Academic literature on the topic 'Space/plasma interactions'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Space/plasma interactions.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Space/plasma interactions"

1

F�lthammar, Carl-Gunne. "Magnetospheric plasma interactions." Astrophysics and Space Science 214, no. 1-2 (April 1994): 3–17. http://dx.doi.org/10.1007/bf00982321.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Raitt, W. J. "Plasma interactions in the space shuttle orbiter environment." Advances in Space Research 7, no. 5 (1987): 179–88. http://dx.doi.org/10.1016/0273-1177(87)90371-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Cao, L. F., I. Uschmann, F. Zamponi, T. Kämpfer, A. Fuhrmann, E. Förster, A. Höll, et al. "Space-time characterization of laser plasma interactions in the warm dense matter regime." Laser and Particle Beams 25, no. 2 (June 2007): 239–44. http://dx.doi.org/10.1017/s0263034607000067.

Full text
Abstract:
Laser plasma interaction experiments have been performed using an fs Titanium Sapphire laser. Plasmas have been generated from planar PMMA targets using single laser pulses with 3.3 mJ pulse energy, 50 fs pulse duration at 800 nm wavelength. The electron density distributions of the plasmas in different delay times have been characterized by means of Nomarski Interferometry. Experimental data were compared with hydrodynamic simulation. First results to characterize the plasma density and temperature as a function of space and time are obtained. This work aims to generate plasmas in the warm dense matter (WDM) regime at near solid-density in an ultra-fast laser target interaction process. Plasmas under these conditions can serve as targets to develop X-ray Thomson scattering as a plasma diagnostic tool, e.g., using the Vacuum ultraviolet (VUV) free-electron laser (FLASH) at Dentsches Elektronen-Synchrotron (DESY) Hamburg.
APA, Harvard, Vancouver, ISO, and other styles
4

PRITCHETT, P. L., and R. M. WINGLEE. "Beam-plasma interactions in space experiments. A simulation study." Journal of geomagnetism and geoelectricity 40, no. 10 (1988): 1235–56. http://dx.doi.org/10.5636/jgg.40.1235.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kitamura, N., M. Kitahara, M. Shoji, Y. Miyoshi, H. Hasegawa, S. Nakamura, Y. Katoh, et al. "Direct measurements of two-way wave-particle energy transfer in a collisionless space plasma." Science 361, no. 6406 (September 6, 2018): 1000–1003. http://dx.doi.org/10.1126/science.aap8730.

Full text
Abstract:
Particle acceleration by plasma waves and spontaneous wave generation are fundamental energy and momentum exchange processes in collisionless plasmas. Such wave-particle interactions occur ubiquitously in space. We present ultrafast measurements in Earth’s magnetosphere by the Magnetospheric Multiscale spacecraft that enabled quantitative evaluation of energy transfer in interactions associated with electromagnetic ion cyclotron waves. The observed ion distributions are not symmetric around the magnetic field direction but are in phase with the plasma wave fields. The wave-ion phase relations demonstrate that a cyclotron resonance transferred energy from hot protons to waves, which in turn nonresonantly accelerated cold He+ to energies up to ~2 kilo–electron volts. These observations provide direct quantitative evidence for collisionless energy transfer in plasmas between distinct particle populations via wave-particle interactions.
APA, Harvard, Vancouver, ISO, and other styles
6

BATANI, DIMITRI, SABRINA BIAVA, SERGIO BITTANTI, and FABIO PREVIDI. "A cellular automaton model of laser–plasma interactions." Laser and Particle Beams 19, no. 4 (October 2001): 631–42. http://dx.doi.org/10.1017/s0263034601194103.

Full text
Abstract:
This paper deals with the realization of a CA model of the physical interactions occurring when high-power laser pulses are focused on plasma targets. The low-level and microscopic physical laws of interactions among the plasma and the photons in the pulse are described. In particular, electron–electron interaction via the Coulomb force and photon–electron interaction due to ponderomotive forces are considered. Moreover, the dependence on time and space of the index of refraction is taken into account, as a consequence of electron motion in the plasma. Ions are considered as a fixed background. Simulations of these interactions are provided in different conditions and the macroscopic dynamics of the system, in agreement with the experimental behavior, are evidenced.
APA, Harvard, Vancouver, ISO, and other styles
7

Narita, Yasuhito. "Review article: Wave analysis methods for space plasma experiment." Nonlinear Processes in Geophysics 24, no. 2 (May 12, 2017): 203–14. http://dx.doi.org/10.5194/npg-24-203-2017.

Full text
Abstract:
Abstract. A review of analysis methods is given on quasi-monochromatic waves, turbulent fluctuations, and wave–wave and wave–particle interactions for single-spacecraft data in situ in near-Earth space and interplanetary space, in particular using magnetic field and electric field data. Energy spectra for different components of the fluctuating fields, minimum variance analysis, propagation and polarization properties of electromagnetic waves, wave distribution function, helicity quantities, higher-order statistics, and detection methods for wave–particle interactions are explained.
APA, Harvard, Vancouver, ISO, and other styles
8

Wang, J., D. E. Hastings, and M. Martinez-Sanchez. "Electrodynamic interactions between a space station and the ionospheric plasma environment." Journal of Spacecraft and Rockets 30, no. 2 (March 1993): 176–88. http://dx.doi.org/10.2514/3.11526.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Tao-ping, Hu, and Li Xiao-qing. "Plasma-field interactions in the wake region of a space vehicle." Chinese Astronomy and Astrophysics 27, no. 3 (July 2003): 252–61. http://dx.doi.org/10.1016/s0275-1062(03)90046-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Wang, J., P. Leung, H. Garrett, and G. Murphy. "Multibody-plasma interactions - Charging in the wake." Journal of Spacecraft and Rockets 31, no. 5 (September 1994): 889–94. http://dx.doi.org/10.2514/3.26528.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Space/plasma interactions"

1

Nairn, C. M. C. "Theory of interacting plasmas in space." Thesis, University of Oxford, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.233541.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wang, Joseph Jiong. "Electrodynamic interactions between charged space systems and the ionospheric plasma environment." Thesis, Massachusetts Institute of Technology, 1991. http://hdl.handle.net/1721.1/13895.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Barghouthi, Imad Ahmad. "A Monte Carlo Simulation of Coulomb Collisions and Wave-Particle Interactions in Space Plasma at High Lattitudes." DigitalCommons@USU, 1994. https://digitalcommons.usu.edu/etd/2272.

Full text
Abstract:
Four studies were considered to simulate the ion behavior in the auroral region and the polar wind. In study I, a Monte Carlo simulation was used to investigate the behavior of O+ ions that are E x B-drifting through a background of neutral O, with the effect of O+(Coulomb) self-collisions included. Wide ranges of the ion-to-neutral density ratio ni|nn and electrostatic field E were considered in order to investigate the change of ion behavior with respect to the solar cycle and altitude. For low altitudes and/or solar minimum (ni|nn≤10-5), the effect of self-collisions is negligible. For higher values of ni|nn, the effect of self-collisions becomes significant and, hence, the non-Maxwellian features of the O+ distributions are reduced. In study II, the steady-state flow of the polar wind protons through a background of O+ ions was studied. Special attention was given to using an accurate collision model. The Fokker-Planck expression was used to represent H+-O+ Coulomb collisions. The transition layer between the collision-dominated and the collision less regions plays a pivotal role in the behavior of the H+ flow. In the transition region, the shape of H+ distribution changes in a complicated manner from Maxwellian to "kidney bean". The flow also changes from subsonic to supersonic within the transition region. The heat fluxes of parallel and perpendicular energies change rapidly from their maximum (positive) to their minimum (negative) values within the same transition region. In study III, a Monte Carlo simulation was developed in order to study the effect of the wave-particle interactions (WPI) on O+ and H+ ions outflow in the polar wind. The simulation also considered the other mechanisms included in the classical polar wind studies such as gravity, polarization electrostatic field, and divergence of geomagnetic field lines. Also, an altitude dependent wave spectral density was adopted. The main conclusions are (I) the o+ velocity distribution develops conic features at high altitudes; (2) the O+ ions are preferentially energized; (3) the escape flux of O+ increased by a factor of 40, while the escape flux of H+ remained constant; (4) including the effect of a finite ion Larmor radius produced toroidal features for o+ and H+ distributions at higher altitudes. In study IV, a comparison between the effect of WPI on H+ and O+ ion outflow in the polar wind and in the auroral regions was studied. It was concluded that: (I) O+ is preferentially energized in both regions; (2) both ions (H+ and O+) are more energetic in the auroral region at most altitudes; (3) in the auroral region, the ion conics formed at lower altitudes, at 1.6 R, for O+ and 2.5 R, for H+, while in the polar wind H+ did not form conics and O+ formed conics at high altitudes; (4) the effects of body forces are more important in the polar wind than in the auroral region, and for O+ than H+.
APA, Harvard, Vancouver, ISO, and other styles
4

Kacem, Issaad. "Structure et dynamique de l'interface entre des tubes de flux entrelacés observés à la magnétopause terrestre par la mission MMS." Thesis, Toulouse 3, 2018. http://www.theses.fr/2018TOU30163/document.

Full text
Abstract:
La reconnexion magnétique est un processus omniprésent et fondamental dans la physique des plasmas spatiaux. La "Magnetospheric multiscale mission" (MMS) de la NASA, lancée le 12 mars 2015, a été conçue pour fournir des mesures in-situ permettant d'analyser le processus de reconnexion dans la magnétosphère terrestre. Dans ce but, quatre satellites identiquement instrumentés mesurent les champs électromagnétiques et les particules chargées dans les régions de reconnexion, avec une résolution temporelle cent fois meilleure que celle des missions précédentes. MMS permet, pour la première fois, d'étudier les structures microscopiques associées à la reconnexion magnétique et, en particulier, la région de diffusion électronique. Au niveau de la magnétopause terrestre, la reconnexion magnétique a un rôle chef dans le transport de l'énergie du vent solaire vers la magnétosphère terrestre, en convertissant l'énergie magnétique en énergie cinétique et thermique. Les événements à transfert de flux (FTEs) sont considérés comme l'un des produits principaux et les plus typiques de la reconnexion magnétique à la magnétopause terrestre. Cependant, des structures magnétiques 3D plus complexes, avec des signatures similaires à celles des FTEs, peuvent également exister à la magnétopause. On retrouve, par exemple, des tubes de flux entrelacés qui résultent de reconnexions magnétiques ayant eues lieu à des sites différents. La première partie de cette thèse étudie l'un de ces événements, qui a été observé dans des conditions de vent solaire inhabituelles, au voisinage de la magnétopause terrestre par MMS. Malgré des signatures qui, à première vue, semblaient cohérentes avec un FTE classique, cet événement a été interprété comme étant le résultat de l'interaction de deux tubes de flux avec des connectivités magnétiques différentes. La haute résolution temporelle des données MMS a permis d'étudier en détail une fine couche de courant observée à l'interface entre les deux tubes de flux. La couche de courant était associée à un jet d'ions, suggérant ainsi que la couche de courant était soumise à une compression qui a entraîné une reconnexion magnétique à l'origine du jet d'ions. La direction, la vitesse de propagation et la taille de différentes structures ont été déduites en utilisant des techniques d'analyse de données de plusieurs satellites. La deuxième partie de la thèse fournit une étude complémentaire à la précédente et s'intéresse aux ondes observées autour de la couche de courant
Magnetic reconnection is a ubiquitous and fundamental process in space plasma physics. The NASA's Magnetospheric Multiscale mission (MMS) launched on 12 March 2015 was designed to provide in-situ measurements for analyzing the reconnection process at the Earth's magnetosphere. In this aim, four identically instrumented spacecraft measure fields and particles in the reconnection regions with a time resolution which is one hundred times faster than previous missions. MMS allows for the first time to study the microscopic structures associated with magnetic reconnection and, in particular, the thin electron diffusion region. At the Earth's magnetopause, magnetic reconnection governs the transport of energy and momentum from the solar wind plasma into the Earth's magnetosphere through conversion of magnetic energy into kinetic and thermal energies after a rearrangement of magnetic field lines. Flux Transfer Events (FTEs) are considered to be one of the main and most typical products of magnetic reconnection at the Earth's magnetopause. However, more complex 3D magnetic structures with signatures akin to those of FTEs might also occur at the magnetopause like interlaced flux tubes resulting from magnetic reconnection at multiple sites. The first part of the work presented in this thesis consisted of the investigation of one of these events that was observed, under unusual and extreme solar wind conditions, in the vicinity of the Earth's magnetopause by MMS. Despite signatures that, at first glance, appeared consistent with a classic FTE, this event was interpreted to be the result of the interaction of two separate sets of magnetic field lines with different connectivities. The high time resolution of MMS data allowed to resolve a thin current sheet that was observed at the interface between the two sets of field lines. The current sheet was associated with a large ion jet suggesting that the current sheet was submitted to a compression which drove magnetic reconnection and led to the formation of the ion jet. The direction, velocity and scale of different structures were inferred using multi-spacecraft data analysis techniques. This study was completed with a plasma wave analysis that focused on the reconnecting current sheet
APA, Harvard, Vancouver, ISO, and other styles
5

Behlke, Rico. "Dissipation at the Earth's Quasi-Parallel Bow Shock." Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis : Universitetsbiblioteket [distributör], 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-6123.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Tholerus, Emmi. "The dynamics of Alfvén eigenmodes excited by energetic ions in toroidal plasmas." Doctoral thesis, KTH, Fusionsplasmafysik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-193029.

Full text
Abstract:
The future fusion power plants that are based on magnetic confinement will deal with plasmas that inevitably contain energetic (non-thermal) particles. These particles come, for instance, from fusion reactions or from external heating of the plasma. Ensembles of energetic ions can excite eigenmodes in the Alfvén frequency range to such an extent that the resulting wave fields redistribute the energetic ions, and potentially eject them from the plasma. The redistribution of ions may cause a substantial reduction of heating efficiency. Understanding the dynamics of such instabilities is necessary to optimise the operation of fusion experiments and of future fusion power plants. Two models have been developed to simulate the interaction between energetic ions and Alfvén eigenmodes. One is a bump-on-tail model, of which two versions have been developed: one fully nonlinear and one quasilinear. The quasilinear version has a lower dimensionality of particle phase space than the nonlinear one. Unlike previous similar studies, the bump-on-tail model contains a decorrelation of the wave-particle phase in order to model stochasticity of the system. When the characteristic time scale for macroscopic phase decorrelation is similar to or shorter than the time scale of nonlinear wave-particle dynamics, the nonlinear and the quasilinear descriptions quantitatively agree. A finite phase decorrelation changes the growth rate and the saturation amplitude of the wave mode in systems with an inverted energy distribution around the wave-particle resonance. Analytical expressions for the correction of the growth rate and the saturation amplitude have been derived, which agree well with numerical simulations. A relatively weak phase decorrelation also diminishes frequency chirping events of the eigenmode. The second model is called FOXTAIL, and it has a wider regime of validity than the bump-on-tail model. FOXTAIL is able to simulate systems with multiple eigenmodes, and it includes effects of different individual particle orbits relative to the wave fields. Simulations with FOXTAIL and the nonlinear bump-on-tail model have been compared in order to determine the regimes of validity of the bump-on-tail model quantitatively. Studies of two-mode scenarios confirmed the expected consequences of a fulfillment of the Chirikov criterion for resonance overlap. The influence of ICRH on the eigenmode-energetic ion system has also been studied, showing qualitatively similar effects as seen by the presence of phase decorrelation. Another model, describing the efficiency of fast wave current drive, has been developed in order to study the influence of passive components close to the antenna, in which currents can be induced by the antenna generated wave field. It was found that the directivity of the launched wave, averaged over model parameters, was lowered by the presence of passive components in general, except for low values of the single pass damping of the wave, where the directivity was slightly increased, but reversed in the toroidal direction.
De framtida fusionskraftverken baserade på magnetisk inneslutning kommer att hantera plasmor som oundvikligen innehåller energetiska (icke-termiska) partiklar. Dessa partiklar kommer exempelvis från fusionsreaktioner eller från externa uppvärmningsmekanismer av plasmat. Ensembler av energetiska joner kan excitera egenmoder i Alfvén-frekvensområdet i en sådan utsträckning att de resulterande vågfälten omfördelar de energetiska jonerna i rummet, och potentiellt slungar ut jonerna ur plasmat. Omfördelningen av joner kan orsaka en väsentligen minskad uppvärmningseffekt. Det är nödvändigt att förstå dynamiken hos denna typ av instabilitet för att kunna optimera verkningsgraden hos experiment och hos framtida fusionskraftverk. Två modeller har utvecklats för att simulera interaktionen mellan energetiska joner och Alfvén-egenmoder. Den första är en bump-on-tail-modell, av vilken två versioner har utvecklats: en fullt icke-linjär och en kvasi-linjär. I den kvasi-linjära versionen har partiklarnas fasrum en lägre dimensionalitet än i den icke-linjära versionen. Till skillnad från tidigare liknande studier innehåller denna bump-on-tail-modell en dekorrelation av våg-partikelfasen för att modellera stokasticitet hos systemet. När den karakteristiska tidsskalan för makroskopisk fasdekorrelation är ungefär samma som eller kortare än tidsskalan för icke-linjär våg-partikeldynamik så stämmer den icke-linjära och den kvasi-linjära beskrivningen överens kvantitativt. En ändlig fasdekorrelation förändrar vågmodens tillväxthastighet och satureringsamplitud i system med en inverterad energifördelning omkring våg-partikelresonansen. Analytiska uttryck för korrektionen av tillväxthastigheten och satureringsamplituden har härletts, vilka stämmer väl överens med numeriska simuleringar. En relativt svag fasdekorrelation försvagar även "frequency chirping events" (snabba frekvensskiftningar i korttids-Fourier-transformen av egenmodens amplitudutveckling) hos egenmoden. Den andra modellen, kallad FOXTAIL, har ett mycket bredare giltighetsområde än bump-on-tail-modellen. FOXTAIL kan simulera system med flera egenmoder, och den inkluderar effekter av olika enskilda partikelbanor relativt vågfälten. Simuleringar med FOXTAIL och med bump-on-tail-modellen har jämförts för att kvantitativt bestämma bump-on-tail-modellens giltighetsområde. Studier av scenarier med två egenmoder bekräftar de förväntade effekterna av när Chirikov-kriteriet för resonansöverlapp uppfylls. Även inflytandet av ICRH på dynamiken mellan egenmoder och energetiska joner har studerats, vilket har visat kvalitativt liknande effekter som har observerats i närvaron av fasdekorrelation. En annan modell, vilken beskriver effektiviteten hos "fast wave current drive" (strömdrivning med snabba magnetosoniska vågor), har utvecklats för att studera inflytandet av passiva komponenter nära antennen, i vilka strömmar kan induceras av vågfälten som genereras av antennen. Det visades att den utskickade vågens direktivitet, medelvärdesbildat över modellparametrar, generellt sett minskade vid närvaron av passiva komponenter, förutom vid låg "sinlge pass damping" (dämpning av vågen vid propagering genom hela plasmat), då direktiviteten istället ökade något, men bytte tecken i toroidal riktning.

QC 20160927

APA, Harvard, Vancouver, ISO, and other styles
7

Norin, Lars. "Secondary Electromagnetic Radiation Generated by HF Pumping of the Ionosphere." Doctoral thesis, Uppsala universitet, Astronomi och rymdfysik, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-9393.

Full text
Abstract:
Electromagnetic waves can be used to transmit information over long distances and are therefore often employed for communication purposes. The electromagnetic waves are reflected off material objects on their paths and interact with the medium through which they propagate. For instance, the plasma in the ionosphere can refract and even reflect radio waves propagating through it. By increasing the power of radio waves injected into the ionosphere, the waves start to modify the plasma, resulting in the generation of a wide range of nonlinear processes, including turbulence, in particular near the reflection region. By systematically varying the injected radio waves in terms of frequency, power, polarisation, duty cycle, inclination, etc. the ionosphere can be used as an outdoor laboratory for investigating fundamental properties of the near-Earth space environment as well as of plasma turbulence. In such ionospheric modification experiments, it has been discovered that the irradiation of the ionosphere by powerful radio waves leads to the formation of plasma density structures and to the emission of secondary electromagnetic radiation, a phenomenon known as stimulated electromagnetic emission. These processes are highly repeatable and have enabled systematic investigations of the nonlinear properties of the ionospheric plasma. In this thesis we investigate features of the plasma density structures and the secondary electromagnetic radiation. In a theoretical study we analyse a certain aspect of the formation of the plasma structures. The transient dynamics of the secondary radiation is investigated experimentally in a series of papers, focussing on the initial stage as well as on the decay. In one of the papers we use the transient dynamics of the secondary radiation to reveal the intimate relation between certain features of the radiation and structures of certain scales. Further, we present measurements of unprecedentedly strong secondary radiation, attributed to stimulated Brillouin scattering, and report measurements of the secondary radiation using a novel technique imposed on the transmitted radio waves.
APA, Harvard, Vancouver, ISO, and other styles
8

Watt, Clare Emily Jane. "Wave-particle interactions and anomalous resistivity in collisionless space plasmas." Thesis, University of Cambridge, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.620284.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hall, Jan-Ove. "Interaction between Electromagnetic Waves and Localized Plasma Oscillations." Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis : Univ.-bibl. [distributör], 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-4282.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Omura, Yoshiharu. "STUDY ON NONLINEAR WAVE-PARTICLE INTERACTIONS IN SPACE PLASMAS VIA COMPUTER SIMULATIONS." Kyoto University, 1985. http://hdl.handle.net/2433/74667.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Space/plasma interactions"

1

Stefan, V. Alexander. Nonlinear electromagnetic radiation plasma interactions. La Jolla, CA: Stefan University Press, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Johnson, R. E. Energetic charged-particle interactions with atmospheres and surfaces. Berlin: Springer-Verlag, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Università di Milano. Dipartimento di fisica and Centro di cultura scientifica "A. Volta", eds. Plasmas in the laboratory and in the universe: Interactions, patterns, and turbulence : Como, Italy, 1-4 December 2009. Melville, N.Y: American Institute of Physics, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Jalufka, N. W. Laser-powered MHD generators for space application. Hampton, Va: Langley Research Center, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Jalufka, N. W. Laser-powered MHD generators for space application. [Washington, D.C.]: National Aeronautics and Space Administration, Scientific and Technical Information Branch, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Jalufka, N. W. Laser-powered MHD generators for space application. [Washington, D.C.]: National Aeronautics and Space Administration, Scientific and Technical Information Branch, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Martin, Donald F. Space Station Freedom solar array panels plasma interaction test facility. [Washington, D.C.]: NASA, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Schunk, R. W. The flow of plasma in the solar terrestrial environment. [Washington, DC]: National Aeronautics and Space Administration, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Schunk, R. W. The flow of plasma in the solar terrestrial environment: Technical report. [Washington, DC: National Aeronautics and Space Administration, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

National Research Council (U.S.). Committee on Solar and Space Physics. An implementation plan for priorities in solar-system space physics. Washington, D.C: National Academy Press, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Space/plasma interactions"

1

Matsumoto, Hiroshi. "Coherent Nonlinear Effects on Electromagnetic Wave-Particle Interactions." In Space Plasma Simulations, 429–48. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5454-0_26.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Horányi, Mihály. "Dust Plasma Interactions At Jupiter." In Plasma Astrophysics And Space Physics, 257–71. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4203-8_21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Somov, Boris V. "Wave-Particle Interactions in Cosmic Plasma." In Astrophysics and Space Science Library, 117–36. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-015-9592-6_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Daly, E. J., and D. J. Rodgers. "Plasma Interactions at Low Altitudes." In The Behavior of Systems in the Space Environment, 437–65. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-2048-7_19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Shukla, Padma K., Bengt Eliasson, and Dastgeer Shaikh. "Dust Plasma Interactions in Space and Laboratory." In Astrophysics and Space Science Proceedings, 213–29. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-1-4020-8868-1_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ferguson, Dale C. "Low Earth Orbit Space Plasma High Voltage System Interactions." In The Behavior of Systems in the Space Environment, 935–42. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-2048-7_45.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kleinknecht, Konrad, and Ulrich Uwer. "Symmetry Violations and Quark Flavour Physics." In Particle Physics Reference Library, 519–623. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-38207-0_9.

Full text
Abstract:
AbstractOne of the surprising facts in our present understanding of the development of the Universe is the complete absence of “primordial” antimatter from the Big Bang about 13.7 billion years ago. The detection of charged cosmic-ray particles by magnetic spectrometers borne by balloons, satellites, and the space shuttle has shown no evidence for such primordial (high-energy) antibaryons; nor has the search for gamma rays from antimatter–matter annihilation yielded any such observation. In the early phases of the expanding Universe, a hot (1032 K) and dense plasma of quarks, antiquarks, leptons, antileptons and photons coexisted in equilibrium. This plasma expanded and cooled down, and matter and antimatter could recombine and annihilate into photons. If all interactions were symmetric with respect to matter and antimatter, and if baryon and lepton numbers were conserved, then all particles would finally convert to photons, and the expansion of the Universe would shift the wavelength of these photons to the far infrared region.
APA, Harvard, Vancouver, ISO, and other styles
8

Somov, Boris V. "Wave-Particle Interaction in Astrophysical Plasma." In Astrophysics and Space Science Library, 129–46. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-4283-7_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Popel, S. I. "Modulational Interaction And Formation Of Coherent Structures In The Magnetosphere." In Plasma Astrophysics And Space Physics, 693–98. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4203-8_59.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Siregar, Edouard, D. Aaron Roberts, and Melvyn L. Goldstein. "On interacting plasma vortex sheets." In Space Plasmas: Coupling Between Small and Medium Scale Processes, 49–53. Washington, D. C.: American Geophysical Union, 1995. http://dx.doi.org/10.1029/gm086p0049.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Space/plasma interactions"

1

Maneva, Y. G., J. A. Araneda, E. Marsch, and Ivan Zhelyazkov. "Parametrically Unstable Alfvén-cyclotron Waves and Wave—Particle Interactions in the Solar Corona and Solar Wind." In SPACE PLASMA PHYSICS: School of Space Plasma Physics. AIP, 2009. http://dx.doi.org/10.1063/1.3137931.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mendis, D. A. "Summary: Dust-Plasma Interactions in Space." In NEW VISTAS IN DUSTY PLASMAS: Fourth International Conference on the Physics of Dusty Plasmas. AIP, 2005. http://dx.doi.org/10.1063/1.2134695.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hess, Sebastien L., Pierre Sarrailh, Jean-Charles Matéo-Vélez, Julien Forest, Benjamin Jeanty-Ruard, Benoit Thiébault, Farideh Honary, Steve Marple, Fabrice Cipriani, and Alain Hilgers. "SPIS-DUST: Modeling the Interactions between Spacecraft, Plasma and Dusts." In AIAA SPACE 2015 Conference and Exposition. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2015. http://dx.doi.org/10.2514/6.2015-4559.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Nuwal, Nakul, and Deborah A. Levin. "Numerical modeling of plasma-surface interactions in space vacuum." In AIAA Scitech 2020 Forum. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2020. http://dx.doi.org/10.2514/6.2020-2153.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Carruth, Jr., M., Todd Schneider, Matt McCollum, Miria Finckenor, Rob Suggs, Dale Ferguson, Ira Katz, Ron Mikatarian, John Alred, and Courtney Pankop. "ISS and space environment interactions without operating plasma contactor." In 39th Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2001. http://dx.doi.org/10.2514/6.2001-401.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Pahsa, Alper. "Modelling Plasma Material Interactions in Spacecraft Magnetic Fusion Devices." In 2019 9th International Conference on Recent Advances in Space Technologies (RAST). IEEE, 2019. http://dx.doi.org/10.1109/rast.2019.8767780.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

VASHI, BHARAT. "Numerical simulations of the electrodynamic interactions between theTethered-Satellite-System and space plasma." In Space Programs and Technologies Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1992. http://dx.doi.org/10.2514/6.1992-1630.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bernhardt, P., J. Huba, G. Ganguli, P. Bernhardt, J. Huba, and G. Ganguli. "Remote detection of ionospheric-plasma interactions in Space Shuttle OMS plumes." In 35th Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1997. http://dx.doi.org/10.2514/6.1997-585.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wang, J., D. Brinza, R. Goldstein, J. Polk, M. Henry, D. Young, J. Hanley, J. Nordholt, D. Lawrence, and M. Shappirio. "Deep Space One investigations of ion propulsion plasma interactions - Initial results." In 30th Plasmadynamic and Lasers Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1999. http://dx.doi.org/10.2514/6.1999-3734.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Tikhonchuk, V. T., S. Depierreux, J. J. Honrubia, C. Labaune, J. J. Santos, G. Schurtz, Hans-Jürgen Hartfuss, Michel Dudeck, Jozef Musielok, and Marek J. Sadowski. "Laser-plasma interactions in the context of inertial fusion research." In PLASMA 2007: International Conference on Research and Applications of Plasmas; 4th German-Polish Conference on Plasma Diagnostics for Fusion and Applications; 6th French-Polish Seminar on Thermal Plasma in Space and Laboratory. AIP, 2008. http://dx.doi.org/10.1063/1.2909129.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Space/plasma interactions"

1

Lee, M. C. Space Plasma Effects and Interactions With Radio Waves. Fort Belvoir, VA: Defense Technical Information Center, May 2001. http://dx.doi.org/10.21236/ada387788.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography