To see the other types of publications on this topic, follow the link: South pole aitken basin.

Journal articles on the topic 'South pole aitken basin'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'South pole aitken basin.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Shevchenko, V. V., V. I. Chikmachev, and S. G. Pugacheva. "Structure of the South Pole-Aitken lunar basin." Solar System Research 41, no. 6 (December 2007): 447–62. http://dx.doi.org/10.1134/s0038094607060019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Duke, M. B. "Sample return from the lunar South Pole-Aitken Basin." Advances in Space Research 31, no. 11 (June 2003): 2347–52. http://dx.doi.org/10.1016/s0273-1177(03)00539-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Garrick-Bethell, Ian, and Maria T. Zuber. "Elliptical structure of the lunar South Pole-Aitken basin." Icarus 204, no. 2 (December 2009): 399–408. http://dx.doi.org/10.1016/j.icarus.2009.05.032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

James, Peter B., David E. Smith, Paul K. Byrne, Jordan D. Kendall, H. Jay Melosh, and Maria T. Zuber. "Deep Structure of the Lunar South Pole‐Aitken Basin." Geophysical Research Letters 46, no. 10 (May 27, 2019): 5100–5106. http://dx.doi.org/10.1029/2019gl082252.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Yamamoto, Satoru, Ryosuke Nakamura, Tsuneo Matsunaga, Yoshiko Ogawa, Yoshiaki Ishihara, Tomokatsu Morota, Naru Hirata, et al. "Olivine-rich exposures in the South Pole-Aitken Basin." Icarus 218, no. 1 (March 2012): 331–44. http://dx.doi.org/10.1016/j.icarus.2011.12.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Melosh, H. J., J. Kendall, B. Horgan, B. C. Johnson, T. Bowling, P. G. Lucey, and G. J. Taylor. "South Pole–Aitken basin ejecta reveal the Moon’s upper mantle." Geology 45, no. 12 (October 3, 2017): 1063–66. http://dx.doi.org/10.1130/g39375.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wendel, JoAnna. "Using lunar craters to date the South Pole-Aitken basin." Eos, Transactions American Geophysical Union 95, no. 32 (August 12, 2014): 292. http://dx.doi.org/10.1002/2014eo320014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Potter, R. W. K., G. S. Collins, W. S. Kiefer, P. J. McGovern, and D. A. Kring. "Constraining the size of the South Pole-Aitken basin impact." Icarus 220, no. 2 (August 2012): 730–43. http://dx.doi.org/10.1016/j.icarus.2012.05.032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Vorburger, A., P. Wurz, S. Barabash, M. Wieser, Y. Futaana, A. Bhardwaj, and K. Asamura. "Imaging the South Pole–Aitken basin in backscattered neutral hydrogen atoms." Planetary and Space Science 115 (September 2015): 57–63. http://dx.doi.org/10.1016/j.pss.2015.02.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Moriarty, D. P., C. M. Pieters, and P. J. Isaacson. "Compositional heterogeneity of central peaks within the South Pole-Aitken Basin." Journal of Geophysical Research: Planets 118, no. 11 (November 2013): 2310–22. http://dx.doi.org/10.1002/2013je004376.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

SASAKI, Sho, Yoshiaki ISHIHARA, Sander GOOSSENS, Hiroshi ARAKI, Koji MATSUMOTO, Hideo HANADA, and Makiko OHTAKE. "Structure of the South Pole-Aitken Basin from KAGUYA Selenodesy Data." TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, AEROSPACE TECHNOLOGY JAPAN 10, ists28 (2012): Tk_41—Tk_43. http://dx.doi.org/10.2322/tastj.10.tk_41.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Pasckert, Jan Hendrik, Harald Hiesinger, and Carolyn H. van der Bogert. "Lunar farside volcanism in and around the South Pole–Aitken basin." Icarus 299 (January 2018): 538–62. http://dx.doi.org/10.1016/j.icarus.2017.07.023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Garrick-Bethell, Ian, Katarina Miljković, Harald Hiesinger, Carolyn H. van der Bogert, Matthieu Laneuville, David L. Shuster, and Donald G. Korycansky. "Troctolite 76535: A sample of the Moon's South Pole-Aitken basin?" Icarus 338 (March 2020): 113430. http://dx.doi.org/10.1016/j.icarus.2019.113430.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Trowbridge, Alexander J., Brandon C. Johnson, Andrew M. Freed, and H. Jay Melosh. "Why the lunar South Pole-Aitken Basin is not a mascon." Icarus 352 (December 2020): 113995. http://dx.doi.org/10.1016/j.icarus.2020.113995.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Vilas, Faith, Elizabeth A. Jensen, Deborah L. Domingue, Lucy A. McFadden, Cassandra J. Runyon, and Wendell W. Mendell. "A newly-identified spectral reflectance signature near the lunar South pole and the South Pole-Aitken Basin." Earth, Planets and Space 60, no. 1 (January 2008): 67–74. http://dx.doi.org/10.1186/bf03352763.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Hurwitz, Debra, and David A. Kring. "Potential sample sites for South Pole–Aitken basin impact melt within the Schrödinger basin." Earth and Planetary Science Letters 427 (October 2015): 31–36. http://dx.doi.org/10.1016/j.epsl.2015.06.055.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Pieters, C. M., J. W. Head, L. Gaddis, B. Jolliff, and M. Duke. "Rock types of South Pole-Aitken basin and extent of basaltic volcanism." Journal of Geophysical Research: Planets 106, E11 (November 1, 2001): 28001–22. http://dx.doi.org/10.1029/2000je001414.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Vaughan, William M., and James W. Head. "Impact melt differentiation in the South Pole-Aitken basin: Some observations and speculations." Planetary and Space Science 91 (February 2014): 101–6. http://dx.doi.org/10.1016/j.pss.2013.11.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Moriarty, D. P., and C. M. Pieters. "The Character of South Pole-Aitken Basin: Patterns of Surface and Subsurface Composition." Journal of Geophysical Research: Planets 123, no. 3 (March 2018): 729–47. http://dx.doi.org/10.1002/2017je005364.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Uemoto, Kisara, Makiko Ohtake, Junichi Haruyama, Tsuneo Matsunaga, Satoru Yamamoto, Ryosuke Nakamura, Yasuhiro Yokota, Yoshiaki Ishihara, and Takahiro Iwata. "Evidence of impact melt sheet differentiation of the lunar South Pole-Aitken basin." Journal of Geophysical Research: Planets 122, no. 8 (August 2017): 1672–86. http://dx.doi.org/10.1002/2016je005209.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Moriarty, Daniel P., and Carle M. Pieters. "The nature and origin of Mafic Mound in the South Pole‐Aitken Basin." Geophysical Research Letters 42, no. 19 (October 15, 2015): 7907–15. http://dx.doi.org/10.1002/2015gl065718.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

WU, ZhiYuan, Li LI, Wei WEI, ZhongHu JIAO, XiaoXu XI, and ShaoFeng LIU. "The South Pole-Aitken basin thorium anomaly and its enrichment characteristics and mechanisms." SCIENTIA SINICA Physica, Mechanica & Astronomica 42, no. 1 (January 1, 2012): 95–106. http://dx.doi.org/10.1360/132011-634.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Purucker, Michael E., James W. Head, and Lionel Wilson. "Magnetic signature of the lunar South Pole-Aitken basin: Character, origin, and age." Journal of Geophysical Research: Planets 117, E5 (May 2012): n/a. http://dx.doi.org/10.1029/2011je003922.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Cahill, Joshua T. S., Justin J. Hagerty, David J. Lawrence, Rachel L. Klima, and David T. Blewett. "Surveying the South Pole-Aitken basin magnetic anomaly for remnant impactor metallic iron." Icarus 243 (November 2014): 27–30. http://dx.doi.org/10.1016/j.icarus.2014.08.035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Lucey, Paul G., G. Jeffrey Taylor, B. Ray Hawke, and Paul D. Spudis. "FeO and TiO2concentrations in the South Pole-Aitken basin: Implications for mantle composition and basin formation." Journal of Geophysical Research: Planets 103, E2 (February 1, 1998): 3701–8. http://dx.doi.org/10.1029/97je03146.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Huang (黄俊), Jun, Zhiyong Xiao (肖智勇), Long Xiao (肖龙), Briony Horgan, Xiaoyi Hu (胡晓依), Paul Lucey, Xiao Xiao (肖潇), et al. "Diverse rock types detected in the lunar South Pole–Aitken Basin by the Chang’E-4 lunar mission." Geology 48, no. 7 (April 29, 2020): 723–27. http://dx.doi.org/10.1130/g47280.1.

Full text
Abstract:
Abstract The South Pole–Aitken (SPA) basin, located between the South Pole and Aitken crater on the far side of the Moon, is the largest confirmed lunar impact structure. The pre-Nectarian SPA basin is a 2400 × 2050 km elliptical structure centered at 53°S, 191°E, which should have exposed lower crust and upper mantle due to the enormous excavation depth. Olivine, the dominant mineral in Earth’s mantle, has only been identified in small and localized exposures in the margins of the SPA basin, and the dominant mafic component is, instead, pyroxene. These mineralogical characteristics could be explained by the recent hypothesis that the lunar upper mantle is dominated by low-calcium pyroxene, not olivine. Here, we present observations from imaging and spectral data from China’s Chang’E-4 (CE-4) lunar mission in the first 4 synodic days, especially the first in situ visible/near-infrared spectrometer observations of an exposed boulder. We identified a variety of rock types, but not the recently reported olivine-rich materials in the landing region. The results are consistent with orbital observations. The obtained mineralogical information provides a better understanding of the nature and origin of SPA materials.
APA, Harvard, Vancouver, ISO, and other styles
27

Hurwitz, Debra M., and David A. Kring. "Differentiation of the South Pole-Aitken basin impact melt sheet: Implications for lunar exploration." Journal of Geophysical Research: Planets 119, no. 6 (June 2014): 1110–33. http://dx.doi.org/10.1002/2013je004530.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Parker, Jeffrey S., Timothy P. McElrath, Rodney L. Anderson, and Theodore H. Sweetser. "Trajectory Design for MoonRise: A Proposed Lunar South Pole Aitken Basin Sample Return Mission." Journal of the Astronautical Sciences 62, no. 1 (March 2015): 44–72. http://dx.doi.org/10.1007/s40295-015-0037-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Ohtake, Makiko, Kisara Uemoto, Yasuhiro Yokota, Tomokatsu Morota, Satoru Yamamoto, Ryosuke Nakamura, Junichi Haruyama, Takahiro Iwata, Tsuneo Matsunaga, and Yoshiaki Ishihara. "Geologic structure generated by large-impact basin formation observed at the South Pole-Aitken basin on the Moon." Geophysical Research Letters 41, no. 8 (April 28, 2014): 2738–45. http://dx.doi.org/10.1002/2014gl059478.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Potter, Ross W. K., James W. Head, Dijun Guo, Jianzhong Liu, and Long Xiao. "The Apollo peak-ring impact basin: Insights into the structure and evolution of the South Pole–Aitken basin." Icarus 306 (May 2018): 139–49. http://dx.doi.org/10.1016/j.icarus.2018.02.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Ivanov, M. A., H. Hiesinger, C. H. van der Bogert, C. Orgel, J. H. Pasckert, and J. W. Head. "Geologic History of the Northern Portion of the South Pole-Aitken Basin on the Moon." Journal of Geophysical Research: Planets 123, no. 10 (October 2018): 2585–612. http://dx.doi.org/10.1029/2018je005590.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Sruthi, U., and P. Senthil Kumar. "Volcanism on farside of the Moon: New evidence from Antoniadi in South Pole Aitken basin." Icarus 242 (November 2014): 249–68. http://dx.doi.org/10.1016/j.icarus.2014.07.030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Kim, Kyeong Ja, James M. Dohm, Jean-Pierre Williams, Javier Ruiz, Trent M. Hare, Nobuyuki Hasebe, Yuzuru Karouji, et al. "The South Pole-Aitken basin region, Moon: GIS-based geologic investigation using Kaguya elemental information." Advances in Space Research 50, no. 12 (December 2012): 1629–37. http://dx.doi.org/10.1016/j.asr.2012.06.019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Huang, Jun, Zhiyong Xiao, Jessica Flahaut, Mélissa Martinot, James Head, Xiao Xiao, Minggang Xie, and Long Xiao. "Geological Characteristics of Von Kármán Crater, Northwestern South Pole-Aitken Basin: Chang'E-4 Landing Site Region." Journal of Geophysical Research: Planets 123, no. 7 (July 2018): 1684–700. http://dx.doi.org/10.1029/2018je005577.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Yingst, R. Aileen, and James W. Head. "Geology of mare deposits in South Pole-Aitken basin as seen by Clementine UV/VIS data." Journal of Geophysical Research: Planets 104, E8 (August 1, 1999): 18957–79. http://dx.doi.org/10.1029/1999je900016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Goossens, Sander, Yoshiaki Ishihara, Koji Matsumoto, and Sho Sasaki. "Local lunar gravity field analysis over the South Pole-Aitken basin from SELENE farside tracking data." Journal of Geophysical Research: Planets 117, E2 (February 2012): n/a. http://dx.doi.org/10.1029/2011je003831.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Nayak, Michael, Doug Hemingway, and Ian Garrick-Bethell. "Magnetization in the South Pole-Aitken basin: Implications for the lunar dynamo and true polar wander." Icarus 286 (April 2017): 153–92. http://dx.doi.org/10.1016/j.icarus.2016.09.038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Naito, M., N. Hasebe, H. Nagaoka, C. Wöhler, A. A. Berezhnoy, M. Bhatt, and K. J. Kim. "Potassium and Thorium Abundances at the South Pole‐Aitken Basin Obtained by the Kaguya Gamma‐Ray Spectrometer." Journal of Geophysical Research: Planets 124, no. 9 (September 2019): 2347–58. http://dx.doi.org/10.1029/2019je005935.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Valantinas, A., and P. H. Schultz. "The origin of neotectonics on the lunar nearside." Geology 48, no. 7 (April 13, 2020): 649–53. http://dx.doi.org/10.1130/g47202.1.

Full text
Abstract:
Abstract New observations of wrinkle ridges on the nearside maria of the Moon display signs of ongoing ridge modification. In association with the wrinkle ridges, we observed an absence of superposed craters, narrow (<30 m) lobate scarps and graben, and thermal anomalies related to exposures of meter-size blocks. Many of these active wrinkle ridge systems are well beyond the influence of mascon basins and unrelated to any global tectonic pattern. Nevertheless, they spatially correlate with ancient deep-seated dike intrusions on the lunar nearside revealed by gravity data analysis. We propose that this active nearside tectonic system (ANTS) reflects ongoing reactivation of an ancient system related to offset antipodal effects from the South Pole–Aitken basin.
APA, Harvard, Vancouver, ISO, and other styles
40

Meng, Z. G., H. H. Wang, Y. C. Zheng, Y. Z. Wang, H. Miyamoto, Z. C. Cai, J. S. Ping, and Y. Z. Zhu. "Several Geological Issues of Schrödinger Basin Exposed by CE-2 CELMS Data." Advances in Astronomy 2019 (July 1, 2019): 1–13. http://dx.doi.org/10.1155/2019/3926082.

Full text
Abstract:
The study on the Schrödinger basin may provide important clues about the formation of South Pole-Aitken (SPA) basin. In this paper, the thermophysical features of Schrödinger basin were evaluated using the Chang’E-2 microwave sounder (CELMS) data. The results are as follows. (1) The geological units are reevaluated with the CELMS data and a new geological view was provided according to the brightness temperature and emissivity maps. (2) The surface topography plays an important role in the observed CELMS data. (3) The hot anomaly in the basin floor indicates a warm substrate. (4) The pyroxene-bearing anorthosite is probably an important cause for the cold anomaly over the lunar surface. Also, the study proves the applicability of the CELMS data applying in high latitude regions to a certain extent.
APA, Harvard, Vancouver, ISO, and other styles
41

Pieters, C. M., S. Tompkins, J. W. Head, and P. C. Hess. "Mineralogy of the Mafic Anomaly in the South Pole-Aitken Basin: Implications for excavation of the lunar mantle." Geophysical Research Letters 24, no. 15 (August 1, 1997): 1903–6. http://dx.doi.org/10.1029/97gl01718.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Hu, Xiaoyi, Pei Ma, Yazhou Yang, Meng‐Hua Zhu, Te Jiang, Paul G. Lucey, Lingzhi Sun, et al. "Mineral Abundances Inferred From In Situ Reflectance Measurements of Chang'E‐4 Landing Site in South Pole‐Aitken Basin." Geophysical Research Letters 46, no. 16 (August 28, 2019): 9439–47. http://dx.doi.org/10.1029/2019gl084531.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Kramer, Georgiana Y., David A. Kring, Amanda L. Nahm, and Carlé M. Pieters. "Spectral and photogeologic mapping of Schrödinger Basin and implications for post-South Pole-Aitken impact deep subsurface stratigraphy." Icarus 223, no. 1 (March 2013): 131–48. http://dx.doi.org/10.1016/j.icarus.2012.11.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Koebel, David, Michele Bonerba, Daniel Behrenwaldt, Matthias Wieser, and Carsten Borowy. "Analysis of landing site attributes for future missions targeting the rim of the lunar South Pole Aitken basin." Acta Astronautica 80 (November 2012): 197–215. http://dx.doi.org/10.1016/j.actaastro.2012.03.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Borst, A. M., B. H. Foing, G. R. Davies, and W. van Westrenen. "Surface mineralogy and stratigraphy of the lunar South Pole-Aitken basin determined from Clementine UV/VIS and NIR data." Planetary and Space Science 68, no. 1 (August 2012): 76–85. http://dx.doi.org/10.1016/j.pss.2011.07.020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Arkani-Hamed, Jafar, and Daniel Boutin. "South Pole Aitken Basin magnetic anomalies: Evidence for the true polar wander of Moon and a lunar dynamo reversal." Journal of Geophysical Research: Planets 122, no. 6 (June 2017): 1195–216. http://dx.doi.org/10.1002/2016je005234.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Shankar, B., G. R. Osinski, I. Antonenko, and C. D. Neish. "A multispectral geological study of the Schrödinger impact basin." Canadian Journal of Earth Sciences 50, no. 1 (January 2013): 44–63. http://dx.doi.org/10.1139/e2012-053.

Full text
Abstract:
Schrödinger basin is a well-preserved peak-ring basin located on the lunar farside, along the rim of the much larger South Pole – Aitken (SPA) basin. The relatively young age (Lower Imbrian series, or 3.8 Ga) of this basin makes it an ideal site to study the geology of peak-ring basins in general, and the geological history of SPA specifically. Impact materials still recognizable include a well-defined crater rim, wall terraces, quasi-circular peak ring, and interior and exterior melt units. A small pyroclastic deposit fills a portion of the basin floor, along with several mare patches. This study uses Clementine multispectral ultraviolet–visible (UV–VIS) data, and a limited set of higher spectral resolution Chandrayaan-1 Moon Mineralogy Mapper (M3) data, as well as radar, camera, and topography data from the Lunar Reconnaissance Orbiter to better understand Schrödinger’s geology. Sampled spectral profiles and linear unmixing models applied to the Clementine data indicate there is a heterogeneous distribution of both anorthositic and basaltic materials in the crater floor. M3 data further validates this observation, and the high spectral resolution shows that most of the mafic content is dominated by pyroxene. These results challenge the traditional assumption that Schrödinger was formed in mostly highland terrain. Our assessment brings forth a new understanding regarding the placement of Schrödinger within SPA and the role SPA impact materials played in shaping the composition of Schrödinger.
APA, Harvard, Vancouver, ISO, and other styles
48

Naito, M., N. Hasebe, H. Nagaoka, E. Shibamura, M. Ohtake, K. J. Kim, C. Wöhler, and A. A. Berezhnoy. "Iron distribution of the Moon observed by the Kaguya gamma-ray spectrometer: Geological implications for the South Pole-Aitken basin, the Orientale basin, and the Tycho crater." Icarus 310 (August 2018): 21–31. http://dx.doi.org/10.1016/j.icarus.2017.12.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Chisenga, Chikondi, Jianguo Yan, Jiannan Zhao, Qingyun Deng, and Jean-Pierre Barriot. "Density Structure of the Von Kármán Crater in the Northwestern South Pole-Aitken Basin: Initial Subsurface Interpretation of the Chang’E-4 Landing Site Region." Sensors 19, no. 20 (October 14, 2019): 4445. http://dx.doi.org/10.3390/s19204445.

Full text
Abstract:
The Von Kármán Crater, within the South Pole-Aitken (SPA) Basin, is the landing site of China’s Chang’E-4 mission. To complement the in situ exploration mission and provide initial subsurface interpretation, we applied a 3D density inversion using the Gravity Recovery and Interior Laboratory (GRAIL) gravity data. We constrain our inversion method using known geological and geophysical lunar parameters to reduce the non-uniqueness associated with gravity inversion. The 3D density models reveal vertical and lateral density variations, 2600–3200 kg/m3, assigned to the changing porosity beneath the Von Kármán Crater. We also identify two mass excess anomalies in the crust with a steep density contrast of 150 kg/m3, which were suggested to have been caused by multiple impact cratering. The anomalies from recovered near surface density models, together with the gravity derivative maps extending to the lower crust, are consistent with surface geological manifestation of excavated mantle materials from remote sensing studies. Therefore, we suggest that the density distribution of the Von Kármán Crater indicates multiple episodes of impact cratering that resulted in formation and destruction of ancient craters, with crustal reworking and excavation of mantle materials.
APA, Harvard, Vancouver, ISO, and other styles
50

Peng, M., W. Wan, Z. Liu, Y. Wang, and K. Di. "EVALUATION OF DEBLOCKING METHODS FOR CHANG’E-4 DESCENT IMAGES." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLIII-B3-2020 (August 21, 2020): 1137–41. http://dx.doi.org/10.5194/isprs-archives-xliii-b3-2020-1137-2020.

Full text
Abstract:
Abstract. Chang’e-4 lunar probe has successfully landed on the far side of the moon in Von Kármán crater inside the South Pole-Aitken (SPA) basin at 10:26 am on January 3, 2019. Due to the reduction of the coding rate, obvious block effects appear at the boundaries of descent images. Unblock, adaptive fast bilateral filtering, structure-texture enhancement and high-order Markov random field methods, are applied to remove the block effect of the descent images. Based on analysing the quality of descent images, quantitative comparison of four methods is performed using simulated compressed 1:64 descent images and real images. Comprehensive analysis was performed using typical measures such as PSNR, SSIM and NIQE. Experimental results show that adaptive fast bilateral filtering is better than other methods. The deblocked 1:64 image sequences have been used to assist localizing the landing point quickly during the mission.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography