracking Analysis tool." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-247880.

Full text
Abstract:
This thesis deals with the improvement of SPOOK (SPace Objects Observation and Kalmanltering), an orbit calculation tool developed by Airbus Defence and Space GmbH. The workdescribed in this thesis aims at improving the architecture and analysis capabilities of thesoftware on dierent levels: Design and build a framework that can use SPOOK as a calculation engine and use itscapabilities to build a complete SST system for man-made objects orbiting the Earth,providing commercial services (e.g. collision avoidance, visualization, re-entry analysis,etc.), catalog maintenance and simulations. A complete Python API was designed andimplemented, which makes now SPOOK a complete cataloguing system for man-madespace objects that can provide services to the end user; Estimate covariance information from TLE data published by the US Space Command(available e.g. on Space-track.org); Devise and validate metrics that can assess the quality of an orbit determination processautomatically, to ensure as small human interaction as possible; Preliminarily implement a fast Lambert problem solver.In addition to this, a variety of miscellaneous activities were performed.
Detta examensarbete handlar om förbättringar av SPOOK (observation av rymdobjekt ochKalmanfiltrering), ett beräkningsverktyg för omloppsbanor utvecklat av Airbus Defence och Space GmbH. Detta arbete syftar till att förbättra arkitekturen hos programvaran och dess förmåga att utföra analys på olika nivåer:•Designa och bygga ett ramverk användes SPOOK som beräkningsmotor och använda dess kapacitet för att bygga ett komplett SST-system för konstgjorda material kretsande runt jorden, tillhandahålla kommersiella tjänster (e.g. undvika kollision, visualisering, analys av återinträde etc.), katalogunderhåll och simuleringar. En komplett Python-API designades och implementerades, som nu gör SPOOK till ett komplett katalogiseringssystem för konstgjorda rymdobjekt som kan tillhandahålla tjänster för slutanvändare;•Uppskatta kovariansen av TLE data publicerad av US Space Command (tillgängligt via Space-track.org);•Utforma och validera kvalitetskoefficienter som automatiskt kan bedöma kvaliteten hos uppskattningen av en omloppsbana och därmed minimera interaktionen med användaren;Preliminärt implementera en snabb lösare för Lambertproblem.
APA, Harvard, Vancouver, ISO, and other styles
8

Hrabe, Jan, and Sabina Hrabetova. "Fast optical tracking of diffusion in brain extracellular space." Universitätsbibliothek Leipzig, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-196897.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hoefener, Carl E. "GPS: THE LOGICAL TOOL FOR PRECISION TRACKING IN SPACE." International Foundation for Telemetering, 1991. http://hdl.handle.net/10150/613092.

Full text
Abstract:
International Telemetering Conference Proceedings / November 04-07, 1991 / Riviera Hotel and Convention Center, Las Vegas, Nevada
As we develop more space vehicles, a pressing requirement emerges to provide precision tracking information. This need for exact time and space-position information (TSPI) persists whether developing and testing space weapons or locating the precise position of intelligence-gathering satellites. Because this is a worldwide tracking requirement, the use of conventional tracking techniques such as radar is precluded. Fortunately the Global Positioning System (GPS) is now in place and can provide the tracking information required. GPS offers two techniques for tracking space vehicles. A GPS receiver can be installed on the vehicle to determine the position that is then relayed to a ground terminal, or a GPS frequency translator can be used to compute the vehicle position at the master groundsite. Since both techniques have been proven satisfactory, the specific tracking requirement determines the method selected. For the flight tests of the Exoatmospheric Reentry-Vehicle Interceptor Subsystem (ERIS), the GPS frequency translator technique is used. A GPS frequency translator is installed on the target (a reentry-vehicle launched on a Minuteman from Vandenberg), and a translator is also installed on the ERIS, which is launched from Meck Island in the Kwajalein Atoll. The GPS frequency translator approach was chosen for these tests for a variety of reasons, the most important of which were the limited instrumentation space on the target and interceptor, the extreme dynamics of the interceptor, the tracking accuracy required, and the range at which the operation must be tracked. For the tracking of orbiting satellites, a GPS receiver can be flown on the satellite with its derived position information continuously stored. This data can then be dumped as the satellite passes over a selected groundsite.
APA, Harvard, Vancouver, ISO, and other styles
10

Hrabe, Jan, and Sabina Hrabetova. "Fast optical tracking of diffusion in brain extracellular space." Diffusion fundamentals 2 (2005) 120, S. 1-2, 2005. https://ul.qucosa.de/id/qucosa%3A14461.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Space tracking"

1

Flohrer, Tim. Optical survey strategies and their application to space surveillance. Zürich: Schweizerische Geodätische Kommission, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Thornton, Catherine L., and James S. Border. Radiometric Tracking Techniques for Deep Space Navigation. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2003. http://dx.doi.org/10.1002/0471728454.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Thornton, Catherine L., and James S. Border. Radiometric Tracking Techniques for Deep Space Navigation. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2003. http://dx.doi.org/10.1002/0471728454.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Space Debris and Space Traffic Management Symposium (2005 Fukuoka, Japan). Space debris and space traffic management symposium 2005: Proceedings of the International Academy of Astronautics Space Debris and Space Traffic Management Symposium : held in conjunction with the 56th International Astronautical Congress (IAC) : October 17-21, 2005, Fukuoka, Japan. San Diego, California: Published for the American Astronautical Society by Univelt, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Joerg, Bendisch, American Astronautical Society, International Academy of Astronautics, and International Astronautical Congress (54th : 2003 : Bremen, Germany), eds. Space debris and space traffic management symposium 2003: Proceedings of the International Academy of Astronautics Space Debris and Space Traffic Management Symposium : held in conjunction with the 54th International Astronautical Congress (IAC) : September 29 to October 3, 2003, Bremen, Germany. San Diego, Calif: Published for the American Astronautical Society by Univelt, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

A, Drake V., and Gatehouse A. G, eds. Insect migration: Tracking resources through space and time. Cambridge: Cambridge University Press, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Krag, Holger. A method for the validation of space debris models and for the analysis and planning of radar and optical surveys. Aachen: Shaker, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Metody raznesënnogo priëma telemetricheskoĭ informat︠s︡ii i uslovii︠a︡ ikh primenenii︠a︡ v prot︠s︡esse razvitii︠a︡ telemetricheskogo kompleksa kosmodroma. 2nd ed. Naberezhnye Chelny: Izdatelʹsko-poligraficheskiĭ t︠s︡entr Kamskoĭ gosudarstvennoĭ inzhenerno-ėkonomicheskoĭ akademii, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Seychelles. Tracking stations: Agreement between the United States of America and the Seychelles, amending the agreement of June 29, 1976, as amended, effected by exchange of notes, signed at Victoria November 5, 1985. Washington, D.C: Dept. of State, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Yu, Zhijian. Hang tian ce kong xi tong gong cheng. Beijing: Guo fang gong ye chu ban she, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Space tracking"

1

Torresani, Lorenzo, and Christoph Bregler. "Space-Time Tracking." In Computer Vision — ECCV 2002, 801–12. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-47969-4_53.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Herzog, Dennis L., and Volker Krüger. "Tracking in Action Space." In Trends and Topics in Computer Vision, 100–113. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-35749-7_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Dixon, A. F. G. "Resource tracking in space." In Aphid Ecology An optimization approach, 171–88. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-011-5868-8_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lindsay, Hamish. "Skylab — A Laboratory in Space." In Tracking Apollo to the Moon, 343–72. London: Springer London, 2001. http://dx.doi.org/10.1007/978-1-4471-0255-7_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Tseng, Ching-Liang, Wen-Yaw Wang, and Ching-Shun Ho. "The Operation of CK01 GPS Tracking Station." In Space Technology Proceedings, 57–60. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-015-9395-3_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Peldszus, Regina, and Pascal Faucher. "European Space Surveillance and Tracking Support Framework." In Handbook of Space Security, 1–22. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-22786-9_104-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Peldszus, Regina, and Pascal Faucher. "European Space Surveillance and Tracking Support Framework." In Handbook of Space Security, 883–904. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-23210-8_104.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Dracos, Th. "Particle Tracking in Three-Dimensional Space." In Three-Dimensional Velocity and Vorticity Measuring and Image Analysis Techniques, 209–27. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-015-8727-3_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kozakiewicz, Michał. "Resource tracking in space and time." In Mosaic Landscapes and Ecological Processes, 136–48. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0717-4_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Masini, Nicola, Maria Danese, Antonio Pecci, Manuela Scavone, and Rosa Lasaponara. "Nasca Lines: Space Tracking of Vandalism." In The Ancient Nasca World, 635–56. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-47052-8_26.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Space tracking"

1

Walton, A. M. "Space based radar tracking filter." In IEE Colloquium on `Algorithms for Target Tracking'. IEE, 1995. http://dx.doi.org/10.1049/ic:19950675.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

RENFROE, MICHAEL, EDWARD MCDONALD, and KIMBERLY BRADSHAW. "Integrated tracking of components by engineering and logistics utilizing logistics asset tracking system." In 2nd Space Logistics Symposium. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1988. http://dx.doi.org/10.2514/6.1988-4729.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Doat, Y., M. di Giulio, and G. P. Calzolari. "ESA Tracking Management System (EMS)." In Space OPS 2004 Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2004. http://dx.doi.org/10.2514/6.2004-236-90.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kim, Won, Robert Steele, Adnan Ansar, Khaled Ali, and Issa Nesnas. "Rover-Based Visual Target Tracking Validation and Mission Infusion." In Space 2005. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2005. http://dx.doi.org/10.2514/6.2005-6716.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

CHIN, JOHNSON. "Space tracking in the Army." In Space Programs and Technologies Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1992. http://dx.doi.org/10.2514/6.1992-1438.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Pavuluri, Sri Harsha, and Harsh B. Bhate. "Telemetry, Tracking and Command Subsystem of SRMSAT - 2." In AIAA SPACE 2016. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2016. http://dx.doi.org/10.2514/6.2016-5240.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Shivitz, Robert, Richard Kendrick, James Mason, Matthew Bold, Tracy Kubo, Kevin Bock, and David Tyler. "Space Object Tracking (SPOT) facility." In SPIE Astronomical Telescopes + Instrumentation, edited by Larry M. Stepp, Roberto Gilmozzi, and Helen J. Hall. SPIE, 2014. http://dx.doi.org/10.1117/12.2056749.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Smith, Craig H., and Ben Greene. "Future Space Debris Tracking Requirements." In 33rd AIAA International Communications Satellite Systems Conference and Exhibition. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2015. http://dx.doi.org/10.2514/6.2015-4361.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wahid, Mastura Ab, Benjamas Panomruttanarug, Antoine Drouin, and Felix Mora-Camino. "Space-indexed aircraft trajectory tracking." In 2016 Chinese Control and Decision Conference (CCDC). IEEE, 2016. http://dx.doi.org/10.1109/ccdc.2016.7531903.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

STRIKWERDA, T., K. STROHBEHN, K. FOWLER, and D. SKILLMAN. "Space Telescope moving target tracking." In Guidance, Navigation and Control Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1985. http://dx.doi.org/10.2514/6.1985-1855.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Space tracking"

1

Ottinger, M. B., T. Tajima, and K. Hiramoto. Space charge tracking code for a synchrotron accelerator. Office of Scientific and Technical Information (OSTI), June 1997. http://dx.doi.org/10.2172/491621.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Peterfreund, N. The velocity snake: Deformable contour for tracking in spatio-velocity space. Office of Scientific and Technical Information (OSTI), June 1997. http://dx.doi.org/10.2172/631265.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bane, K. L. F. LiTrack: A Fast Longitudinal Phase Space Tracking Code with Graphical User Interface. Office of Scientific and Technical Information (OSTI), March 2005. http://dx.doi.org/10.2172/839868.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Morgan, Charles, and Lee Moyer. Knowledge Base Applications to Adaptive Space-Time Processing, Volume 4: Knowledge-Based Tracking. Fort Belvoir, VA: Defense Technical Information Center, July 2001. http://dx.doi.org/10.21236/ada389090.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Smith, William T. SSTS (Space Surveillance and Tracking System): The Importance of Early Test and Evaluation Organizational Participation. Fort Belvoir, VA: Defense Technical Information Center, April 1988. http://dx.doi.org/10.21236/ada193745.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Eisenberg, Rebecca. Reexamining the Global Cold War in South Africa: Port Usage, Space Tracking and Weapons Sales. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.117.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Godinez Vazquez, Humberto C. IMPACT Project Integrated Modeling of Perturbations in Atmospheres for Conjunction Tracking A New Orbital Prediction Model to Avoid Collisions in Space. Office of Scientific and Technical Information (OSTI), May 2014. http://dx.doi.org/10.2172/1131013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Noll, Daniel, and Giulio Stancari. Field calculations, single-particle tracking, and beam dynamics with space charge in the electron lens for the Fermilab Integrable Optics Test Accelerator. Office of Scientific and Technical Information (OSTI), November 2015. http://dx.doi.org/10.2172/1230044.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Babenko, Vitalina O., Roman M. Yatsenko, Pavel D. Migunov, and Abdel-Badeeh M. Salem. MarkHub Cloud Online Editor as a modern web-based book creation tool. [б. в.], July 2020. http://dx.doi.org/10.31812/123456789/3858.

Full text
Abstract:
The main criterion for the competitiveness of a teacher or expert in the field of science is a good ability to present their knowledge to students in an interactive form without spending a lot of time in preparation. The purpose of the study is to analyze modern editors to create educational information content in the modern educational space and to present a modern tool for creating web books based on the latest IT technologies. Modern editors of web material creation have been analyzed, statistics of situations on mastering of knowledge by listeners, using interactive methods of information submission have been investigated. Using the WYSIWYG concept and analyzing modern information tools for presenting graphic material, an effective tool for teaching interactive web material was presented. An adapted version of the MarkHub online editor based on cloud technologies is presented. Using MarkHub cloud-based online editor for the unified development of educational content can significantly increase the author’s productivity in the content creation process. At the same time, the effects of reducing the time spent on formatting the external presentation of the content, making synchronous changes to different versions of the content, tracking the versions of the content, organizing remote teamwork in the network environment are achieved.
APA, Harvard, Vancouver, ISO, and other styles
10

Nosal, Eva-Marie. Passive Acoustic Methods for Tracking Marine Mammals Using Widely-Spaced Bottom-Mounted Hydrophones. Fort Belvoir, VA: Defense Technical Information Center, September 2010. http://dx.doi.org/10.21236/ada541771.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography