Dissertations / Theses on the topic 'Sound transmission loss sound radiation'

To see the other types of publications on this topic, follow the link: Sound transmission loss sound radiation.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 42 dissertations / theses for your research on the topic 'Sound transmission loss sound radiation.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Pavasovic, Vladimir, and vpavasovic@wmgacoustics com au. "The radiation of Sound from Surfaces at Grazing Angles of Incidence." RMIT University. Applied Sciences, 2006. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20060911.115939.

Full text
Abstract:
It is difficult to predict the sound radiation from large factory roofs. The existing infinite panel theories of sound insulation are not sufficient when the sound radiates at grazing angles. It has been shown that the reason for the collapse of the theory is the well known result for the radiation efficiency. This research will present a simple analytic strip theory, which agrees reasonably well with numerical calculations for a rectangular panel. Simple analytic strip theory has lead to the conclusion that it is mainly the length of the panel in the direction of radiation, rather than its width that is important in determining its radiation efficiency. The findings of the current research also indicated that apart from the effect due to coincidence, a panel was non-directional compared to an opening.
APA, Harvard, Vancouver, ISO, and other styles
2

Cambridge, Jason Esan. "The Sound Insulation of Cavity Walls." Thesis, University of Canterbury. Mechanical Engineering, 2012. http://hdl.handle.net/10092/7332.

Full text
Abstract:
Lightweight building materials are now commonly employed in many countries in preference to heavyweight materials. This has lead to extensive research into the sound transmission loss of double leaf wall systems. These studies have shown that the wall cavity and sound absorption material placed within the cavity play a crucial role in the sound transmission through these systems. However, the influence of the wall cavity on the sound transmission loss is not fully understood. The purpose of this research is to obtain a comprehensive understanding of the role played by the wall cavity and any associated sound absorption material on the sound transmission loss through double leaf wall systems. The research was justified by the fact that some of the existing prediction models do not agree with some observed experimental trends. Gösele’s theory is expanded and used in the creation of an infinite and finite vibrating strip model in order to acquire the desired understanding. The sound transmission loss, radiated sound pressure and directivity of double leaf systems composed of gypsum boards and glass have been calculated using the developed model. A method for calculating the forced radiation efficiency has also been proposed. Predictions are compared to well established theories and to reported experimental results. This work also provides a physical explanation for the under-prediction of the sound transmission loss in London’s model; explains why Sharp’s model corresponds to Davy’s with a limiting angle of 61° and gives an explanation for Rindel’s directivity and sound transmission loss measurements through double glazed windows. The investigation also revealed that a wide variety of conclusions were obtained by different researchers concerning the role of the cavity and the properties of any associated sound absorption material on the sound transmission loss through double wall systems. Consequently recommendations about the ways in which sound transmission through cavity systems can be improved should always be qualified with regard to the specific frequency range of interest, type of sound absorption material, wall panel and stud characteristics.
APA, Harvard, Vancouver, ISO, and other styles
3

Ramanathan, Sathish Kumar. "The effects of damping treatment on the sound transmission loss of honeycomb panels." Licentiate thesis, KTH, MWL Structural and vibroacoustics, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-12514.

Full text
Abstract:

In the industry, all passenger vehicles are treated with damping materials to reduce structure-borne sound. Though these damping materials are effective to attenuate structure-borne sound, they have little or no effect on the air-borne sound transmission.The lack of effective predictive methods for assessing the acoustic effects due to added damping on complex industrial structures leads to excessive use of damping materials.Examples are found in the railway industry where sometimes the damping material applied per carriage is more than one ton. The objective of this thesis is to provide a better understanding of the application of these damping materials in particular when applied to lightweight sandwich panels.

As product development is carried out in a fast pace today, there is a strong need for validated prediction tools to assist in the design process. Sound transmission loss of sandwich plates with isotropic core materials can be accurately predicted by calculating the wave propagation in the structure. A modified wave propagation approach is used to predict the sound transmission loss of sandwich panels with honeycomb cores. The honeycomb panels are treated as being orthotropic and the wave numbers are calculated for the two principle directions. The orthotropic panel theory is used to predict the sound transmission loss of panels. Visco-elastic damping with a constraining layer is applied to these structures and the effect of these damping treatment on the sound transmission loss is studied. Measurements are performed to validate these predictions.

Sound radiated from vibrating structures is of great practical importance.The radiation loss factor represents damping associated with the radiation of sound as a result of the vibrating structure and can be a significant contribution for structures around the critical frequency and for composite structures that are very lightly damped. The influence of the radiation loss factor on the sound reduction index of such structures is also studied.


QC 20100519
ECO2-Multifunctional body Panels
APA, Harvard, Vancouver, ISO, and other styles
4

Liu, Bilong. "Acoustical Characteristics of Aircraft Panels." Doctoral thesis, Stockholm, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4102.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Phillips, Timothy Jason Nirmal. "Sound Transmission Loss of Sandwich Panels." Thesis, University of Canterbury. Department of Mechanical Engineering, 2012. http://hdl.handle.net/10092/9210.

Full text
Abstract:
The sound transmission loss characteristics of plywood based sandwich panels were investigated. Measurements were made of the sound transmission loss of a range of materials and used as a baseline for comparison while a sound transmission loss optimisation method was developed. A unique test rig was built and calibrated to determine selected mechanical properties of materials of interest. The results of sound transmission loss and material properties measurements were used to select an appropriate prediction model, which was then used in conjunction with a mathematical optimisation model to determine combinations of materials and panel parameters which result in improved sound transmission loss. An effort was made to reproduce these predictions in experimental testing by constructing several prototype panels.
APA, Harvard, Vancouver, ISO, and other styles
6

Cowan, Andre James. "Sound Transmission Loss of Composite Sandwich Panels." Thesis, University of Canterbury. Mechanical Engineering, 2013. http://hdl.handle.net/10092/7879.

Full text
Abstract:
This thesis examines the sound transmission loss (STL) through composite sandwich panel systems commonly used in the marine industry. Experimental, predictive and optimisation methods are used to evaluate the acoustic performance of these systems and to improve their acoustic performance with noise treatment. The complex nature of the material properties of composite sandwich panels was found to be dependent not only on the physical properties but also the frequency of incident noise. Young’s modulus was found to reduce with increasing frequency as has been predicted in the literature which is due to the shear stiffness dominating over the bending stiffness. Two methods for measuring these properties were investigated; ‘fixed-free’ and ‘free-free’ beam boundary condition modal analyses. The disagreement between these methods was identified as the clamping fixed nature that increased flexibility of the beam. Composite sandwich panels can be modelled as homogeneous isotopic materials when predicting their acoustic performance provided the dilatational resonance is above the frequency range of interest. Two such panels were modelled using this simple sound insulation prediction method, but the agreement between theory and experimental results was poor. A variable Young’s modulus was included in the model but agreement remained relatively poor especially in the coincidence frequency region due to variation of Young’s modulus with frequency. A statistical method of optimisation of the parameter settings by fractional factorial design proved successful at identifying the important parameters that affect the sound transmission class (STC) of a noise treatment material applied to a panel. The decouple foam layer and attachment method were the most significant factors. The same method, with higher resolution was then used to identify the important parameters that affected the noise reduction class (NRC) finding that the outer foam thickness without a face sheet were the most significant factors. The independent optimisation studies performed for each of the STC and NRC produced conflicting results meaning that both could not be achieved simultaneously.
APA, Harvard, Vancouver, ISO, and other styles
7

Hannink, Marieke Henriëtte Cathrien. "Acoustic resonators for the reduction of sound radiation and transmission." Enschede : University of Twente [Host], 2007. http://doc.utwente.nl/58025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sors, Thomas Christopher. "Active structural acoustic control of sound transmission through a plate." Thesis, University of Southampton, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.326822.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wareing, Robin Richard. "Investigation and Prediction of the Sound Transmission Loss of Plywood Constructions." Thesis, University of Canterbury. Mechanical Engineering, 2015. http://hdl.handle.net/10092/10455.

Full text
Abstract:
The sound transmission loss of a range of plywood panels was measured to investigate the influence of the orthotropic stiffness of the plywood panels. The plywood panels were tested as single and also double leaf partitions, with a range of stud configurations. A new method was developed for predicting the sound transmission loss of single leaf partitions with both orthotropic and frequency dependent stiffness values. The sound transmission loss was evaluated for two significantly different sample sizes. The observed influence of the sample size on the measured sound transmission loss was profound. The construction of the partition was shown to significantly affect the influence of the sample size on the sound transmission loss. A qualitative analysis based on existing published research of the contributing factors is presented, and methods for adjusting the results for the small sample size for comparison with the large results were developed. The influence of a range of acoustic treatments of lightweight plywood partitions was investigated. The treatments involved internal viscoelastic materials and decoupled mass loaded barriers in various arrangements. The attachment between the treatment and the plywood panel was found to influence the sound transmission loss significantly. A prediction method based on published models was modified to allow the influence of the treatments to be included. Reasonable agreement was achieved between the predicted and measured results for a wide range of samples. A prediction method was developed that accounts for the influence of orthotropic, frequency dependent material parameters. This method utilised an adaptive, numerical integration method to solve an analytical formulation for the sound transmission loss. The influence of the finite sample size was accounted for using an expression for the finite panel radiation impedance. The finite panel radiation impedance was predicted analytically and an approximation was also presented. The presence of a significant source room niche was accounted for by applying an appropriate limit to the integration range of the angle of incidence. The prediction methods developed are compared with the measured transmission loss results from both the small and large test facilities. Good agreement was seen for some of the predicted results. Generally the agreement within the coincidence region was worse than for the rest of the transmission loss curve. The inclusion of orthotropic and frequency dependent stiffness values significantly improved the agreement within the coincidence region.
APA, Harvard, Vancouver, ISO, and other styles
10

Thomas, Ashwin Paul. "Simulated and laboratory models of aircraft sound transmission." Thesis, Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/52319.

Full text
Abstract:
With increased exposure to transportation noise, there have been continued efforts to help insulate homes from aircraft noise. Current aircraft noise guidelines are based primarily on outdoor sound levels. As people spend the majority of their time indoors, however, human perception is evidently more related to indoor sound levels. Investigations are being made to provide further insight into how typical residential constructions affect indoor response. A pilot study has built a single-room "test house", according to typical construction for mixed-humid climate regions, and has directly measured outdoor-to-indoor transmission of sound - with specific focus on continuous commercial aircraft signatures. The results of this study are being used to validate and improve modelling software that simulates a wide range of construction types and configurations for other US climate regions. The improved models will allow for increased flexibility in simulating the impacts of acoustic and energy retrofits. Overall, the project intends to improve the ability to predict acoustic performance for typical US construction types as well as for any possible design alterations for sound insulation.
APA, Harvard, Vancouver, ISO, and other styles
11

Morgan, Julian Rees. "Selective estimation of sound pressure and intensity in determinations of transmission loss." Thesis, Liverpool John Moores University, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.253702.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Wang, Bor-Tsuen. "Active control of sound transmission/radiation from elastic plates using multiple piezoelectric actuators." Diss., Virginia Tech, 1991. http://hdl.handle.net/10919/39956.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Sagers, Jason Derek. "Analog Feedback Control of an Active Sound Transmission Control Module." Diss., CLICK HERE for online access, 2008. http://contentdm.lib.byu.edu/ETD/image/etd2461.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

GEORGE, JOHN K. "ANALYTICAL, NUMERICAL AND EXPERIMENTAL CALCULATION OF SOUND TRANSMISSION LOSS CHARACTERISTICS OF SINGLE WALLED MUFFLER SHELLS." University of Cincinnati / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1181226367.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Col, Stephen M. D. "Fine-scale variability in temperature, salinity, and pH in the upper-ocean and the effects on acoustic transmission loss in the Western Arctic Ocean." Thesis, Monterey, California : Naval Postgraduate School, 2010. http://edocs.nps.edu/npspubs/scholarly/theses/2010/Mar/10Mar%5FCol.pdf.

Full text
Abstract:
Thesis (M.S. in Engineering Acoustics)--Naval Postgraduate School, March 2010.
Thesis Advisor(s): Stanton, Tim ; Kapolka, Daphne. "March 2010." Description based on title screen as viewed on April 28, 2010. Author(s) subject terms: Acoustic propagation, transmission loss, Arctic Ocean, temperature salinity pH variability. Includes bibliographical references (p. 83-88). Also available in print.
APA, Harvard, Vancouver, ISO, and other styles
16

Rosi, Giuseppe. "Control of sound radiation and transmission by means of passive piezoelectric networks : modelling, optimization and experimental implementation." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2010. http://tel.archives-ouvertes.fr/tel-00815038.

Full text
Abstract:
Cette thèse a comme objet la réduction du rayonnement acoustique des structures minces par un réseau piézoélectrique passif. Une analyse détaillé des caractéristiques de rayonnement des structures minces est présenté, avec l'objectif d'utiliser ces caractéristiques pour l'optimisation de la structure intelligente. Deux stratégies de contrôle sont considérées: contrôle localisé et contrôle distribué. Le contrôle localisé utilise un réseau de actionneurs positionnés en des endroits optimisés, et le circuit est conçu pour concentré l'effort de contrôle dans la réduction de la puissance acoustique rayonnée. La modélisation, l'optimisation et l'étude expérimentale d'une structure intelligente localisée est ici présenté. Le contrôle distribué utilise un réseau uniforme de actionneurs piézoélectriques, connecté à un circuit optimisé pour profiter de cette distribution spatiale en termes de efficacité dans la réduction de la puissance acoustique rayonnée et transmise. Une nouvelle structure intelligente, la plaque avec un électrode résistif (PRE) est ici présenté.
APA, Harvard, Vancouver, ISO, and other styles
17

Ducret, Fabrice. "Studies of sound generation and propagation in flow ducts." Licentiate thesis, Stockholm : Royal Institute of Technology, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4049.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Lane, Jeremy David. "Active Control of Noise Through Windows." Thesis, University of Canterbury. Mechanical Engineering dept, 2013. http://hdl.handle.net/10092/10523.

Full text
Abstract:
Windows are a weakness in building facade sound transmission loss (STL). This coupled with the detrimental effects of excessive noise exposure on human health including: annoyance, sleep deprivation, hearing impairment and heart disease, is the motivation for this investigation of the STL improvements active noise control (ANC) of windows can provide. Window speaker development, ANC window experiments and analytical modelling of ANC windows were investigated. Five different window speaker constructions were characterised then compared with a previously developed window speaker. ANC window testing used three different ANC configurations and was performed in two different environments, one with a reverberant receiving room, and the other with an anechoic receiving room. Optimisation of ANC systems with particular control source locations was the aim of the modelling. This enabled comparison with the ANC window tests and would aid in further development of ANC windows. Window speaker constructions were characterised by sound pressure level (SPL) measurements performed in an anechoic room. These measurements were made in a way that enabled comparison with the previously developed window speaker. Total sound energy reduction calculations were used to determine the relative performance of the tested ANC windows. An STL model, based on a modal panel vibration model, was initially created and verified against published STL data before it was expanded to include ANC control sources. The model was used to simulate the performed anechoic environment tests and an ideal ANC case.
APA, Harvard, Vancouver, ISO, and other styles
19

Mahn, Jeffrey. "Prediction of Flanking Noise Transmission in Lightweight Building Constructions: A Theoretical and Experimental Evaluation of the Application of EN12354-1." Thesis, University of Canterbury. Department of Mechanical Engineering, 2009. http://hdl.handle.net/10092/4426.

Full text
Abstract:
The standard, EN12354-1 describes a simplified statistical energy analysis (SEA) model to predict the apparent sound reduction index between two rooms inclusive of the contributions of the flanking paths. There is interest worldwide in applying the EN12354 model to lightweight building elements. However, lightweight elements typically do not meet the requirements of an SEA subsystem and therefore applying the EN12354 model to these elements may result in inaccurate predictions. The purpose of this investigation was to systematically evaluate the application of the EN12354 model to lightweight building constructions. The evaluation included the determination of the probability density functions and the propagated uncertainty of the calculations. Knowledge of the probability density functions resulted in alternative calculations of the structure-borne sound transmitted through the constructions. The uncertainty analysis revealed that the uncertainty of the predictions is directly affected by the variance of the vibratory field measured on the elements. The vibratory fields of lightweight elements typically show large variances and therefore the propagated uncertainty of the EN12354 predictions for these elements can be significant. The investigation included measurements both in the laboratory and in the field. The results of the laboratory measurements were compared to both predictions using the EN12354 methods and ESEA models which included higher order flanking paths and non-resonant transmission paths. The field measurements included in this investigation were unique because the flanking intensity sound reduction indices of the elements in the source room were measured. The measurements allowed for the EN12354 predictions for each flanking element to be assessed instead of just the apparent sound reduction index between the rooms. The study resulted in proposed correction factors for when reciprocity does not hold and proposed changes to ISO10848 to improve the accuracy of the predictions when the EN12354 method was applied to lightweight building elements. However, neither the proposed correction factors nor the proposed changed to ISO10848-1 could correct for the potentially large differences between the predicted and the measured results. Based on the findings of this study, the use of the EN12354 model for the calculation of the apparent sound reduction index of lightweight elements is not endorsed. Lightweight constructions may not be categorized as ideal SEA subsystems due to the lack of diffuseness of the vibratory field. Furthermore, in order for EN12354 to be applied to lightweight constructions, a reliable method of calculating the resonant component of the sound reduction index of double-leaf elements is required. Therefore, statistical methods including the EN12354 method may be unsuitable for use for the prediction of flanking noise for lightweight building constructions.
APA, Harvard, Vancouver, ISO, and other styles
20

Hornick, Heather René. "Environmental analysis and prediction of transmission loss in the region of the New England Shelfbreak." Thesis, Massachusetts Institute of Technology, 2009. http://hdl.handle.net/1721.1/55299.

Full text
Abstract:
Thesis (S.M.)--Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Dept. of Mechanical Engineering; and the Woods Hole Oceanographic Institution), 2009.
Cataloged from PDF version of thesis.
Includes bibliographical references (p. 140-141).
A confluence of several coastal oceanographic features creates an acoustically interesting region with high variability along the New England Shelfbreak. Determining the effect of the variability on acoustic propagation is critical for sonar systems. In the Nantucket Shoals area of the Middle Atlantic Bight, two experiments, the New England Shelfbreak Tests (NEST), were conducted in May and June, 2007 and 2008, to study this variability. A comprehensive climatology of the region along with the experimental data provided detailed information about the variability of the water column, particularly the temperature and sound speed fields. Empirical orthogonal function (EOF) analysis of the ocean sound speed field defined a set of perturbations to the background sound speed field for each of the NEST Scanfish surveys. Attenuation due to bottom sediments is the major contributor of transmission loss in the ocean. In shallow water, available propagation paths most often include bottom interaction. Perturbations in the ocean sound speed field can cause changes in the angle of incidence of sound rays with the bottom, which can result in changes to the amount of sound energy lost to the bottom. In lieu of complex transmission loss models, the loss/bounce model provides a simpler way to predict transmission loss changes due to perturbations in the background sound speed field in the ocean. Using an acoustic wavenumber perturbation method, sound speed perturbations, defined by the ocean EOF modes, are translated into a change in the horizontal wavenumber, which in turn changes the modal angle of incidence.
(cont.) The loss/bounce model calculates the loss of sound energy (dB) per bottom bounce over a given distance based on the change in angle of incidence. Evaluated using experimental data from NEST, the loss/bounce model provided accurate predictions of changes to transmission loss due to perturbations of the background sound speed field.
by Heather René Hornick.
S.M.
APA, Harvard, Vancouver, ISO, and other styles
21

Andrade, Bruna Fuzzer de. "PADRÕES NORMATIVOS, ENSAIOS EXPERIMENTAIS E ANÁLISE DA PERFORMANCE ACÚSTICA DE TELHAS SANDUÍCHE." Universidade Federal de Santa Maria, 2016. http://repositorio.ufsm.br/handle/1/7920.

Full text
Abstract:
Conselho Nacional de Desenvolvimento Científico e Tecnológico
In urban areas, where noise is significant, the facades and roofs must submit a performance capable of ensuring insulation required for the acoustic comfort of the users. The roof, although important elements of the envelope of buildings, has been little studied in Acoustics. The validity of ISO 15575 Residential Buildings - Performance impacted mainly the construction industry suppliers, who needed to characterize their products and systems. Also in 2015 came the NBR 16373 - tiles and thermoacoustic panels - Performance requirements. This Thesis aimed to establish a methodology to analyse the acoustic performance for sandwich tiles considering regulatory standards and experimental trials. It started from the requirements of ISO 16373 for performing absorption tests and sound transmission loss of sandwich type of shingle tiles + EPS. The experimental procedure used to determine the sound absorption coefficient (α) was the method of the reverberation chamber in a diffuse field standardized by ASTM C423. The results showed behaviour with greater absorption (0.29) in a narrow band around 250 Hz and stabilized above 1600 Hz, with values similar to 0.06. These factors mean rank 1 according to the NBR 16373, in other words, the worst performance scale. Regarding the sound insulation test, performed according to ISO 10140 in reverberation room, it was quantified the Weighted Sound Reduction Index, Rw = 20 dB, above the expected performance because resulted close to the performance of other more valued tile commercially. The information given on NBR 16373: 2015 for the experimental analysis of sandwich tile are very incomplete, so difficult the tests. To facilitate implementation, minimizing errors due to erroneous interpretations of the techniques involved standards, we established a specific analysis methodology for trials in shingles or tiles. Therefore, it is proposed that the adequacy of samples of the tests, the individual analysis of each material that compose the shingle and evaluation of the two faces of the composite tiles, in order that they may have different types of finish (liner, liner-film, perforated panel, among others) and therefore the analysis of the lower tile becomes effective in assisting in the determination of the acoustic conditioning of the interior environments. Another suggestion is the evaluation of the rain impact noise on tiles. Finally, we reiterate the importance of the technical product information are clear and complete, allowing consumers to obtain adequate acoustic performance in their buildings.
Em áreas urbanas, onde o ruído é significativo, as fachadas e coberturas devem apresentar um desempenho capaz de garantir a isolação necessária para o conforto acústico dos usuários. As coberturas, embora sejam elementos importantes da envoltória das edificações, tem sido pouco estudadas na área de Acústica. A vigência da NBR 15575 Edificações habitacionais Desempenho impactou, principalmente, o setor de fornecedores da construção civil, que necessitaram caracterizar seus produtos e sistemas. Além disso, em 2015, surgiu a NBR 16373 Telhas e painéis termoacústico Requisitos de desempenho. A presente Dissertação teve como objetivo principal estabelecer uma metodologia de análise da performance acústica para telhas sanduíche, considerando padrões normativos e ensaios experimentais. Partiu-se das exigências da NBR 16373 para a execução dos ensaios de absorção e perda de transmissão sonora das telhas sanduíche do tipo telha + EPS. O procedimento experimental utilizado para a determinação do Coeficiente de Absorção Sonora (α) foi o método da câmara reverberante em campo difuso, normatizado pela ASTM C423. Os resultados mostraram um comportamento com maior absorção (0,29) numa faixa estreita em torno de 250 Hz e uma estabilização acima de 1600 Hz, com valores similares a 0,06. Tais coeficientes significam classificação 1, de acordo com a NBR 16373, ou seja, o pior desempenho da escala. No que tange ao ensaio de isolamento sonoro, executado de acordo com a ISO 10140, em câmara reverberante, foi quantificado o Índice de Redução Sonora Ponderado, Rw= 20 dB, desempenho acima do esperado, pois resultou próximo ao desempenho de outra telha mais valorizada comercialmente. As informações constantes na NBR 16373:2015 para a análise experimental da telha sanduíche são muito incompletas, por isso dificultam a realização dos ensaios. Para facilitar a execução, minimizando os erros decorrentes de interpretações equivocadas das normas técnicas envolvidas, estabeleceu-se uma metodologia de análise específica para ensaios realizados em telhas ou coberturas. Assim, propõe-se a adequação das amostras dos ensaios, a análise individual de cada material que compõe a telha e a avaliação das duas faces das telhas compostas, tendo em vista que elas podem possuir diferentes tipos de acabamento (forro, forro-filme, painel perfurado, entre outros) e, por isso, a análise da parte inferior da telha torna-se eficaz no auxílio da determinação do condicionamento acústico no interior de ambientes. Outra sugestão é a avaliação do ruído de impacto da chuva em telhas. Por fim, reitera-se a importância de que as informações técnicas sobre os produtos sejam claras e completas, permitindo que os consumidores finais possam obter um adequado desempenho acústico em suas edificações.
APA, Harvard, Vancouver, ISO, and other styles
22

Meng, Han. "Acoustic properties of novel multifunctional sandwich structures and porous absorbing materials." Thesis, Lyon, 2018. http://www.theses.fr/2018LYSEC008/document.

Full text
Abstract:
La mise en oeuvre de matériaux acoustiques est une méthode efficace et très utilisée pour réduire le bruit le long de sa propagation. Les propriétés acoustiques de nouvelles structures sandwich multifonctionnelles et de matériaux absorbants poreux sont étudiées dans la thèse. Les principales contributions de la thèse sont les suivantes: Les panneaux sandwich ont généralement d'excellentes propriétés mécaniques et un bon indice de perte en transmission sonore (STL), mais aucune capacité d'absorption acoustique. De nouvelles structures sandwich multifonctionnelles sont développées en intégrant des microperforations et des matériaux absorbants poreux aux panneaux sandwich ondulés et en nid d’abeilles conventionnels, structurellement efficaces pour obtenir de bons STL et de bonnes absorptions en basses fréquences. Le coefficient d'absorption acoustique (SAC) et la perte en transmission (STL) des panneaux sandwich ondulés sont évalués numériquement et expérimentalement en basse fréquence pour différentes configurations de perforations. Les modèles éléments finis (EF) sont construits en tenant compte des interactions vibro-acoustiques sur les structures et des dissipations d'énergie, visqueuse et thermique, à l'intérieur des perforations. La validité des calculs FE est vérifiée par des mesures expérimentales avec les échantillons testés obtenus par fabrication additive. Par rapport aux panneaux sandwich ondulés classiques sans perforation, les panneaux sandwich perforés (PCSPs) avec des perforations dans leur plaque avant présentent non seulement un SAC plus élevé aux basses fréquences, mais aussi un meilleur STL, qui en est la conséquence directe. L'élargissement des courbes des indices d’absorption et de transmission doit être attribué à la résonance acoustique induite par les micro-perforations. Il est également constaté que les PCSPs avec des perforations dans les plaques avant et les parois internes onduleés ont les fréquences de résonance les plus basses de tous les PCSPs. En outre, les performances acoustiques des panneaux sandwich en nid d'abeilles avec une plaque avant microperforée sont également examinées. Un modèle analytique est présenté avec l'hypothèse que les déplacements des deux plaques sont identiques aux fréquences inférieures à la fréquence de résonance des plaques. Le modèle analytique est ensuite validé par des modèles d'éléments finis et des résultats expérimentaux existants. Contrairement aux panneaux sandwich en nid d'abeilles classiques qui sont de piètres absorbeurs de bruit, les sandwichs en nid d'abeilles perforés (PHSPs) conduisent à un SAC élevé aux basses fréquences, ce qui entraîne en conséquence un incrément dans le STL basse fréquence. Les influences de la configuration du noyau sont étudiées en comparant les PHSPs avec différentes configurations de noyaux en nids d'abeilles. […]
Implementation of acoustic materials is an effective and popular noise reduction method during propagation. Acoustic properties of novel multifunctional sandwich structures and porous absorbing materials are studied in the dissertation. The main contributions of the dissertation are given as, Sandwich panels generally have excellent mechanical properties and good sound transmission loss (STL), but no sound absorption ability. Novel multifunctional sandwich structures are developed by integrating micro perforations and porous absorbing materials to the conventional structurally-efficient corrugated and honeycomb sandwich panels to achieve good SAC and STL at low frequencies. Low frequency sound absorption and sound transmission loss (STL) of corrugated sandwich panels with different perforation configurations are evaluated both numerically and experimentally. Finite element (FE) models are constructed with considerations of acousticstructure interactions and viscous and thermal energy dissipations inside the perforations. The validity of FE calculations is checked against experimental measurements with the tested samples provided by additive manufacturing. Compared with the classical corrugated sandwich panels without perforation, the perforated corrugated sandwich panels (PCSPs) with perforations in its face plate not only exhibits a higher SAC at low frequencies but also a better STL as a consequence of the enlarged SAC. The enlargement of SAC and STL should be attributed to the acoustical resonance induced by the micro perforations. It is also found that the PCSPs with perforations in both the face plates and corrugated cores have the lowest resonance frequencies of all the PCSPs. Besides, the acoustic properties of honeycomb sandwich panels with microperforated faceplate are also explored. An analytical model is presented with the assumption that displacements of the two faceplates are identical at frequencies below the faceplate resonance frequency. The analytical model is subsequently verified by finite element models and existing experimental results. Unlike classical honeycomb sandwich panels which are poor sound absorbers, perforated honeycomb sandwiches (PHSPs) lead to high SAC at low frequencies, which in turn brings about increment in the low frequency STL. Influences of core configuration are investigated by comparing PHSPs with different honeycomb core configurations. In order to enlarge the SAC bandwidth of perforated sandwich panels, porous absorbing materials are added to the cores of novel perforated sandwich panels. FE models are set up to estimate the SAC and STL of perforated sandwich panels with porous materials. Results show that perforated sandwich panels with porous material can provide SAC with broader bandwidth and lower resonance frequency than that without porous materials. Whereas the peak values in the SAC and STL curves are reduced due to the weakened acoustical resonance by the porous materials. […]
APA, Harvard, Vancouver, ISO, and other styles
23

Radavelli, Graziella Ferrer. "AVALIAÇÃO DA PERDA DE TRANSMISSÃO SONORA EM PAREDES EXTERNAS DE LIGHT STEEL FRAME." Universidade Federal de Santa Maria, 2014. http://repositorio.ufsm.br/handle/1/7873.

Full text
Abstract:
Environmental noise at high levels and inappropriate construction techniques used in conventional buildings in Brazil claim for a transition to better construction systems. Recently the Brazilian standard NBR 15575:2013 established for the first time parameters and criteria for residential building performance. In standard minimum requirements for sound insulation are given, for example for external walls and roof structures. This way it is of fundamental importance to have sound transmission loss data for diferente types of such elements at hand. Taking into account that there is very little information on the sound transmission loss of external walls of the light steel frame (LSF) type measurements of sound insulation of different vertical external LSF walls typically used in Brazil were carried out. Eighteen different LSF walls were mounted in the sound transmission measurement chamber of the Federal University of Santa Maria and measurements were carried out in accordance with ISO 10140:2010. Sound insulation was characterized by means of the sound reduction index R, the weighted sound reduction index Rw and the sound transmission class, making it possible to compare the sound insulation of the LSF walls with data from the literature. The LSF walls under investigation in this study used different materials such as OSB panels, cement boards, plaster boards, Smartside panels, PVC panels, XPS panels and magnesium oxide boards for the outer face. The influence of resilient channels and sponge tape, placed between the outer face and the metalic studes, were also evaluated. The sound insulation of the diferente LSF walls were found to be 43 dB ≤ Rw ≤ 50 dB and 45 dB ≤ STC ≤ 52 dB. Within the LSF walls measured the one which used magnesium oxide boards on the outer face showed to have the highest weight sound reduction index (Rw = 50 dB). Resilient channels, fabricated especially for this study, and sponge tape were able to provide an increase of Rw and STC up to 5 dB compared to the same wall without this resilient elements, and provide better sound insulation especially for frequencies higher than 400 Hz. From the data it can be concluded that LSF walls are more efficient regarding the sound insulation than single walls of the same surface mass and in some cases even better than single walls of superior surface mass, such as walls made of massive brick or concrete blocks.
O excesso de ruído ambiental e as inadequadas técnicas construtivas dos sistemas convencionais utilizados no mercado da construção civil brasileira, fazem com que seja necessária a introdução de novas tecnologias construtivas mais racionais e produtivas. A partir da entrada em vigor da NBR 15575:2013 foram estabelecidos diversos parâmetros de desempenho para edificações habitacionais. A referida norma também estabelece exigências mínimas de isolamento acústico para os sistemas que compõem as edificações, entre eles, as vedações verticais. Desta forma, informações sobre o isolamento acústico providenciado pelos diferentes sistemas construtivos tornaram-se de fundamental importância. Tendo em vista a pouca informação existente na literatura sobre o isolamento sonoro de paredes externas em light steel frame (LSF), foram realizadas medições de perda de transmissão sonora em paredes externas executadas neste sistema construtivo, usadas tipicamente no mercado brasileiro. Dezoito composições de paredes em LSF foram montadas na câmara reverberante de transmissão sonora da UFSM para realização dos ensaios de perda de transmissão conforme procedimentos propostos pela ISO 10140:2010. O isolamento sonoro foi quantificado a partir dos espectros do índice de redução sonora R, pelo índice de redução sonora ponderado Rw e pela classe de transmissão sonora STC, facilitando a comparação entre diferentes composições de parede e dados de isolamento sonoro encontrados na bibliografia. Os principais materiais utilizados no revestimento das paredes LSF foram paineis OSB, placas cimentícias, placas de gesso acartonado, réguas Smartside, réguas de siding vinílico, painéis XPS e placas de óxido de magnésio. A influência da utilização de barras resilientes e fitas de espuma de PVC, entre as placas de revestimento e a estrutura metálica, também foi avaliada. Determinou-se que o isolamento sonoro das diferentes paredes LSF avaliadas é de 43 dB ≤ Rw ≤ 50 dB e 45 dB ≤ STC ≤ 52 dB. Dentre as paredes externas em LSF, aquela que utilizou placas de óxido de magnésio na face exterior apresentou o maior Rw = 50 dB. As barras resilientes e fitas de espuma de PVC foram capazes de aumentar o Rw e STC em até 5 dB, se comparado à parede semelhante sem estes dispositivos, especialmente nas frequências a partir de 400 Hz. A partir da análise dos dados, concluiu-se que as paredes LSF consideradas paredes duplas são mais eficientes no isolamento sonoro quando comparadas às paredes simples ou homogêneas de mesma massa e até do que algumas paredes com massa muito superior, como paredes de tijolos maciços, de blocos de concreto ou de blocos cerâmicos.
APA, Harvard, Vancouver, ISO, and other styles
24

Hara, Deniz. "Investigation Of The Use Of Sandwich Materials In Automotive Body Structures." Master's thesis, METU, 2006. http://etd.lib.metu.edu.tr/upload/12614046/index.pdf.

Full text
Abstract:
The use of sandwich structures in automobile body panels is investigated in this thesis. The applications on vehicles such as trains, aeroplanes and automobiles, advantages, isadvantages and modelling of sandwich structures are discussed and studies about static, vibrational and acoustic benefits of sandwich structures by several authors are presented. The floor, luggage, firewall and rear wheel panels in sheet metal form is replaced with panel made from sandwich materials in order to reduce the weight obtained by a trial and error based optimization method by keeping the same bending stiffness performance. In addition to these, the use of sandwich structures over free layer surface damping treatments glued on floor panel to decrease the vibration levels and air-borne noise inside the cabin is investigated. It has been proven that, the same vibration performance of both flat beam and floor panel can be obtained using sandwich structures instead of free layer surface damping treatments with a less weight addition. Furthermore, the damping effect of sandwich structures on sound transmission loss of complex shaped panels like floor panel is investigated. A 2D flat and curved panel representing the floor panel of FIAT Car model are analysed in a very large frequency range. Four different loss factors are applied on these panels and it is seen that, until it reaches damping controlled region, damping has a very little effect on TL of flat panels but has an obvious damping effect on TL of curved panels. However in that region, damping has an increasing effect on TL of both flat and curved panels.
APA, Harvard, Vancouver, ISO, and other styles
25

Zergoune, Zakaria. "Meso-macro approach for modeling the acoustic transmission through sandwich panels." Thesis, Lyon, 2016. http://www.theses.fr/2016LYSEC048/document.

Full text
Abstract:
La modélisation du comportement vibroacoustique en flexion des structures sandwich est devenue aujourd’hui de plus en plus d’un grand intérêt dans les différents secteurs industriels. Cette tendance est principalement due aux propriétés mécaniques avantageuses des structures sandwich. L’un des principaux avantages de ce type de structures réside principalement dans le rapport rigidité-poids élevé. En revanche, acoustiquement la diminution de la masse du panneau avec une rigidité élevée conduit à un confort acoustique insatisfait. Pour cette raison, il y a une demande croissante pour des approches de modélisation du comportement vibroacoustique des structures sandwich avec une précision maximale. La présente thèse propose une approche méso-macro basée sur une méthode numérique pour la prédiction des caractéristiques dynamiques des structures sandwich. La méthode est principalement utilisée pour résoudre le problème de transparence acoustique considéré dans ce projet de thèse. Le travail présenté porte principalement sur la topologie du coeur du sandwich pour traiter le problème abordé. Le principal avantage du modèle proposé réside dans les effets du cœur prises en compte telle que l’effet du cisaillement et celle de l’orthotropie du panneau sandwich. L’approche de modélisation proposée est basée sur la méthode des éléments finis ondulatoire, qui combine la méthode des éléments finis classique et la théorie des structures périodiques. La structure sandwich a été modélisée comme un guide des ondes tridimensionnelles qui garde absolument les informations à l’échelle mésoscopique du panneau modélisé. La fréquence de transition définie la fréquence à laquelle le cisaillement du coeur devient important. Cette fréquence spéciale a été identifié via deux méthodes numériques. Une expression de transmission acoustique à travers un panneau sandwich a également été dérivée. Ensuite, une étude paramétrique a été menée dans le but de révéler l’effet des différents paramètres géométriques sur les indicateurs vibroacoustiques
Prediction of the flexural vibroacoustic behavior of honeycomb sandwich structures in the low-mid frequency is nowadays becoming of high interest in different industrial sectors. This trend is mainly owing to the advantageous mechanical properties of the sandwich structures. One of the main advantages of this kind of structures lies principally in the high stiffness-to-weight ratio. Even though, acoustically the decrease of the panel mass with a high stiffness leads to an unsuitable acoustic comfort. For this reason, there is an increasing demand for approaches modeling the vibroacoustic behavior of the sandwich structures with a maximum accuracy. The present thesis deals with a meso-macro approach based on a numerical method for modeling the vibroacoustic behavior of sandwich structures. The modeling description is mainly used to address the acoustic insulation problem considered in the thesis. The presented work focuses on the topology of the sandwich core to treat the addressed problem. The main advantage of the proposed model is that it takes into account the core shear and panel orthotropic effects. The modeling approach suggested here is based on the wave finite element method (WFE method), which combines the standard finite element method and the periodic structure theory. The sandwich structure has been modeled as a tridimensional waveguide which holds absolutely the meso-scale information of the modeled panel. The transition frequency, which indicates the frequency at which the core shear becomes important, was identified via two different numerical methods. An expression of the acoustic transmission for an equivalent isotropic sandwich panel was also derived. A parametric study was then conducted with a goal of revealing the effect of the geometric parameters of the sandwich core on the vibroacoustic indicators
APA, Harvard, Vancouver, ISO, and other styles
26

De, Man Pierre. "Contrôle actif du rayonnement acoustique des plaques: une approche à faible autorité." Doctoral thesis, Universite Libre de Bruxelles, 2004. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/211180.

Full text
Abstract:
L'objectif de cette thèse consiste en l'étude d'une stratégie de contrôle actif à faible autorité avec comme application le contrôle actif du rayonnement acoustique d'une plaque. Depuis l'essor du contrôle actif, son application aux problèmes acoustiques et vibracoustiques a été investiguée par de nombreux chercheurs, exploitant soit la théorie du contrôle optimal, soit des approches originales basées plus particulièrement sur la physique. Des notions spécifiques au contrôle vibroacoustique ont été développées comme, par exemple, les modes radiatifs pouvant caractériser le rayonnement acoustique d'une plaque d'une manière adaptée au contrôle.

Le contrôle actif à faible autorité, pour lequel le Laboratoire de Structures Actives a développé une expertise dans le domaine de l'amortissement et du contrôle actif des vibrations, est une solution attractive par sa simplicité de mise en oeuvre. Le plus souvent implémenté sous la forme d'un contrôle décentralisé constitué de boucles indépendantes, le contrôle à faible autorité bénéficie de certaines garanties de stabilité et de robustesse.

Bien que notre stratégie de contrôle puisse s'appliquer à n'importe quel type de plaque, l'application considérée dans ce travail a été motivée par le contexte socio-économique actuel en rapport avec les nuisances acoustiques. Il était en effet intéressant d'évaluer la stratégie de contrôle pour le problème de la transmission acoustique d'un vitrage. La stratégie de contrôle se divise en deux étapes. Tout d'abord le développement d'un capteur unique destiné à fournir une mesure représentative du bruit rayonné par une plaque en basse fréquence. Deux capteurs de vitesse volumétrique (l'un discret, l'autre distribué) ont ainsi été développés et évalués expérimentalement.

Ensuite, une procédure d'optimisation de l'emplacement d'un ensemble d'actionneurs pilotés en parallèle est proposée. L'objectif de cette phase d'optimisation est de forcer la réponse fréquentielle du système à posséder les propriétés d'un système colocalisé. La stratégie de contrôle est ensuite évaluée sur deux structures expérimentales.

/ This thesis is concerned with a low authority active control strategy applied to the sound radiation control of a baffled plate. Since the development of active control ,numerous researchers have studied its application to acoustical or vibroacoustical problems using either the modern control theory or other methods based rather on the understanding of the physics of the problem. Vibroacoustical active control has lead to the definition of radiation modes allowing to describe the radiated sound of a plate in an appropriate manner for active control purposes.

Low autorithy control (LAC), for which the Active Structures Laboratory has gained an expertise for active vibration control applications is an interesting solution for its implementation simplicity. Most of the time it consists of several decentralized control loops, and benefits from guaranteed stability and robustness properties. Although our control strategy can be applied to any kind of plates, the application considered here has been motivated by the present socio-economical context related to noise annoyances. The active control strategy has been applied the problem of the sound transmission loss of glass plates (windows). This strategy is in two steps :first a volume velocity sensor is developed as to give a measure representative of the radiated sound at low frequencies.

Two sensors have been developed (one discrete and one distributed) and experimentally tested. Next, an optimisation strategy is proposed which allow to locate on the plate a set of several actuators driven in parallel. The goal of this optimisation task is to obtain an open-loop frequency response which behave like a collocated system. The control strategy is finally evaluated on two plate structures.
Doctorat en sciences appliquées
info:eu-repo/semantics/nonPublished

APA, Harvard, Vancouver, ISO, and other styles
27

Mertens, Tanguy. "A new mapped infinite partition of unity method for convected acoustical radiation in infinite domains." Doctoral thesis, Universite Libre de Bruxelles, 2009. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210365.

Full text
Abstract:
Résumé:

Cette dissertation s’intéresse aux méthodes numériques dans le domaine de l’acoustique. Les propriétés acoustiques d’un produit sont devenues une part intégrante de la conception. En effet, de nos jours le bruit est perçu comme une nuisance par le consommateur et constitue un critère de vente. Il y a de plus des normes à respecter. Les méthodes numériques permettent de prédire la propagation sonore et constitue dès lors un outil de conception incontournable pour réduire le temps et les coûts de développement d’un produit.

Cette dissertation considère la propagation d’ondes acoustiques dans le domaine fréquentiel en tenant compte de la présence d’un écoulement. Nous pouvons citer comme application industrielle, le rayonnement d’une nacelle de réacteur d’avion. Le but de la thèse est de proposer une nouvelle méthode et démontrer ses performances par rapport aux méthodes actuellement utilisées (i.e. la méthode des éléments finis).

L’originalité du travail consiste à étendre la méthode de partition de l’unité polynomiale dans le cadre de la propagation acoustique convectée, pour des domaines extérieurs. La simulation acoustique dans des domaines de dimensions infinies est réalisée dans ce travail à l’aide d’un couplage entre éléments finis et éléments infinis.

La dissertation présente la formulation de la méthode pour des applications axisymétriques et tridimensionnelles et vérifie la méthode en comparant les résultats numériques obtenus avec des solutions analytiques pour des applications académiques (i.e. propagation dans un conduit, rayonnement d’un multipole, bruit émis par la vibration d’un piston rigide, etc.). Les performances de la méthode sont ensuite analysées. Des courbes de convergences illustrent à une fréquence donnée, la précision de la méthode en fonction du nombre d’inconnues. Tandis que des courbes de performances présentent le temps de calcul nécessaire pour obtenir une solution d’une précision donnée en fonction de la fréquence d’excitation. Ces études de performances montrent l’intérêt de la méthode présentée.

Le rayonnement d’un réacteur d’avion a été abordé dans le but de vérifier la méthode sur une application de type industriel. Les résultats illustrent la propagation pour une nacelle axisymétrique en tenant compte de l’écoulement et la présence de matériau absorbant dans la nacelle et compare les résultats obtenus avec la méthode proposée et ceux obtenus avec la méthode des éléments finis.

Les performances de la méthode de la partition de l’unité dans le cadre de la propagation convectée en domaines infinis sont présentées pour des applications académiques et de type industriel. Le travail effectué illustre l’intérêt d’utiliser des fonctions polynomiales d’ordre élevé ainsi que les avantages à enrichir l’approximation localement afin d’améliorer la solution sans devoir créer un maillage plus fin.

Summary:

Environmental considerations are important in the design of many engineering systems and components. In particular, the environmental impact of noise is important over a very broad range of engineering applications and is increasingly perceived and regulated as an issue of occupational safety or health, or more simply as a public nuisance. The acoustic quality is then considered as a criterion in the product design process. Numerical prediction techniques allow to simulate vibro-acoustic responses. The use of such techniques reduces the development time and cost.

This dissertation focuses on acoustic convected radiation in outer domains such as it is the case for turbofan radiation. In the current thesis the mapped infinite partition of unity method is implemented within a coupled finite and infinite element model. This method allows to enrich the approximation with polynomial functions.

We present axisymmetric and three-dimensional formulations, verify and analyse the performance of the method. The verification compares computed results with the proposed method and analytical solutions for academic applications (i.e. duct propagation, multipole radiation, noise radiated by a vibrating rigid piston, etc.) .Performance analyses are performed with convergence curves plotting, for a given frequency, the accuracy of the computed solution with respect to the number of degrees of freedom or with performance curves, plotting the CPU time required to solve the application within a given accuracy, with respect to the excitation frequency. These performance analyses illustrate the interest of the mapped infinite partition of unity method.

We compute the radiation of an axisymmetric turbofan (convected radiation and acoustic treatments). The aim is to verify the method on an industrial application. We illustrate the radiation and compare the mapped infinite partition of unity results with finite element computations.

The dissertation presents the mapped partition of unity method as a computationally efficient method and illustrates its performances for academic as well as industrial applications. We suggest to use the method with high order polynomials and take the advantage of the method which allows to locally enrich the approximation. This last point improves the accuracy of the solution and prevent from creating a finer mesh.


Doctorat en Sciences de l'ingénieur
info:eu-repo/semantics/nonPublished

APA, Harvard, Vancouver, ISO, and other styles
28

Tiikoja, Heiki. "Acoustic Characterization of Turbochargers and Pipe Terminations." Licentiate thesis, KTH, MWL Marcus Wallenberg Laboratoriet, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-92648.

Full text
Abstract:
In search for quieter engines there is a need for a better understanding of the acoustic properties of engine intake and exhaust system components. Besides mufflers which have the purpose of reducing pressure pulses originating from the internal combustion (IC) engine, there are many components in a modern car exhaust and intake system, e.g., air-filters, coolers, catalytic converters, particulate filters - all having an effect on the pressure pulses or sound field in the system. In this work the focus is on the turbocharged IC-engine where both, sound scattering (reflection and transmission) and sound generation from automotive turbochargers are studied. In addition, sound reflection from an open ended pipe, such as the tailpipe of an IC-engine exhaust is investigated.             Accurate and efficient methods to fully characterize turbochargers by measuring the acoustic two-port have been developed.  Compared to earlier work, a number of modifications are suggested for improving the quality of the results. A study on three different automotive turbochargers is also presented, including data for sound scattering for both the compressor and turbine. The results for the transmission of sound, which is of interest for the ability of a turbocharger to reduce noise coming from the engine, is plotted for all tested cases against a dimensionless frequency scale (Helmholtz-number). This makes it possible to generalize the result in order to draw conclusions about the behavior for any turbocharger.              The sound generation was also studied and three different methods to estimate the sound power are suggested. The methods were used to investigate sound generation at different operating points and identify source mechanisms for a turbocharger compressor.             An accurate method for measuring the reflection of plane acoustic waves from a pipe termination in a duct with hot gas flow has been developed and tested. Representing the acoustical conditions at an exhaust tail-pipe, the data obtained is important for effective modeling of exhaust systems. The experimental results of the reflection coefficient were compared with Munt`s theory on flow duct openings. The measurements were carried out for air jet velocities up to Mach 0.4 and for flow temperatures up to 100°C in order to study temperature effects on the reflection properties. It was concluded, that the experimental results agree well with the Munt theory.
APA, Harvard, Vancouver, ISO, and other styles
29

Alimonti, Luca. "Développement d'une méthode hybride éléments finis-matrice de transfert pour la prédiction de la réponse vibroacoustique de structures avec traitements acoustiques." Thèse, Université de Sherbrooke, 2014. http://hdl.handle.net/11143/5988.

Full text
Abstract:
Résumé : Les véhicules aériens et terrestres sont constitués de systèmes bâtis complexes. La structure principale est généralement composée de panneaux légers renforcés par des éléments rigides. Cette solution de conception est répandue parce qu’elle allie la force et un faible poids. Cependant, on sait qu’elle offre des résultats vibroacoustiques médiocres, c’est à dire que l’effet des perturbations externes qui touchent le système peut générer un niveau de bruit excessif à l’intérieur de la cabine des passagers. C’est une préoccupation majeure chez les fabricants, parce que ce niveau de bruit nuit sensiblement au confort ressenti par les clients et peut causer de la fatigue chez les conducteurs et les pilotes. Pour cette raison, les composants passifs constitués de matériaux dissipatifs assemblés en mode multicouche sont généralement intégrés à la structure. Ces assemblées bordées intègrent surtout des matériaux poroélastiques, qui sont plutôt répandus, grâce à l’agencement intéressant de bonnes propriétés d’isolation sonore et de faible poids. L’intégration en amont des traitements de contrôle du bruit au processus de conception est la clé de succès d’un produit. Pour ce faire, des outils pratiques numériques en mesure de capter le comportement dynamique des systèmes vibroacoustiques impliquant les structures, les cavités et les matériaux d’insonorisation sont requis. D’une part, la modélisation de ces systèmes couplés en utilisant des procédés à base d’éléments finis peut être, bien que précis, irréalisable pour des applications pratiques. D’autre part, les approches analytiques telles que la méthode de matrice de transfert sont souvent préférées grâce à leur facilité d’utilisation, même si elles manquent de précision en raison des hypothèses rigoureuses inhérentes au cadre analytique. Dans ce contexte, les procédures de structuration hybrides sont récemment devenues très populaires. En effet, les différentes techniques de modélisation sont généralement recherchées pour décrire les systèmes vibroacoustiques complexes arbitraires sur la plus large gamme de fréquences possible. L’objectif du projet proposé est de mettre au point un cadre hybride offrant une mé- thodologie simple pour tenir compte des traitements de contrôle du bruit dans l’analyse vibroacoustique par éléments finis. A savoir, le modèle de calcul qui en découle conserve la souplesse et la précision de la méthode des éléments finis en bénéficiant de la simplicité et de l’efficacité de la méthode de matrice de transfert pour obtenir une réduction de la charge de calcul pour la modélisation de composants acoustiques passifs. La performance de la méthode pour prédire la réponse vibroacoustique de structures planes homogènes avec des traitements acoustiques attachées est évaluée. Les résultats démontrent que la méthode hybride proposée est très prometteuse, parce qu’elle permet une réduction de l’effort de calcul tout en conservant suffisamment de précision par rapport à l’analyse complète par éléments finis. En outre, la méthode de matrice de transfert proposée de modélisation des traitements de contrôle des bruits est générale, comme on peut l’appliquer dans d’autres cadres outre l’application de l’élément fini considéré dans ce travail. // Abstract : Aerial and terrestrial vehicles consist of complex built-up systems. The main structure is typically made of light panels strengthened by stiffer components. Such design solution is widely used as it combines strength and low weight. However, it is known to give poor vibroacoustic performances, i.e. the effect of external disturbances acting on the system may generate an excessive noise level inside the passengers cabin. This is a main concern for the manufacturers, as it significantly affects the comfort experienced by the costumers and may fatigue drivers and pilots. For this reason, passive components consisting of dissipative materials assembled in a multilayer fashion are typically integrated within the structure. These lined assemblies mainly involve poroelastic materials, which are commonly used thanks to the appealing combination of good noise insulation properties and low weight. The early integration of noise control treatments in the design process is the key to a successful product. For this purpose, practical numerical tools able to capture the dynamic behavior of vibroacoustic systems involving structures, cavities and noise proofing materials are demanded. On the one hand, modeling such coupled systems using finite element based methods can be, albeit accurate, time consuming for practical applications. On the other hand, analytical approaches such as the transfer matrix method are often preferred thanks to their ease of use, although they suffer from a lack of accuracy due to the stringent assumptions inherent within the analytical framework. In this context, hybrid substructuring procedures have recently become quite popular. Indeed, different modeling techniques are typically sought to describe arbitrarily complex vibroacoustic systems over the widest possible frequency range. The aim of this thesis is to devise a hybrid framework providing a simple methodology to account for noise control treatments in vibroacoustic finite element analysis. Namely, the resulting computational model retains the flexibility and accuracy of the finite element method while taking advantage from the simplicity and efficiency of the transfer matrix method to obtain a reduction of the computational burden in the modeling of passive acoustic components. The performance of the method in predicting the vibroacoustic response of flat structures with attached homogeneous acoustic treatments is assessed. The results prove that the proposed hybrid methodology is very promising, as it allows for a reduction of the computational effort while preserving enough accuracy with respect to full finite element analysis. Furthermore, the proposed transfer matrix based methodology for noise control treatments modeling is general, as it can be used in alternative frameworks besides the finite element application considered in this work.
APA, Harvard, Vancouver, ISO, and other styles
30

Srinivasan, Vijay. "Mobility Analysis of Structure-borne Noise Paths in a Simplified Rotorcraft Gearbox System." The Ohio State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=osu1276884944.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Guenfoud, Nassardin. "On the multi-scale vibroacoustic behavior of multi-layer core topology systems." Thesis, Lyon, 2020. http://www.theses.fr/2020LYSEC010.

Full text
Abstract:
Les panneaux sandwichs en nid d'abeille ont fait l'objet d'intenses recherches ces dernières décennies. En effet, outre leurs bonnes performances mécaniques et leur rapport rigidité poids faible, il en résulte une baisse importante des propriétés acoustiques. Ainsi, de nombreux designs sont régulièrement proposés afin de palier à cette problématique. En parallèle, différents modèles sont développés afin de modéliser des structures de plus en plus complexes, en utilisant notamment les propriétés périodiques dans le but d’étudier la propagation des ondes. Cette dernière permet une étude approfondie des paramètres vibro-acoustique de la structure. Cette thèse se propose d'étudier des panneaux sandwichs dont le cœur est constitué d'un empilement de nids d'abeille. L'empilement est effectué sans peau intermédiaire, ce qui mène à une rupture d'impédance due aux surfaces de contacts entre les couches. De plus, une telle structure permet d'augmenter l'espace de design jusque-là limité par les structures standard composées d'un unique cœur. Il est alors possible d'obtenir de nombreuses configurations sans altérer la masse, grâce notamment à des décalages entre les couches. Un modèle paramétrique est proposé afin de permettre l'extraction d'une cellule unitaire à travers l'épaisseur du panneau et donc d'appliquer les propriétés périodiques. La modélisation des structures multicouches en nid d'abeille est effectuée via le modèle éléments finis de la cellule unitaire et l'extension d'un modèle existant afin d'obtenir les propriétés en transmission acoustique. L'étude se focalise alors sur les phénomènes de fréquences de transition, de transmission sonore ainsi que les phénomènes de couplage d'ondes et de résonances internes, pour finir avec une optimisation des paramètres géométriques et l'étude de l'influence de ces derniers sur les performances mécaniques et acoustique de la structure. Bien que les propriétés mécaniques lors d'un chargement en compression orthogonal au plan du nid d'abeille se révèlent diminuées dans le cas des structures multicœur, il est possible d'augmenter fortement leurs propriétés en compression dans le plan du cœur. Celles-ci sont étudiées via la comparaison d'une structure multicœur en nid d'abeille hexagonal avec une structure standard. Finalement, ces travaux de thèse se terminent par une étude de l'absorption acoustique avec notamment l’ajout de perforations sur les peaux supérieurs de la structure et l'effet thermo-visqueux qui se produit dans le cœur. En effet, il est possible d'augmenter la dissipation d'énergie de l'onde acoustique en modifiant la géométrie du nid d'abeille de chaque couche, et donc d'agir sur le coefficient d'absorption. Le parallèle est effectué avec les structures poreuses et les paramètres de Jhonson-Champoux-Allard sont calculés pour caractériser l’écoulement du fluide acoustique ainsi que pour alimenter le modèle.Une forte augmentation de la transmission acoustique est obtenue sur l'ensemble de la plage de fréquence étudiée ainsi qu'une amélioration des performances en absorption. Toutefois, cela entraîne la diminution des propriétés mécanique dont le module de compression ainsi que la rigidité dynamique
In this last decades, honeycomb sandwich panels have been the subject of intensive researches. Indeed, their high mechanical performances combined to a low stiffness to weight ratio result in a reduced acoustic efficiency. Therefore, many designs are usually proposed to overcome this issue. Besides, different methods are developed to model more complex structures using the periodic structure theory to study the wave propagation allowing to investigate the vibroacoustic parameters. The main purpose of this thesis is to investigate the vibroacoustic multi-scale behavior of multi-layer core topology systems which consist on stacking layers of honeycomb cores leading to an impedance mismatch between layers. In addition, such structures allow to increase the design space up to now limited to standard sandwich panels made of a single honeycomb core. Therefore, it is possible to obtain many configurations keeping the mass constant with simple shifting process between layers. A parametric model is proposed allowing to extract the unit cell through the thickness of the panel and to apply the periodic structure theory. Modelling multi-layer core topology systems has been performed using the wave finite element method, and an extended method has been proposed to solve the acoustic transmission problem. The study is focused on transition frequencies, the sound transmission loss as well as veering effects and internal resonances, to finally optimize the geometrical parameters and to analyze their influence on the acoustical and mechanical performances of the structure. Although the out-of-plane compression properties of multi-layer core topology systems are reduced, it is possible to strongly improve the in-plane compression properties. These later are studied by comparing a multi-layer hexagonal core and a standard single hexagonal core. Finally, using multi-layer core topology systems and a perforated upper skin, it is possible to increase the energy dissipation occurring inside the core and thus, improve the sound absorption coefficient. Therefore, the thermo-viscous effect is considered. The acoustic behavior is similar to porous media and the Johnson-Champoux-Allard parameters are retrieved to characterize the acoustic fluid flow.An improvement of the sound transmission loss and the sound absorption coefficient is obtained in a broadband frequency and the obtained resonance frequencies can be modified. However, this leads to lower mechanical properties especially the compression modulus and the dynamic rigidity
APA, Harvard, Vancouver, ISO, and other styles
32

Brouard, Yoann. "Caractérisation et optimisation d'un composite biosource pour l'habitat." Thesis, Tours, 2018. http://www.theses.fr/2018TOUR4024.

Full text
Abstract:
Cette étude a pour objet de comparer les propriétés acoustiques, mécaniques et hygrothermiques de différents biocomposites destinée à l’isolation des bâtiments à base de granulats issus de co-produits végétaux et d’un liant à base d’argile. Nous avons d’abord analysé les matières premières afin d’obtenir d’une part la masse volumique et les propriétés thermiques et hydriques des granulats végétaux et les caractéristiques minéralogiques et gravimétriques de la terre crue sélectionnée d’autre part. L’évolution de la conductivité thermique des mélanges terre:granulats végétaux a été étudiée à différents taux d’humidité et différentes masses volumiques. D’un point de vue hydrique, les capacités de sorption/désorption de ces matériaux ont été mesurées en régime statique de même que la capacité de tampon hydrique simulant un régime dynamique. L’un des principaux intérêts de cette étude est de confirmer qu’une large gamme de co-produits végétaux produits à l’échelle locale pourrait être utilisée en tant que granulats pour l’élaboration de bétons végétaux
The purpose of this study was to compare hygrothermal acoustical and mechanical properties ot different materials based on vegetal aggregates and clay in order to characterize the performances of different biocomposites to provide building insulation solutions with a view to valorizing agricultural waste. We first analyzed the raw materials in order to get the density, thermal and hydric properties of the vegetal aggregates in one hand and the mineralogy and gravimetric data of the selected crude earth in the other hand. Thermal behavior of earth:vegetal aggregates mixes have been investigated at different humidity rates and different density ranges. Additionally, hydric properties have been measured to produce sorption and desorption curves and moisture buffer values (MBV) in one hand and capillarity of both aggregates and biocomposites on the other hand. One of the main interests of this study is to confirm that a wide range of locally produced vegetal byproducts could be used as - bioaggregates for concretes. Local biomaterials industries could therefore emerge depending on the locally available resources at country scale
APA, Harvard, Vancouver, ISO, and other styles
33

De, Mey Ann. "Sound transmission loss measurements by the sound intensity technique." Thesis, 1985. http://spectrum.library.concordia.ca/4275/1/ML23143.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Li, Junping. "Development of a facility for studies on intensity based sound power and sound transmission loss measurements." Thesis, 1991. http://spectrum.library.concordia.ca/2994/1/MM64730.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Chiang, GuangTing, and 蔣官廷. "Active Control of Sound Radiation from and Transmission through a Plate." Thesis, 1999. http://ndltd.ncl.edu.tw/handle/13624318123435757520.

Full text
Abstract:
碩士
國立臺灣大學
造船及海洋工程學研究所
87
This study is mainly to introduce the basic concept on the mechanism between the motion of a plate with 4 edges clamped and the sound power radiation from it. Meanwhile, this study also outlines both the concept of radiation modes and the active control technique by using volume velocity cancellation. Therefore, this study is first in experiment to evaluate the control performance when using volume velocity cancellation technique. Later on, we use a far-field microphone as a sensor for the measurement of the net volume velocity of a plate. Combining it with a FIR filter and LMS algorithm, we can make an adaptive control of both the sound power radiated from a plate excited by PZT and the transmitted acoustic power through the same plate acted on by a reverberation sound field in progress. The result of this study shows using volume velocity cancellation technique to make the net volume velocity of a plate be zero can really reduce the acoustic power radiated from it. Next, we can find from the result in the experiment of adaptive control on the sound radiation from a vibrating plate that the acoustic radiation from a plate can be effectively controlled when PZT is respectively excited at 132, 178, 240, and 350 Hz. Within them, the greatest attenuation by 10 decibels of acoustic power is reached. Regarding the experiment of adaptive control on the sound transmission through a plate, the most sound insulation performance by 6 decibels at 132 Hz can be obtained. Furthermore, 4~5 decibels of sound insulation performance at 178 and 240 Hz are also reached. However, no control effectiveness can be reached when the frequency involved is higher than 400 Hz.
APA, Harvard, Vancouver, ISO, and other styles
36

Hsiao, Po-Chien, and 蕭伯鍵. "Sound transmission loss characteristics for seven load-bearing lightweight calcium silicate partitions." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/2datke.

Full text
Abstract:
碩士
國立臺灣科技大學
建築系
106
The objective of this research is to investigate the sound transmission loss (TL) of 7 different lightweight load-bearing calcium silicate board (CSB) partitions. By using the ASTM E90 and ISO 10140 measurement standards, the effects of testing equipment and procedure and the physical and environmental conditions of the testing chambers can be minimized and controlled. To study the CSB layers, with the similar trends of transmission loss values, the range of sound transmission class (STC) results in 1 to 2 dB. For Rockwool displacement of ASTM 2+3 partition, there was a 1-dB STC increase when placing the insulation on the stud cavity in the receiving room side. To study the effect of test specimen size, there were 3 to 16 dB TL differences between 10.5 m2 and 1.875 m2 test specimens, and the larger test specimen has higher TL than the smaller test specimen. To study the effect of the reverberation time, to increase or decrease 1 second from the smaller specimen, the STC rating can vary from 3 to 6 dB. However, if the reverberation time decreases 4.9 seconds at 125 Hz in larger specimen, there was no effect of STC rating. Finally, to study the effect of using ASTM E90 and ISO 10140 measurement standards, there was only 1 to 3 dB TL difference. Both ASTM E413 and ISO 717-1 includes methods to calculate and report a single value of the measured sound transmission loss The rule that the total sum of the deficiencies should equal or not exceed 32 dB for their specified frequency bands are in both standards. The most important discovery of this research is that the rule of the 8-dB maximum deficiency from ASTM E413. As lightweight partition tends to have less desired TL at the lower frequency bands, the 8-dB maximum deficiency often occurred in this range. Thus, the partition with the STC rating of ASTM E413 has a more stringent sound reduction property than the RW rating of ISO 717. Thus, it is preferable for architects and acoustic consultants to use the STC rating to specify the lightweight partition for sound isolation purposes.
APA, Harvard, Vancouver, ISO, and other styles
37

Elliston, Sean David. "Acoustic Analysis of R.E.E.L. Semi-Reveberant Sound Chamber." Thesis, 2012. http://hdl.handle.net/1969.1/ETD-TAMU-2012-05-10772.

Full text
Abstract:
The Riverside Energy Efficiency Laboratory at Texas A&M University conducts sound quality testing for the Home Ventilating Institute. When the Home Ventilating Institute initially established their sound quality test, the semi-reverberant sound chamber to conduct the sound quality tests was built at the Riverside Energy Efficiency Laboratory. The Home Ventilating Institute created a standard to specify the procedure for sound quality testing. This standard contained high consideration for performance, reliability, and accuracy. The standard was based on several ANSI standards for sound testing procedures, sound setup and equipment standards, and sound rating calculations. The Riverside Energy Efficiency Laboratory presently continues sound quality testing for the Home Ventilating Institute using the semi-reverberant sound chamber. The standard has been revised and updated due to developments for better sound quality test result representation. Resourceful data to assist with further developments comes from the semi-reverberant sound chamber's characteristics. This thesis's purpose was to conduct an analysis of the performance for the semi-reverberant sound chamber. The sound chamber's sound transmission loss was determined using a fan source with known sound power across the 24 tested 1/3 octave frequency bands, 50 Hz - 10,000 Hz. The sound pressure was recorded inside the chamber and outside the chamber at the sound source. The sound source was placed at three different locations around the sound chamber. In addition, the sound pressure was measured in real time to study the amount of sound pressure fluctuation and maximum amplitude. The background noise was measured inside the sound chamber for these tests. The sound transmission loss profiles were identical for each location. The lowest two 1/3 octave bands, 50 Hz and 63 Hz, have low transmission losses. The profile jumps up at the following 1/3 octave band and increases with a peak around 1600 Hz before slightly decreasing. The profile of the sound pressure in the time domain showed similar results. The most fluctuation with the greatest peaks was present in the lower 1/3 octave frequency bands, and diminished the higher the 1/3 octave frequency band. Sound sources around the sound chamber can be evaluated to determine whether an impact is possible on the sound quality tests from these results. The impact of modifications to the sound chamber can use the transmission loss values to help determine the expected performance increase.
APA, Harvard, Vancouver, ISO, and other styles
38

Cazzolato, Ben. "Sensing systems for active control of sound transmission into cavities." 1999. http://hdl.handle.net/2440/37893.

Full text
Abstract:
Driven by the need to reduce the sound transmitted into aircraft cabins from the power plant, this thesis investigates the active control of sound transmitted through a structure into coupled enclosures. In particular, it examines alternatives to conventional microphone and accelerometer error sensors. This study establishes a design framework for the development and analysis of an active noise control system which can be applied to any complex vibro-acoustic system. The design approach has focused on using techniques presently used in industry to enable the transfer of the active noise control technology from the research stage into practical noise control systems. The structural and acoustic sub-systems are modelled using FEA to estimate the in vacuo structural modal response of the structure and the acoustic pressure modal response (with rigid boundary conditions) of the interior cavity. The acoustic and structural systems are then coupled using modal coupling theory. Within this framework, two novel error sensors aimed at overcoming observability problems suffered by traditional microphone and accelerometer sensors are investigated: namely, acoustic energy density sensors and shaped radiation modal vibration sensors. The principles of the measurement of energy density are discussed and the errors arising from its measurement using two and three-microphone sensor configurations are considered for a one-dimensional reactive sound field and a plane wave sound field. The error analysis encompasses finite separation effects, instrumentation errors (phase and sensitivity mismatches, and physical length errors), diffraction and interference effects, and other sources of error (mean flow and turbulence, temperature and humidity, statistical effects). Following the one-dimensional study, four 3-axis energy density sensor designs are proposed and error analysis is conducted over the same acoustic fields as for the one-dimensional study. The design and construction of the simplest arrangement of the 4 three-axis sensors is discussed with reference to design issues, performance and limitations. The strategy of using energy density control is investigated numerically for a purely acoustic system and a coupled panel-cavity system. Energy density control is shown to provide greater local and global control compared to that possible using an equivalent number of microphones. The performance of the control system is shown to be relatively insensitive to the placement of the energy density sensor. For an enclosed cavity system with high modal overlap, the zone of local control achieved by minimising energy density is found to be approximately the same as the zone of local control obtained when min-imising pressure and pressure gradient in a diffuse sound field. It is also shown that if there is only one control source used per energy density sensor, global control will be almost optimum. The addition of further control sources leads to an improvement in global control, however, the control is no longer optimal. The control system is found to be very tolerant of errors in the estimate of the energy density and thus the use of simpler energy density sensor designs is justified. Finally, an experiment is presented in which the global performance achieved by controlling a three-axis energy density sensor is compared with the performance achieved by minimising the acoustic potential energy and minimising the sum of squared pressures at a finite number of microphones. The experimental results are found to reflect the numerical results. The active minimisation of harmonic sound transmission into an arbitrarily shaped enclosure using error signals derived from structural vibration sensors is investigated numerically and experimentally. It is shown that by considering the dynamics of the coupled system, it is possible to derive a set of "e;structural radiation"e; modes which are orthogonal with respect to the global potential energy of the coupled acoustic space and which can be sensed by structural vibration sensors. Minimisation of the amplitudes of the "e;radiation modes"e; is thus guaranteed to minimise the interior acoustic potential energy. The coupled vibro-acoustic system under investigation is modelled using Finite Element Analysis which allows systems with complex geometries to be investigated rather than limiting the analysis to simple, analytically tractable systems. Issues regarding the practical implementation of sensing the orthonormal sets of structural radiation modes are discussed. Specific examples relating to the minimisation of the total acoustic potential energy within a curved rectangular panel and a coupled cavity are given, comparing the performance offered using vibration sensing of the radiation modes on the structure with the more traditional error sensing; namely, the discrete sensing of the structural kinetic energy on the structural boundary and the acoustic potential energy in the enclosed space approximated by the mean squared pressures at several locations.
Thesis (Ph.D.)--Mechanical Engineering, 1999.
APA, Harvard, Vancouver, ISO, and other styles
39

Brink, Maarten Cornelis. "Transient finite element simulations and experiments on active control of sound transmission loss through plates." Phd thesis, 2008. http://tuprints.ulb.tu-darmstadt.de/958/1/Brink-Dissertation-20080306-neu.pdf.

Full text
Abstract:
In this thesis the sound transmission loss of a plate has been investigated. It serves as an abstract model for the noise barrier between engine and passengers in a bus. A finite element simulation model has been developed to be able to predict the plate's noise reduction effect. To increase this reduction without adding too much mass, the integration of active noise control (ANC) has been investigated. The active system contained a controller, microphones and piezoelectric actuators. The influence of this system on the plate's transmission loss has been determined for three noise types: random noise, tonal noise and sweep function. The transient character of the simulations allows the possibility of directly integrating the ANC algorithm with corresponding sensors and actuators into the simulation model. For that, all controller tasks including sample rate changes and anti-aliasing filtering are included in the simulation algorithm. Doing so, the ANC's critical adaptation phase can be investigated during the simulations. Configuration changes can be tested before the actual noise barrier is built. The ANC experiments showed very good reduction for the tonal noise and good reduction for the sweep noise. This reduction could be increased even more if the used controller would allow more channels. Due to the stochastic character the reduction of random noise was lower; here only the highest peaks could be reduced. The passive and active simulations were in reasonable agreement with the experimental results. They showed that this simulation approach allows an optimisation of the system before it is constructed and tested experimentally.
APA, Harvard, Vancouver, ISO, and other styles
40

Brink, Maarten Cornelis [Verfasser]. "Transient finite element simulations and experiments on active control of sound transmission loss through plates / vorgelegt von Maarten C. Brink." 2008. http://d-nb.info/988174421/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Vengala, Kalyan Chakravarthy. "Building a modified impedance tube for measurement of sound transmission loss and absorption coefficients of polymer cross-linked aerogel core composites." 2009. http://digital.library.okstate.edu/etd/Vengala_okstate_0664M_10589.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

ZHONG, MENG-XUN, and 鍾孟勳. "Study on the sound insulation of the openings of external walls in the buildings-- the influences of the transmission loss by varying the structural factors of the windows." Thesis, 1992. http://ndltd.ncl.edu.tw/handle/17167655718416709044.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography