Academic literature on the topic 'Sound-waves'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Sound-waves.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Sound-waves"

1

Hults, Morris G. "Sound waves." Physics Teacher 39, no. 6 (September 2001): 377. http://dx.doi.org/10.1119/1.1531955.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wolf, Franz Josef. "Sound absorber for sound waves." Journal of the Acoustical Society of America 111, no. 6 (2002): 2535. http://dx.doi.org/10.1121/1.1492935.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Dunkel, Jörn. "Rolling sound waves." Nature Materials 17, no. 9 (August 23, 2018): 759–60. http://dx.doi.org/10.1038/s41563-018-0155-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Jones, Willie. "Sound waves for brain waves - [update]." IEEE Spectrum 46, no. 1 (January 2009): 16–17. http://dx.doi.org/10.1109/mspec.2009.4734300.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kenyon, Kern E. "Momentum of sound waves." Physics Essays 21, no. 1 (March 1, 2008): 68–69. http://dx.doi.org/10.4006/1.3000091.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Eisenstein, Daniel J., and Charles L. Bennett. "Cosmic sound waves rule." Physics Today 61, no. 4 (April 2008): 44–50. http://dx.doi.org/10.1063/1.2911177.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Swinbanks, Malcolm A. "Attenuation of sound waves." Journal of the Acoustical Society of America 80, no. 4 (October 1986): 1281. http://dx.doi.org/10.1121/1.394459.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Swinbanks, Malcolm A. "Attenuation of sound waves." Journal of the Acoustical Society of America 81, no. 5 (May 1987): 1655. http://dx.doi.org/10.1121/1.395061.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ashley, Steven. "Sound Waves At Work." Mechanical Engineering 120, no. 03 (March 1, 1998): 80–84. http://dx.doi.org/10.1115/1.1998-mar-2.

Full text
Abstract:
Researchers have devised a new technique to use sound waves, opening the way for simple acoustic compressors, speedy chemical-process reactors, and clean electric-power generators. MacroSonix Corp. in Richmond, Vermont, has developed a technique by which standing sound waves resonating in specially shaped closed cavities can be loaded with thousands of times more energy than was previously possible. Company’s wave-shaping technology is known as resonant macrosonic synthesis (RMS). With some clever engineering, he said, the elevated acoustic-energy levels produced using RMS can be tapped for a wide range of industrial applications, including simplified compressors, pumps, speedy chemical-process reactors, and clean electric-power generators. MacroSonix has already licensed the RMS technology to a large appliance manufacturer to develop acoustic compressors for home refrigerators and air conditioners. MacroSonix has demonstrated the ability to produce high-pressure amplitudes inside resonator cavities. The MacroSonix technology relates to pressure waves in gases, which tend to be nonlinear in behavior. MacroSonix is working on a new licensing deal for an RMS air compressor and another with an electronic-component supplier. The company would like to enter larger research consortia with private, university, or government research labs to explore the RMS electric-power-generation concept.
APA, Harvard, Vancouver, ISO, and other styles
10

Kann, K. B. "Sound waves in foams." Colloids and Surfaces A: Physicochemical and Engineering Aspects 263, no. 1-3 (August 2005): 315–19. http://dx.doi.org/10.1016/j.colsurfa.2005.04.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Sound-waves"

1

Zinoviev, Alexei. "Application of the Multi-Modal Integral Method (MMIM) to sound wave scattering in an acoustic waveguide." Title page, contents and abstract only, 1999. http://hdl.handle.net/2440/37720.

Full text
Abstract:
The current work is devoted to the problem of sound wave scattering by elastic cylindrical objects in a plain acoustic waveguide. The Multi- Modal Integral Method (MMIM) is proposed, which is based on nonstandard representation of the Green's function. It combines advantages of integral equation and eigenfunction methods and provides a quickly converging and highly accurate solution, taking into account all the waveguide modes up to infinite order. As illustrations of application of this method, acoustic diffraction is calculated from a system of several parallel homogeneous cylinders and from an air-filled cylindrical elastic shell. Numerical solutions are found for various versions of the system of elastic cylinders in a fluid layer with perfectly soft and rigid boundaries. Phase - frequency and amplitude - frequency characteristics are found for modal coefficients of the scattered field. Sharp increase of their amplitudes is found near resonance frequencies of the waveguide and the scattering cylinders. Pictures of the source density on the surface of the cylinders show that the nature of their distribution strongly depends on the frequency and the mutual location of the cylinders in the waveguide. Field structure near the cylinders reveals that higher-order waveguide modes play a significant role in the scattering process. Spatial distribution of the acoustic power flow near the scattering object is calculated for several frequencies and two sets of elastic properties of the cylinder. It is shown that at the critical frequencies of the waveguide as well as at the internal resonances of the cylinder the acoustic energy flows in closed paths in some regions of the waveguide. Near the internal resonances of the cylinder the closed paths are located in the near vicinity of the scattering object and partially go through its interior. It is suggested that re-radiation of the energy stored in the vortices may contribute to the echo phenomenon. The integral reflection coefficient is calculated for a system waveguide/shell for different values of wall thickness and distance between the shell and the waveguide bottom. Maxima and minima in the reflection coefficient associated with cut-on frequencies of the waveguide modes and structural resonances of the shell are identified. The calculations show that the conventional definition of target strength in a shallow waveguide is inappropriate. Different kinds of resonances are identified in frequency and angular dependencies of the velocity amplitude of the shell surface. These resonances belong to the following groups: a) critical frequencies of the waveguide modes, b) structural resonances of the elastic shell, c) resonance oscillations of the gas-filled interior of the shell, d) resonance oscillations of the coupled fluid-shell. Application of the Multi-Modal Integral Method (MMIM) to Sound Wave Scattering in an Acoustic Waveguide. Temporal sequences of pictures showing the spatial structure of the total and scattered fields in the near and far field zones are obtained. It is shown that the incident field produces waves of acoustic pressure propagating along the boundary of the scattering object, which, in turn, generate the scattered acoustic field. In the process of propagation, the waves may interact with each other via the fluid or the scattering object. This leads to significant changes of the structure of the acoustic field and of the amount of acoustic energy reflected from the scatterer. It is also shown that, in most cases, standing waves exist between the scatterer and the waveguide boundaries. Accuracy of the Multi-Modal Integral Method is discussed. It is shown that the implementation of the method requires few computer resources for good accuracy of the solution.
Thesis (Ph.D.)--School of Mechanical Engineering, 1999.
APA, Harvard, Vancouver, ISO, and other styles
2

Chambers, James P. "Scale model experiments on the diffraction and scattering of sound by geometrical step discontinuities and curved rough surfaces." Diss., Georgia Institute of Technology, 1994. http://hdl.handle.net/1853/17858.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Yargus, Michael W. "Experimental study of sound waves in sandy sediment /." Thesis, Connect to this title online; UW restricted, 2003. http://hdl.handle.net/1773/6075.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Menchon, Enrich Ricard. "Spatial adiabatic passage: light, sound and matter waves." Doctoral thesis, Universitat Autònoma de Barcelona, 2013. http://hdl.handle.net/10803/129476.

Full text
Abstract:
El naixement de la Mecànica Quàntica va proporcionar el marc teòric que permetia poder explicar fenòmens prèviament observats experimentalment, com ara la radiació del cos negre, l'efecte fotoelèctric o les línies espectrals de gasos atòmics, i també va permetre entendre millor aspectes fonamentals relacionats amb la dualitat ona-partícula i la interacció entre radiació i matèria. La Mecànica Quàntica ha estat també l'origen de disciplines més específiques com l'Òptica Quàntica o la Informació Quàntica, les quals s’ocupen parcialment del que es coneix com Enginyeria Quàntica. En aquest context, s'han proposat processos de passatge adiabàtic, que consisteixen en el seguiment adiabàtic d'un estat propi del sistema, i que permeten un control molt robust i eficient de la transferència de població entre dos estats assimptòtics. Com molts altres processos en Mecànica Quàntica, els processos de passatge adiabàtic són purament oscil•latoris i poden ser considerats en altres sistemes físics no quàntics que suportin quantitats oscil•lants. En aquesta tesi, s'analitzen processos de passatge adiabàtic en diferents sistemes físics per a controlar la propagació de llum, so i ones de matèria en sistemes de guies acoblades, i la transferència d'àtoms freds individuals en trampes de potencial harmòniques. Adicionalment, utilitzem la robustesa i l'alta eficiència del passatge adiabàtic per proposar nous dispositius i discutir noves implementacions en aquests diversos camps. Específicament, demostrem experimentalment el passatge espacial adiabàtic de llum en un sistema de tres guies TIR d'òxid de silici compatibles-CMOS acoblades mitjançant el camp evanescent, que consisteix en una transferència completa d'intensitat de llum entre les guies externes del sistema. L'avantatge d'usar el passatge espacial adiabàtic respecte els acobladors direccionals estàndard és que la transferència de llum és robusta enfront de fluctuacions tecnològiques i no depèn de valors precisos dels paràmetres. Aquest és el primer dispositiu de passatge espacial adiabàtic per llum fabricat amb tecnologia compatible-CMOS, el que permet una integració massiva i de baix cost. A més, també demostrem experimentalment que aquest sistema de guies es comporta simultàniament com a filtre passa alts i passa baixos, amb unes característiques que el fan una alternativa a altres tipus de filtres integrables com filtres basats en interferència o en absorció. Adicionalment, adrecem el passatge espacial adiabàtic d'ones sonores en sistemes de dos defectes lineals acoblats en cristalls sònics. Calculant els diagrames de bandes per analitzar els supermodes del sistema disponibles i modificant apropiadament la geometria dels defectes lineals al llarg de la propagació, dissenyem dispositius que funcionen com a divisors i acobladors adiabàtics mutifreqüència i com a analitzadors de diferència de fase. També, proposem un mètode per injectar, extreure i filtrar en velocitat àtoms neutres en trampes en forma d'anell mitjançant el passatge espacial adiabàtic utilitzant dues guies addicionals. La proposta es basa en el seguiment adiabàtic d’un estat propi transversal del sistema. Realitzem càlculs semianalítics que encaixen perfectament amb els resultats de simulacions numèriques de l'equació de Schrödinger. També mostrem que la nostra proposta podria ser implementada experimentalment utilitzant paràmetres realistes d'àtoms ultrafreds en potencials òptics dipolars. Finalment, estudiem el passatge adiabàtic d'un àtom fred individual en un triple pou de potencial bidimensional, anant més enllà dels sistemes coneguts, que són de manera efectiva unidimensionals i estudiant les possibilitats que sorgeixen dels graus de llibertat addicionals. D'una banda, un sistema de tres pous de potencial amb les trampes en una geometria triangular es proposa per a interferometria d'ones de matèria, aprofitant un creuament de nivells que apareix en l'espectre d'energia. D'altra banda, es genera moment angular satisfactòriament en una configuració similar on les trampes tenen freqüències d'atrapament diferents, seguint simultàniament dos estats propis del sistema.
The birth of Quantum Mechanics provided a theoretical framework that could explain some previously experimentally reported phenomena, such as the black body radiation, the photoelectric effect or the spectral lines of atomic gases, and also allowed for a better understanding of fundamental aspects related to the wave-particle duality and the interaction between radiation and matter. Quantum Mechanics has been also the origin of more specific disciplines such as Quantum Optics or Quantum Information science, which are partially devoted to a more applied research field that is known as Quantum Engineering. In this context, adiabatic passage processes consisting in the adiabatic following of an eigenstate of the system, which allows for a very robust and efficient control of the population transfer between two asymptotic states have been proposed. As many other processes in Quantum Mechanics, adiabatic passage processes are purely oscillatory and can be extended to other non-quantum physical systems, which also support oscillating quantities. In this thesis, spatial adiabatic passage processes are addressed in different oscillatory physical systems to control light, sound and matter waves propagation in systems of coupled waveguides, and the transfer of single cold atoms in harmonic potentials. Additionally, we make use of the robustness and high efficiency of the adiabatic passage to propose new devices and discuss new implementations in these various fields. To be specific, we experimentally demonstrate the spatial adiabatic passage of light in a system of three evanescent-coupled CMOS-compatible silicon oxide TIR waveguides, which consists in a complete transfer of light intensity between the outermost waveguides of the system. The advantage of using spatial adiabatic passage compared to standard directional couplers is that the light transfer is robust in front of technological fluctuations and does not depend on precise parameter values. Additionally, this is the first spatial adiabatic passage of light device fabricated in CMOS-compatible technology, which allows for massive and low cost integration. Furthermore, we also experimentally show that this system of coupled waveguides behaves as a simultaneously low- and high-pass spectral filter, with features that makes it an alternative to other integrated filters like interferenceñbased and absorbance-based filters. In addition, we address the spatial adiabatic passage of sound waves in systems of two coupled linear defects in sonic crystals. By calculating the band diagrams to analyze the available supermodes of the system and modifying the geometry of the linear defects along the propagation distance appropriately, we design devices working as a multifrequency adiabatic splitter, as a coupler and also as a phase difference analyser. Furthermore, we discuss a novel method to inject, extract and velocity filter neutral atoms in a ring trap via a spatial adiabatic passage process by using two extra waveguides. The proposal is based on the adiabatic following of a transversal eigenstate of the system. Semianalytical calculations are performed, which perfectly match with the results of the numerical integration of the Schrˆdinger equation. We also show that our proposal could be experimentally implemented for realistic state-of-the-art parameters of ultracold atoms in optical dipole potentials. Finally, we study the spatial adiabatic passage of a single cold atom in two-dimensional triple-well potentials, going beyond the well-understood effective one-dimensional systems and studying the possibilities arising from the additional degrees of freedom. On the one hand, a system of three coupled identical harmonic potentials with the traps lying in a triangular configuration is proposed for matter wave interferometry taking profit of a level crossing appearing in the energy spectrum. On the other hand, angular momentum is successfully generated in a similar configuration where the three harmonic traps have different trapping frequencies by simultaneously following two eigenstates of the system.
APA, Harvard, Vancouver, ISO, and other styles
5

Legendre, César. "On the interactions of sound waves and vortices." Doctoral thesis, Universite Libre de Bruxelles, 2015. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209147.

Full text
Abstract:
The effects of vortices on the propagation of acoustic waves are numerous, from simple convection effects to instabilities in the acoustic phenomena, including absorption,

reflection and refraction effects. This work focusses on the effects of mean flow

vorticity on the acoustic propagation. First, a theoretical background is presented

in chapters 2-5. This part contains: (i) the fluid dynamics and thermodynamics

relations; (ii) theories of sound generation by turbulent flows; and (iii) operators taken

from scientific literature to take into account the vorticity effects on acoustics. Later,

a family of scalar operators based on total enthalpy terms are derived to handle mean

vorticity effects of arbitrary flows in acoustics (chapter 6). Furthermore, analytical

solutions of Pridmore-Brown’s equation are featured considering exponential boundary

layers whose profile depend on the acoustic parameters of the problem (chapter 7).

Finally, an extension of Pridmore-Brown’s equation is formulated for predicting the

acoustic propagation over a locally-reacting liner in presence of a boundary layer of

linear velocity profile superimposed to a constant cross flow (chapter 8).


Doctorat en Sciences de l'ingénieur
info:eu-repo/semantics/nonPublished

APA, Harvard, Vancouver, ISO, and other styles
6

Zinoviev, Alexei lurjevich. "Application of the Multi-Modal Integral Method (MMIM) to sound wave scattering in an acoustic waveguide." Click here to access, 1999. http://thesis.library.adelaide.edu.au/public/adt-SUA20050905.140025.

Full text
Abstract:
Thesis (Ph.D.)--University of Adelaide, Dept. of Mechanical Engineering, 2000.
Title from screen page (viewed September 13 2005). Includes bibliographical references. Also available in print version.
APA, Harvard, Vancouver, ISO, and other styles
7

Wang, Qiang. "Atmospheric refraction and propagation over curved surfaces." n.p, 1997. http://ethos.bl.uk/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Dostal, Jack Alan. "An investigation into student understanding of longitudinal standing waves." Thesis, Montana State University, 2008. http://etd.lib.montana.edu/etd/2008/dostal/DostalJ1208.pdf.

Full text
Abstract:
This study investigates the difficulties that introductory university physics students have with the concept of longitudinal standing waves in the context of standing waves in pipes. My goal is to identify difficulties that persist even after standard instruction on longitudinal standing waves and attempt to improve upon that method of instruction. The study follows a four-step design. I first use exploratory surveys and interviews with students to elicit the difficulties present in students\' understanding of longitudinal standing waves in pipes. I then use the information gained to create and assessment instrument, the Standing Waves Diagnostic Test, and a curricular intervention, the Longitudinal Standing Waves Tutorial. I then undertake a three-step process of pre-testing students with the Standing Wave Diagnostic Test, intervention with the Longitudinal Standing Waves Tutorial, and post-testing again with the Standing Wave Diagnostic Test to determine the impact of the intervention. This is then compared to data from students in classes where the intervention is not used. Students using the intervention significantly outperform their non-intervention counterparts on the Standing Wave Diagnostic Test. The results of the students pre- and post-tests indicate that significant improvement in students\' understandings of longitudinal standing waves can be achieved by the use of the tutorial.
APA, Harvard, Vancouver, ISO, and other styles
9

Cornell, Jason E. "Verification of the single scattering analytical model for mode coupling effects caused by solitons." Thesis, Monterey, California : Naval Postgraduate School, 2009. http://edocs.nps.edu/npspubs/scholarly/theses/2009/Sep/09Sep_Cornell.pdf.

Full text
Abstract:
Thesis (M.S. in Applied Physics)--Naval Postgraduate School, September 2009.
Thesis Advisor(s): Colosi, John A. ; Smith, Kevin B. "September 2009." Description based on title screen as viewed on November 5, 2009. Author(s) subject terms: Shallow-water environment, 3-D simulations, vertical mode coupling, Internal Solitary Waves, solitons, acoustic variability. Includes bibliographical references (p. 55). Also available in print.
APA, Harvard, Vancouver, ISO, and other styles
10

Ailes-Sengers, Lynn H. "Pulse broadening, polarimetric and angular memory effects of wave scattering from very rough surfaces /." Thesis, Connect to this title online; UW restricted, 1996. http://hdl.handle.net/1773/5856.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Sound-waves"

1

Rogers, Janet Marie. Sound waves. Victoria, BC: Ekstasis Editions, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Steve, Parker. Making waves: Sound. Oxford: Heinemann Library, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Yukio, Mishima. The sound of waves. New York: Vintage Books, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ardley, Neil. Sound waves to music. London: Gloucester Press, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Winterberg, Jenna. Sound waves and communication. Huntington Beach, CA: Teacher Created Materials, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hillesheim, Heather. Sound and light. New York NY: Infobase Learning, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Barile, Claudia, Caterina Casavola, Giovanni Pappalettera, and Vimalathithan Paramsamy Kannan. Sound Waves and Acoustic Emission. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-23789-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hall, Pamela. Listen!: Learn about sound. Mankato, Minn: Child's World, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Abagnali, Vitale. Sound waves: Propagation, frequencies, and effects. Hauppauge, N.Y: Nova Science Publishers, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Arabadzhi, V. I. Zvuk v prirode. Nizhniĭ Novgorod: Nizhegorodskiĭ gumanitarnyĭ t︠s︡entr, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Sound-waves"

1

Davies, Alan J. "Sound Waves." In Waves, 68–81. London: Macmillan Education UK, 1993. http://dx.doi.org/10.1007/978-1-349-12067-3_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Krüger, Timm, Halim Kusumaatmaja, Alexandr Kuzmin, Orest Shardt, Goncalo Silva, and Erlend Magnus Viggen. "Sound Waves." In The Lattice Boltzmann Method, 493–529. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-44649-3_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hartmann, William M. "Sound Waves." In Principles of Musical Acoustics, 39–52. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-6786-1_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Davis, Julian L. "Sound Waves." In Wave Propagation in Solids and Fluids, 159–91. New York, NY: Springer New York, 1988. http://dx.doi.org/10.1007/978-1-4612-3886-7_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Brekhovskikh, Leonid M., and Valery Goncharov. "Sound Waves." In Springer Series on Wave Phenomena, 262–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-85034-9_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Radi, Hafez A., and John O. Rasmussen. "Sound Waves." In Undergraduate Lecture Notes in Physics, 499–530. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-23026-4_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Peterson, Hamlet A. "Sound Waves." In Physeal Injury Other Than Fracture, 329–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22563-5_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Maciel, Walter J. "Sound Waves." In Undergraduate Lecture Notes in Physics, 97–108. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04328-9_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Olbers, Dirk, Jürgen Willebrand, and Carsten Eden. "Sound Waves." In Ocean Dynamics, 161–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-23450-7_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Brekhovskikh, Leonid, and Valery Goncharov. "Sound Waves." In Springer Series on Wave Phenomena, 262–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-96861-7_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Sound-waves"

1

Merlino, Robert L., Bengt Eliasson, and Padma K. Shukla. "Dust-Acoustic Waves: Visible Sound Waves." In NEW DEVELOPMENTS IN NONLINEAR PLASMA PHYSICS: Proceedings of the 2009 ICTP Summer College on Plasma Physics and International Symposium on Cutting Edge Plasma Physics. AIP, 2009. http://dx.doi.org/10.1063/1.3266792.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mendonça, J. T., Padma K. Shukla, José Tito Mendonça, Bengt Eliasson, and David Resedes. "Sound waves in ultra-cold matter." In INTERNATIONAL TOPICAL CONFERENCE ON PLASMA SCIENCE: Strongly Coupled Ultra-Cold and Quantum Plasmas. AIP, 2012. http://dx.doi.org/10.1063/1.3679584.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Slinkov, Grigorii, Steven Becker, Dirk Englund, and Birgit Stiller. "Photonic Activation Function Using Sound Waves." In 2023 International Conference on Photonics in Switching and Computing (PSC). IEEE, 2023. http://dx.doi.org/10.1109/psc57974.2023.10297228.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Godin, Oleg A. "Rayleigh scattering of spherical sound waves." In OCEANS 2011. IEEE, 2011. http://dx.doi.org/10.23919/oceans.2011.6106919.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Periago, Cristina, Arcadi Pejuan, Xavier Jaen, and Xavier Bohigas. "Misconceptions about the propagation of sound waves." In 2009 EAEEIE Annual Conference. IEEE, 2009. http://dx.doi.org/10.1109/eaeeie.2009.5335478.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Pereselkov, Sergey A., Pavel V. Rybyanets, Elena S. Kaznacheeva, Mohsen Badiey, and Venedikt M. Kuz'kin. "Broadband sound scattering by intense internal waves." In 2020 Days on Diffraction (DD). IEEE, 2020. http://dx.doi.org/10.1109/dd49902.2020.9274630.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Peplow, Andrew, Börje Nilsson, Börje Nilsson, Louis Fishman, Anders Karlsson, and Sven Nordebo. "Acoustic waves in variable sound speed profiles." In MATHEMATICAL MODELING OF WAVE PHENOMENA: 3rd Conference on Mathematical Modeling of Wave Phenomena, 20th Nordic Conference on Radio Science and Communications. AIP, 2009. http://dx.doi.org/10.1063/1.3117088.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Katayama, M. "Comparison on the characteristics of natural sound of waves and imitation sound of waves in terms of comfort level." In Oceans 2003. Celebrating the Past ... Teaming Toward the Future (IEEE Cat. No.03CH37492). IEEE, 2003. http://dx.doi.org/10.1109/oceans.2003.178471.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Aydogan, Hakan. "EEG response of different sound waves and frequencies." In 2016 24th Signal Processing and Communication Application Conference (SIU). IEEE, 2016. http://dx.doi.org/10.1109/siu.2016.7496212.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Powell, Alan. "Role of transitory waves in screech sound production." In 38th Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2000. http://dx.doi.org/10.2514/6.2000-469.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Sound-waves"

1

Yargus, Michael W. Experimental Study of Sound Waves in Sandy Sediment. Fort Belvoir, VA: Defense Technical Information Center, May 2003. http://dx.doi.org/10.21236/ada422568.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Buckingham, Michael J. Spatial Statistics of Deep-Water Ambient Noise; Dispersion Relations for Sound Waves and Shear Waves. Fort Belvoir, VA: Defense Technical Information Center, September 2014. http://dx.doi.org/10.21236/ada618055.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Fabian, A. On Viscosity, Conduction and Sound Waves in the Intracluster Medium. Office of Scientific and Technical Information (OSTI), January 2005. http://dx.doi.org/10.2172/839653.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hamilton, Mark F. Problems in Nonlinear Acoustics: Rayleigh Waves, Pulsed Sound Beams, and Waveguides. Fort Belvoir, VA: Defense Technical Information Center, August 1993. http://dx.doi.org/10.21236/ada274587.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Grigorieva, Natalie S., James Mercer, Jeffrey Simmen, and Michael Wolfson. Near-Axial Interference Effects for Long-Range Sound Transmissions through Ocean Internal Waves. Fort Belvoir, VA: Defense Technical Information Center, September 2006. http://dx.doi.org/10.21236/ada612578.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Grigorieva, Natalie S., Gregory M. Fridman, James Mercer, Jeffrey Simmen, Rex Andrew, and Michael Wolfson. Near-Axial Interference Effects for Long-Range Sound Transmissions through Ocean Internal Waves. Fort Belvoir, VA: Defense Technical Information Center, September 2008. http://dx.doi.org/10.21236/ada533094.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Grigorieva, Natalie S., James Mercer, Jeffrey Simmen, and Michael Wolfson. Near-Axial Interference Effects for Long-Range Sound Transmissions through Ocean Internal Waves. Fort Belvoir, VA: Defense Technical Information Center, September 2007. http://dx.doi.org/10.21236/ada541759.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wilson, D. K. Weak Scattering of Sound Waves in Random Media That Have Arbitrary Power-Law Spectra. Fort Belvoir, VA: Defense Technical Information Center, April 1999. http://dx.doi.org/10.21236/ada363637.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Haff, P. K. Microscopic modelling of sound waves in granular material: Quarterly progress report, January 1, 1989--March 31, 1989. Office of Scientific and Technical Information (OSTI), March 1989. http://dx.doi.org/10.2172/6182233.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Staroseisky, Alexander, Igor Fedchenia, and Wenlong Li. Intensification of Transport Processes in Fluid-Filled Porous Media by Sound Waves. Application to Fuel Cell Technology. Fort Belvoir, VA: Defense Technical Information Center, January 2004. http://dx.doi.org/10.21236/ada420039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography