Dissertations / Theses on the topic 'Sorghum'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Sorghum.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Herde, Damian. "Inheritance and mechanisms of resistance of sorghum (Sorghum bicolor) to Sorghum ergot (caused by Claviceps africana) /." [St. Lucia, Qld.], 2006. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe19680.pdf.
Full textMaulana, Frank. "Analysis of cold tolerance in sorghum [Sorghum bicolor (L.) Moench]." Thesis, Kansas State University, 2011. http://hdl.handle.net/2097/9184.
Full textDepartment of Agronomy
Tesfaye Tesso
Cold temperature stress is an important abiotic constraint to grain sorghum production in temperate regions. In the United States, low temperature in late spring and early fall has limited sorghum production to a narrow growing period. Deployment of cold tolerance traits may widen this window and hence contribute to increased production. The objectives of this study were (1) to determine the effect of early and mid-season cold temperature stress on growth, phenology and yield components of sorghum, and identify key traits that are most sensitive to cold stress at seedling and flowering stages, and (2) to identify new sources of cold tolerance for use in breeding programs. Series of controlled environment (greenhouse/growth chamber) and field experiments were carried out. Three sorghum genotypes of variable response, Shan Qui Red (tolerant), SRN39 (susceptible) and Pioneer 84G62 (unknown) were subjected to cold (15/13ºC day/night) and normal (25/23ºC day/night) temperature at seedling (Experiment I) and flowering (Experiment II) stages. The genotypes were planted in a greenhouse using a 5L polytainer pots. Each pot consisted of a single plant and each plot was represented by three pots. A split-plot design with three replications was used in both experiments with temperature regimes as main plots and genotypes as sub-plots. Three days after emergence, experiment I plants were moved to the growth chamber and subjected to the designated temperature treatments. For experiment II, the treatments were assigned at heading stage immediately before anthesis had begun. The treatments lasted 10 d in both experiments. Data were collected on seedling characteristics and leaf chlorophyll content in experiment I, days to flowering, maturity, and yield components in both experiments, and anthesis duration in experiment II. For the field experiment, 150 sorghum germplasm collections of potential cold tolerance along with tolerant and susceptible checks were evaluated for emergence and seedling traits under early planting (April 13) at soil temperature of 20.1/13.4 ºC max/min. The normal temperature treatment was applied by planting at regular season (May 26) at soil temperature of 30.0/20.4ºC max/min. Twenty-four genotypes selected based on field emergence and seedling vigor were further screened under controlled environment. Early-season stress significantly reduced leaf chlorophyll content, all seedling traits (height, vigor and dry weight), and also delayed flowering and maturity. But it had no effect on final leaf number, plant height and yield components. Genotypic response to early stress was significant for all traits with the susceptible checks having the lowest score for all seedling traits. Mid-season cold stress prolonged anthesis duration, delayed maturity and highly reduced all yield components. Several genotypes among the 150 had higher seedling vigor and emergence than the tolerant check, Shan Qui Red. In conclusion, reduced seedling vigor as a result of early stress had no effect on final yield provided that stand establishment was not compromised while mid season stress is damaging to yield. The wide genetic variation for the traits indicates the potential for improvement of cold tolerance in sorghum.
Sant, Rajnesh R. Prasad. "Development of a transformation system for sorghum (Sorghum bicolor L.)." Thesis, Queensland University of Technology, 2012. https://eprints.qut.edu.au/50977/1/Rajnesh_Sant_Thesis.pdf.
Full textYüksel, Osman Balabanlı Cahit. "Sorgum x Sudanotu (Sorghum bicolor (L.) Moench x Sorghum sudanense (Piper)Stapf) Melezinde farklı azot dozu uygulamalarının verim ve bazı kalite özelliklerine etkileri /." Isparta: SDÜ Fen Bilimleri Enstitüsü, 2006. http://tez.sdu.edu.tr/Tezler/TF00978.pdf.
Full textFranzmann, Bernard Anthony. "Resistance to sorghum midge and management of panicle pests in sorghum /." [St. Lucia, Qld.], 2004. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe18293.pdf.
Full textEmendack, Yves Yatou. "Drought performance of millet (Panicum miliaceum) and sorghum (Sorghum bicolor (L.) Moench)." Berlin dissertation.de, 2007. http://www.dissertation.de/buch.php3?buch=5025.
Full textFernholz, Mary C. "Evaluation of four sorghum hybrids through the development of sorghum flour tortillas." Thesis, Manhattan, Kan. : Kansas State University, 2008. http://hdl.handle.net/2097/729.
Full textAl-Soqeer, Abdulrahman A. "The potential of seed soaking in sorghum (Sorghum bicolor L. Moench) production." Thesis, University of Nottingham, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.408443.
Full textAGBARY, ABDUL WALLY. "HERITABILITY AND PHYSIOLOGY OF DROUGHT TOLERANCE IN SORGHUM (SORGHUM BICOLOR (L.) MOENCH)." Diss., The University of Arizona, 1985. http://hdl.handle.net/10150/187991.
Full textAyyaru, Thevar Prasanna. "Determining transpiration efficiency of eight grain sorghum lines [Sorghum bicolor (L.) Moench]." Thesis, Manhattan, Kan. : Kansas State University, 2008. http://hdl.handle.net/2097/1094.
Full textKebakile, Martin Mosinyi. "Sorghum dry-miling processes and their influence on meal and porridge quality." Pretoria [s.n.], 2008. http://upetd.up.ac.za/thesis/available/etd-01152009-165345.
Full textFrederickson, Debra E. "Ergot disease of sorghum." Thesis, Imperial College London, 1990. http://hdl.handle.net/10044/1/46301.
Full textMcGinley, Susan. "Sweet Sorghum into Ethanol." College of Agriculture and Life Sciences, University of Arizona (Tucson, AZ), 2007. http://hdl.handle.net/10150/622107.
Full textRahman, Maksudur. "Response of uncut and multicut forage sorghum to nitrogen fertilizer under different environmental conditions and water availability /." [St. Lucia, Qld.], 2004. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe18441.pdf.
Full textOdra, J. G. "Physiological investigations of drought and heat resistance in sorghum (Sorghum bicolor (L.) Moench." Thesis, University of Newcastle Upon Tyne, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.370627.
Full textKhalif, Ahmed Sheikh Hassan. "GERMINATION RESPONSES OF SORGHUM VARIETIES (SORGHUM BICOLOR L. MOENCH) TO FUNGICIDE SEED TREATMENTS." Thesis, The University of Arizona, 1985. http://hdl.handle.net/10150/275262.
Full textMahaman, Sabiou 1957. "Nitrogen requirements of grain sorghum (Sorghum bicolor (L.) Moench) under soil moisture stress." Thesis, The University of Arizona, 1990. http://hdl.handle.net/10150/277251.
Full textSiart, Sonja. "Strengthening local seed systems : options for enhancing diffusion of varietal diversity of sorghum in Southern Mali /." Weikersheim : Margraf, 2008. http://d-nb.info/988693143/04.
Full textBock, Clive. "Studies of the epidemiology, variability and control of sorghum downy mildew [Peronosclerospora sorghi (Weston & Uppal) C.G. Shaw] on sorghum and maize in Africa." Thesis, University of Reading, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.262109.
Full textAhmad, Muhammad Rashid. "Effect of sulphur fertilization on growth and chemical composition of sorghum (Sorghum Bicolor L.) and on utilization of sorghum silage fed to wethers." Diss., Virginia Tech, 1991. http://hdl.handle.net/10919/39958.
Full textPh. D.
Aydin, Selahattin. "The relationship between grain yield and waxy endosperm in Sorghum bicolor (Linn.) Moench." Diss., Texas A&M University, 2003. http://hdl.handle.net/1969.1/2256.
Full textZougmoré, Robert B. "Integrated water and nutrient management for sorghum production in semi-arid Burkina Faso /." Wageningen : Wageningen University and Research Centre, 2003. http://www.loc.gov/catdir/toc/fy0702/2006432558.html.
Full textKokwe, Misael 1960. "Growth and yield of two sorghum hybrids (Sorghum bicolor (L.) Moench) under a limited supply of soil moisture imposed at different stages of growth." Thesis, The University of Arizona, 1988. http://hdl.handle.net/10150/276797.
Full textChamba, Emmanuel Boache. "Biochemical analysis and molecular cloning of methionine-rich proteins of sorghum (Sorghum bicolor) seed." Thesis, University of Bristol, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.437276.
Full textMaulana, Frank. "Agronomic, genetic and genomic approaches for predicting heterosis in sorghum [Sorghum bicolor (L.) Moench]." Diss., Kansas State University, 2016. http://hdl.handle.net/2097/32810.
Full textDepartment of Agronomy
Tesfaye Tesso
The approach used to identify inbred lines that can produce superior hybrids is costly and time-consuming. It requires creation of all possible crosses and evaluation of the crosses to estimate combining abilities for the desired traits. Predicting heterosis or hybrid performance in any way possible may help to reduce the number of crosses to be made and evaluated. In this study, four sets of experiments were conducted to determine whether heterosis can be predicted based on inbred line performance, genetic distance between parents and genomic prediction model. The first experiment was aimed at assessing the levels of genetic diversity, population structure and linkage disequilibrium (LD) in 279 public sorghum inbred lines, based on 66,265 SNPs generated using the genotyping-by-sequencing (GBS) platform. The inbred lines were developed at different times over the last two decades and harbor robust diversity in pedigree and agronomic characteristics. Some of the inbreds are resistant to Acetolactate synthase (ALS) and Acetyl co-enzyme-A carboxylase (ACC) inhibitor herbicides. The mean polymorphic information content (PIC) and gene diversity across the entire inbreds were 0.35 and 0.46, respectively with non-herbicide resistant inbreds harboring more diversity than the herbicide resistant ones. The population structure analysis clustered the inbred lines into three major subgroups according to pedigree and fertility-reaction with the maintainer lines (B-lines) distinctly forming a separate cluster. Analysis of molecular variance (AMOVA) revealed more variation within subgroups than among subgroups. Substantial linkage disequilibrium (LD) was detected between the markers in the population with marked variation between chromosomes. This information may facilitate the use of the inbreds in sorghum breeding programs and provide perspectives for optimizing marker density for gene mapping and marker-assisted breeding. The second experiment, based on 102 F1 hybrids developed by intercrossing closely and distantly related inbreds, was conducted to investigate the relationship of genetic distance between parents with hybrid vigor or heterosis. The F1 hybrids alongside their parents were evaluated at two environments in a randomized complete block design with three replications. The results show that correlations of genetic distance between parents with hybrid performance and heterosis were variable and dependent on the trait. Though most were statistically non-significant and not strong to be used as predictor for heterosis, the results tend to show that certain level of genetic distance between parents is needed to capture maximum heterosis and hybrid performance. The objective of the third research study was to determine whether traits measured on parents can be used to predict hybrid performance in sorghum and to assess the combining ability of selected inbreds. Forty-six parental inbred lines and 75 F1 hybrids generated from intercrossing the inbreds were evaluated in four environments in a randomized complete block design with three replications. The average performance of the parents (mid-parent) was significantly correlated with hybrid performance for thousand kernel weight, days to flowering and plant height. Significant general (GCA) and specific (SCA) combining abilities were observed for most traits, with highly significant GCA effects observed for most traits as compared to SCA indicating that additive genetic effects are more important in affecting the inheritance of the traits measured. Results show that studying parental inbred line performance could generate important information for predicting hybrid performance in sorghum. The fourth experiment was aimed at assessing the efficacy of genomic prediction of hybrid performance in sorghum. Genomic prediction was performed with five-fold cross-validation procedure on 204 F1 hybrids developed using 102 inbred lines. A total of 66,265 SNP markers generated using genotyping-by-sequencing were used in this study. Results showed that increasing training population size increased prediction accuracies for all traits with the effect being different for different traits. Also, considering additive effects alone versus additive and dominance effects in the model showed similar trend of prediction accuracy but the full model (considering both additive and dominance effects of the markers) provided better prediction at least for some of the traits. The results suggest that genomic prediction could become an effective tool for predicting the performance of untested sorghum hybrids thus adding efficiency to hybrid selection.
Oliveira, Viviane Pinho de. "Caracteres fisiolÃgicos e bioquÃmicos de Sorghum bicolor E Sorghum sudanense sob condiÃÃes de salinidade." Universidade Federal do CearÃ, 2011. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=8865.
Full textEste trabalho teve por finalidade avaliar algumas variÃveis fisiolÃgicas e bioquÃmicas de duas espÃcies de sorgo forrageiro submetidas a diferentes condiÃÃes de cultivo e de salinidade. Para isso, foram montados dois experimentos. No primeiro deles estudou-se tais variÃveis em Sorghum bicolor e Sorghum sudanense, em funÃÃo de diferentes nÃveis de estresse salino, enquanto no segundo, as variÃveis foram estudadas em duas fases distintas de desenvolvimento das duas espÃcies de sorgo, visando determinar em qual delas essas espÃcies sÃo mais resistentes aos efeitos deletÃrios da salinidade. No primeiro experimento, os tratamentos foram dispostos em esquema fatorial 2 à 5, composto por duas espÃcies (S. bicolor e S. sudanense) e cinco tratamentos (NaCl a 0, 25, 50, 75 e 100 mM). Nesse experimento, os parÃmetros de trocas gasosas foram pouco afetados pela salinidade, em ambas as espÃcies. O crescimento das plantas de ambas as espÃcies reduziu à medida que a salinidade aumentou. O potencial osmÃtico (s) foliar foi fortemente reduzido pela salinidade nessas plantas, a qual aumentou significativamente a concentraÃÃo de solutos orgÃnicos nas duas espÃcies de sorgo. As concentraÃÃes de Na+ e Cl- aumentaram com a salinidade em ambas as espÃcies. S. bicolor e S. sudanense mantiveram o teor relativo de Ãgua sob condiÃÃes salinas igual ao do controle. Nas espÃcies de sorgo estudadas, os carboidratos solÃveis e os Ãons K+ e Cl- foram os que mais contribuÃram para o ajustamento osmÃtico das plantas. Nas folhas de S. bicolor, houve um aumento na atividade das peroxidases do ascorbato (APX) e do guaiacol (GPX) e uma reduÃÃo na atividade da catalase (CAT), enquanto a dismutase do superÃxido (SOD) nÃo foi afetada. Em S. sudanense, à medida que foram elevadas as doses de NaCl, observou-se um aumento na atividade da GPX e da SOD. Nas raÃzes, apenas a SOD apresentou aumento em atividade no S. bicolor. A atividade ribonucleÃsica nas folhas de ambas as espÃcies aumentou com as doses crescentes de NaCl, enquanto que nas raÃzes, ela foi reduzida à medida que o estresse salino intensificou-se. No segundo experimento, os tratamentos foram arranjados em esquema fatorial 2 à 3 à 2, composto por duas espÃcies (S. bicolor e S. sudanense), trÃs concentraÃÃes de sais na Ãgua de irrigaÃÃo (condutividades elÃtricas de 0,0; 4,0 e 8,0 dS m-1) e dois perÃodos de aplicaÃÃo do estresse salino Ãs plantas [desde a semeadura atà 25 dias depois (Fase I) e do 25 ao 50 dia apÃs a semeadura (Fase II)], com cinco repetiÃÃes. As principais alteraÃÃes nas trocas gasosas ocorreram na Fase II do desenvolvimento. O estresse salino reduziu o crescimento das plantas de sorgo em ambas as fases de desenvolvimento, porÃm essa reduÃÃo foi mais acentuada na Fase I. Os teores dos solutos orgÃnicos variaram em funÃÃo das fases de desenvolvimento, da espÃcie e da salinidade. Na Fase I, em ambas as espÃcies de sorgo, houve acrÃscimos nos teores de Na+ e K+ e reduÃÃo nos de Cl- pela salinidade, enquanto que, na Fase II do desenvolvimento, os teores de Na+ e K+ foram reduzidos e os de Cl-, aumentados, tanto em S. bicolor como em S. sudanense. Na Fase I do desenvolvimento, apenas a SOD, em S. bicolor, e a CAT, em S. sudanense, mostraram incrementos de atividade em resposta ao estresse salino. Jà na Fase II, nenhum aumento na atividade do sistema enzimÃtico antioxidativo foi observado em funÃÃo da salinidade, nas duas espÃcies estudadas. Na Fase I, a atividade da RNase, em ambas as espÃcies, foi reduzida com a salinidade, enquanto na Fase II do desenvolvimento, ela foi aumentada. O crescimento das plantas de S. sudanense foi ligeiramente mais afetado que o de S. bicolor. As espÃcies de sorgo forrageiro estudadas neste trabalho foram capazes de reduzir o s foliar em concentraÃÃes elevadas de NaCl, o que pode ter contribuÃdo para um melhor ajustamento osmÃtico. AlÃm disso, nas condiÃÃes empregadas no primeiro experimento, S. bicolor pareceu ter um sistema antioxidante mais eficaz contra os efeitos da salinidade do que S. sudanense. Em relaÃÃo ao segundo experimento, o crescimento das plantas de sorgo forrageiro foi mais afetado quando o estresse salino foi aplicado em estÃdios iniciais do desenvolvimento. O estresse oxidativo causado pela salinidade parece nÃo ter sido suficiente para estimular o sistema de defesa enzimÃtico antioxidativo na Fase II do desenvolvimento, em ambas as espÃcies. AlÃm disso, o aumento na atividade RNÃsica pode indicar o papel desta enzima na proteÃÃo contra os efeitos deletÃrios da salinidade nessas espÃcies de sorgo. De modo geral, nÃo houve diferenÃas marcantes na tolerÃncia das plantas de S. bicolor e S. sudanense à salinidade.
This study aimed to evaluate some physiological and biochemical variables of two species of sorghum subjected to different growing conditions and salinity. For this, two experiments were set up. In the first study, the variables in Sorghum bicolor and Sorghum sudanense were evaluated according different levels of salinity stress. In the second, the variables were studied in two distinct phases of development of two species of sorghum, to determine which one of these species are more resistant to the deleterious effects of salinity. In the first experiment, treatments were arranged in a 5 Ã 2 factorial, consisting of two species (S. bicolor and S. sudanense) and five treatments (NaCl at 0, 25, 50, 75 and 100 mM). In this experiment, the gas exchange parameters were little affected by salinity in both species. Plant growth of both species decreased as salinity increased. The osmotic potential (ψs) leaves was strongly reduced by salinity in these plants, which significantly increased the concentration of organic solutes in the two species of sorghum. The concentrations of Na+ and Cl- increased with salinity in both species. S. bicolor and S. sudanense maintained relative water content under saline conditions the same as the control. In sorghum species studied, the soluble carbohydrates and the ions K+ and Cl- were the main contributors to the osmotic adjustment of plants. In leaves of S. bicolor, there was an increase in activity of ascorbate peroxidase (APX) and guaiacol (GPX) and a reduction in activity of catalase (CAT), while superoxide dismutase (SOD) was not affected. In S. sudanense, the activity of GPX and SOD increased with increasing salinity. In roots, just SOD activity in S. bicolor were increased with salt stress. Ribonuclease activity in the leaves of both species increased with increasing doses of NaCl, whereas in roots it was reduced as the salt stress intensified. In the second experiment, treatments were arranged in a factorial 2 Ã 3 Ã 2, composed of two species (S. bicolor and S. sudanense), three concentrations of salts in irrigation water (electrical conductivities of 0.0, 4.0 and 8.0 dS m-1) and two periods of application of salt stress to plants [from sowing until 25 days later (Phase I) and from 25th to 50th day after sowing (Phase II)], with five repetitions. The main changes in gas exchange occurred in Phase II development. The salt stress reduced plant growth of sorghum in both phases of development, but this reduction was more pronounced in Phase I. The levels of organic solutes varied according to the phases of development, species and salinity. In Phase I, in both species of sorghum, there were increases in levels of Na+ and K+ and reduced Cl- by salinity, whereas in Phase II development, the levels of Na+ and K+ were reduced and Cl- extended, both in S. bicolor as in S. sudanense. In Phase I of development, only SOD in S. bicolor, and CAT in S. sudanense showed activity increases in response to salt stress. In the Phase II, no increase in the activity of antioxidant enzyme system was observed as a function of salinity in both species. In Phase I, the activity of RNase in both species was reduced by salinity, while in Phase II development, it was expanded. Plant growth of S. sudanense was slightly more affected than the S. bicolor. Sorghum species studied in this work were able to reduce the leaf ψs high concentrations of NaCl, which may have contributed to a better osmotic adjustment. In addition, under the conditions employed in the first experiment, S. bicolor appeared to have a more effective antioxidant system against the effects of salinity than S. sudanense. For the second experiment, the growth of sorghum plants was more affected when the salt stress was applied in the early stage of development. The oxidative stress caused by salinity seems to have been sufficient to stimulate the enzymatic antioxidant defense system in Phase II development in both species. Furthermore, increased activity RNase may indicate the role of this enzyme in protecting against the deleterious effects of salinity in these species of sorghum. Overall, there were no marked differences in plant tolerance between S. bicolor and S. sudanense under salinity.
Pang, Bairen. "Effect of irrigation on grain sorghum ethanol yield and sorghum mutants on biomass composition." Thesis, Kansas State University, 2017. http://hdl.handle.net/2097/38194.
Full textDepartment of Biological & Agricultural Engineering
Donghai Wang
Bioprocessing is widely involved in our daily life and significantly relative to the general public because bio-products are widely used in eating, clothing, and living as well as transportation. Due to the public concern of the environmental deterioration, limited fossil fuel resources, and energy price volatility, biofuel as a clean, safe and sustainable energy needs to be developed in response to this growing concern. Sorghum, an important dryland crop, represents a renewable resource currently grown on 8 million acres throughout the United States. Due to climate variability and the continuous decline of water resources, utilization of dryland to grow sorghum and forage sorghum is critically important in order to ensure available energy resources and sustainable economic development. The objectives of this research were 1) to study the impact of deficit irrigation strategies on sorghum grain attributes and bioethanol production, and 2) to evaluate the potential fermentable sugar yield of pedigreed sorghum mutants. Results showed that average kernel weight and test weight of grain sorghum increased as irrigation capacity increased, whereas kernel hardness index decreased as irrigation capacity increased. Starch content increased as irrigation level increased and protein contents decreased as irrigation level increased. Irrigation also had a significant effect on starch properties and bioethanol yield. Sorghum mutants had a significant effect on chemical composition and physical properties such as glucan content, glucan mass yield, ash content, and high heating value, and also had a significant effect on fermentable sugars yield and enzymatic conversion efficiency.
Hlophe, Hanson Boy. "Sweet sorghum (Sorghum bicolor (L.) Moench) response to supplemental irrigation in different growth stages." Diss., University of Pretoria, 2014. http://hdl.handle.net/2263/43352.
Full textDissertation (MScAgric)--University of Pretoria, 2014.
lk2014
Plant Production and Soil Science
MScAgric
Unrestricted
Oliveira, Viviane Pinho de. "Caracteres fisiológicos e bioquímicos de Sorghum bicolor E Sorghum sudanense sob condições de salinidade." reponame:Repositório Institucional da UFC, 2011. http://www.repositorio.ufc.br/handle/riufc/18811.
Full textSubmitted by Elineudson Ribeiro (elineudsonr@gmail.com) on 2016-07-28T14:27:37Z No. of bitstreams: 1 2011_tese_vpoliveira.pdf: 1375579 bytes, checksum: 0f56113f4c4ae98e3935348044793fbf (MD5)
Approved for entry into archive by José Jairo Viana de Sousa (jairo@ufc.br) on 2016-08-02T14:44:09Z (GMT) No. of bitstreams: 1 2011_tese_vpoliveira.pdf: 1375579 bytes, checksum: 0f56113f4c4ae98e3935348044793fbf (MD5)
Made available in DSpace on 2016-08-02T14:44:09Z (GMT). No. of bitstreams: 1 2011_tese_vpoliveira.pdf: 1375579 bytes, checksum: 0f56113f4c4ae98e3935348044793fbf (MD5) Previous issue date: 2011
This study aimed to evaluate some physiological and biochemical variables of two species of sorghum subjected to different growing conditions and salinity. For this, two experiments were set up. In the first study, the variables in Sorghum bicolor and Sorghum sudanense were evaluated according different levels of salinity stress. In the second, the variables were studied in two distinct phases of development of two species of sorghum, to determine which one of these species are more resistant to the deleterious effects of salinity. In the first experiment, treatments were arranged in a 5 × 2 factorial, consisting of two species (S. bicolor and S. sudanense) and five treatments (NaCl at 0, 25, 50, 75 and 100 mM). In this experiment, the gas exchange parameters were little affected by salinity in both species. Plant growth of both species decreased as salinity increased. The osmotic potential (ψs) leaves was strongly reduced by salinity in these plants, which significantly increased the concentration of organic solutes in the two species of sorghum. The concentrations of Na+ and Cl- increased with salinity in both species. S. bicolor and S. sudanense maintained relative water content under saline conditions the same as the control. In sorghum species studied, the soluble carbohydrates and the ions K+ and Cl- were the main contributors to the osmotic adjustment of plants. In leaves of S. bicolor, there was an increase in activity of ascorbate peroxidase (APX) and guaiacol (GPX) and a reduction in activity of catalase (CAT), while superoxide dismutase (SOD) was not affected. In S. sudanense, the activity of GPX and SOD increased with increasing salinity. In roots, just SOD activity in S. bicolor were increased with salt stress. Ribonuclease activity in the leaves of both species increased with increasing doses of NaCl, whereas in roots it was reduced as the salt stress intensified. In the second experiment, treatments were arranged in a factorial 2 × 3 × 2, composed of two species (S. bicolor and S. sudanense), three concentrations of salts in irrigation water (electrical conductivities of 0.0, 4.0 and 8.0 dS m-1) and two periods of application of salt stress to plants [from sowing until 25 days later (Phase I) and from 25th to 50th day after sowing (Phase II)], with five repetitions. The main changes in gas exchange occurred in Phase II development. The salt stress reduced plant growth of sorghum in both phases of development, but this reduction was more pronounced in Phase I. The levels of organic solutes varied according to the phases of development, species and salinity. In Phase I, in both species of sorghum, there were increases in levels of Na+ and K+ and reduced Cl- by salinity, whereas in Phase II development, the levels of Na+ and K+ were reduced and Cl- extended, both in S. bicolor as in S. sudanense. In Phase I of development, only SOD in S. bicolor, and CAT in S. sudanense showed activity increases in response to salt stress. In the Phase II, no increase in the activity of antioxidant enzyme system was observed as a function of salinity in both species. In Phase I, the activity of RNase in both species was reduced by salinity, while in Phase II development, it was expanded. Plant growth of S. sudanense was slightly more affected than the S. bicolor. Sorghum species studied in this work were able to reduce the leaf ψs high concentrations of NaCl, which may have contributed to a better osmotic adjustment. In addition, under the conditions employed in the first experiment, S. bicolor appeared to have a more effective antioxidant system against the effects of salinity than S. sudanense. For the second experiment, the growth of sorghum plants was more affected when the salt stress was applied in the early stage of development. The oxidative stress caused by salinity seems to have been sufficient to stimulate the enzymatic antioxidant defense system in Phase II development in both species. Furthermore, increased activity RNase may indicate the role of this enzyme in protecting against the deleterious effects of salinity in these species of sorghum. Overall, there were no marked differences in plant tolerance between S. bicolor and S. sudanense under salinity.
Este trabalho teve por finalidade avaliar algumas variáveis fisiológicas e bioquímicas de duas espécies de sorgo forrageiro submetidas a diferentes condições de cultivo e de salinidade. Para isso, foram montados dois experimentos. No primeiro deles estudou-se tais variáveis em Sorghum bicolor e Sorghum sudanense, em função de diferentes níveis de estresse salino, enquanto no segundo, as variáveis foram estudadas em duas fases distintas de desenvolvimento das duas espécies de sorgo, visando determinar em qual delas essas espécies são mais resistentes aos efeitos deletérios da salinidade. No primeiro experimento, os tratamentos foram dispostos em esquema fatorial 2 × 5, composto por duas espécies (S. bicolor e S. sudanense) e cinco tratamentos (NaCl a 0, 25, 50, 75 e 100 mM). Nesse experimento, os parâmetros de trocas gasosas foram pouco afetados pela salinidade, em ambas as espécies. O crescimento das plantas de ambas as espécies reduziu à medida que a salinidade aumentou. O potencial osmótico (s) foliar foi fortemente reduzido pela salinidade nessas plantas, a qual aumentou significativamente a concentração de solutos orgânicos nas duas espécies de sorgo. As concentrações de Na+ e Cl- aumentaram com a salinidade em ambas as espécies. S. bicolor e S. sudanense mantiveram o teor relativo de água sob condições salinas igual ao do controle. Nas espécies de sorgo estudadas, os carboidratos solúveis e os íons K+ e Cl- foram os que mais contribuíram para o ajustamento osmótico das plantas. Nas folhas de S. bicolor, houve um aumento na atividade das peroxidases do ascorbato (APX) e do guaiacol (GPX) e uma redução na atividade da catalase (CAT), enquanto a dismutase do superóxido (SOD) não foi afetada. Em S. sudanense, à medida que foram elevadas as doses de NaCl, observou-se um aumento na atividade da GPX e da SOD. Nas raízes, apenas a SOD apresentou aumento em atividade no S. bicolor. A atividade ribonucleásica nas folhas de ambas as espécies aumentou com as doses crescentes de NaCl, enquanto que nas raízes, ela foi reduzida à medida que o estresse salino intensificou-se. No segundo experimento, os tratamentos foram arranjados em esquema fatorial 2 × 3 × 2, composto por duas espécies (S. bicolor e S. sudanense), três concentrações de sais na água de irrigação (condutividades elétricas de 0,0; 4,0 e 8,0 dS m-1) e dois períodos de aplicação do estresse salino às plantas [desde a semeadura até 25 dias depois (Fase I) e do 25º ao 50º dia após a semeadura (Fase II)], com cinco repetições. As principais alterações nas trocas gasosas ocorreram na Fase II do desenvolvimento. O estresse salino reduziu o crescimento das plantas de sorgo em ambas as fases de desenvolvimento, porém essa redução foi mais acentuada na Fase I. Os teores dos solutos orgânicos variaram em função das fases de desenvolvimento, da espécie e da salinidade. Na Fase I, em ambas as espécies de sorgo, houve acréscimos nos teores de Na+ e K+ e redução nos de Cl- pela salinidade, enquanto que, na Fase II do desenvolvimento, os teores de Na+ e K+ foram reduzidos e os de Cl-, aumentados, tanto em S. bicolor como em S. sudanense. Na Fase I do desenvolvimento, apenas a SOD, em S. bicolor, e a CAT, em S. sudanense, mostraram incrementos de atividade em resposta ao estresse salino. Já na Fase II, nenhum aumento na atividade do sistema enzimático antioxidativo foi observado em função da salinidade, nas duas espécies estudadas. Na Fase I, a atividade da RNase, em ambas as espécies, foi reduzida com a salinidade, enquanto na Fase II do desenvolvimento, ela foi aumentada. O crescimento das plantas de S. sudanense foi ligeiramente mais afetado que o de S. bicolor. As espécies de sorgo forrageiro estudadas neste trabalho foram capazes de reduzir o s foliar em concentrações elevadas de NaCl, o que pode ter contribuído para um melhor ajustamento osmótico. Além disso, nas condições empregadas no primeiro experimento, S. bicolor pareceu ter um sistema antioxidante mais eficaz contra os efeitos da salinidade do que S. sudanense. Em relação ao segundo experimento, o crescimento das plantas de sorgo forrageiro foi mais afetado quando o estresse salino foi aplicado em estádios iniciais do desenvolvimento. O estresse oxidativo causado pela salinidade parece não ter sido suficiente para estimular o sistema de defesa enzimático antioxidativo na Fase II do desenvolvimento, em ambas as espécies. Além disso, o aumento na atividade RNásica pode indicar o papel desta enzima na proteção contra os efeitos deletérios da salinidade nessas espécies de sorgo. De modo geral, não houve diferenças marcantes na tolerância das plantas de S. bicolor e S. sudanense à salinidade.
Holmes, Calum P. "An optimised sorghum brewing process." Thesis, University of Nottingham, 2015. http://eprints.nottingham.ac.uk/30603/.
Full textBailey-Serres, Julia Nina. "Mitochondrial genome rearrangements in sorghum." Thesis, University of Edinburgh, 1986. http://hdl.handle.net/1842/10700.
Full textKershner, Kellan Scott. "Herbicide resistance in grain sorghum." Diss., Kansas State University, 2010. http://hdl.handle.net/2097/13069.
Full textDepartment of Agronomy
Kassim Al-Khatib
Mitchell R. Tuinstra
Sorghum acreage is declining throughout the United States because management options and yield have not maintained pace with maize improvements. The most extreme difference has been the absence of herbicide technology development for sorghum over the past twenty years. The objectives of this study were to evaluate the level of resistance, type of inheritance, and causal mutation of wild sorghums that are resistant to either acetyl-coenzyme A carboxylase (ACCase)-inhibiting herbicides or acetohydroxyacid synthase (AHAS)-inhibiting herbicides. ACCase-inhibiting herbicides used in this study were aryloxyphenoxypropionate (APP) family members fluazifop-P and quizalofop-P along with cyclohexanedione (CHD) family members clethodim and sethoxydim. The level of resistance was very high for APP herbicides but low to nonexistent to CHD herbicides. With genetic resistance to APP herbicides, the resistance factors, the ratio of resistance to susceptible, were greater than 54 to 64 for homozygous individuals and greater than 9 to 20 for heterozygous individuals. Resistance to CHD herbicides was very low with resistance factors ranging from one to about five. Genetic segregation studies indicate a single gene is the cause of resistance to APP herbicides. Sequencing identified a single mutation that results in cysteine replacing tryptophan (Trp-2027-Cys). Trp-2027-Cys has previously been reported to provide resistance to APP but not CHD herbicides. The other wild sorghum evaluated in this study was resistant to AHAS-inhibiting herbicides including imidazolinone (IM) family member, imazapyr, and sulfonylurea (SU) family member, nicosulfuron. Resistance factors in this genotype were very high, greater than 770 for the IM herbicide and greater than 500 for the SU herbicide, for both herbicide chemical families. Genetic segregation studies demonstrate that resistance was controlled by one major locus and two modifier loci. DNA sequencing of the AHAS gene identified two mutations, Val-560-Ile and Trp-574-Leu. Val-560-Ile is of unknown importance, but valine and isoleucine are similar and residue 560 is not conserved. Trp-574 is a conserved residue and Leu-574 is a known mutation that provides strong cross resistance to IM and SU herbicides. The results of these studies suggest that these sources of APP, SU, and IM resistance may provide useful herbicide resistance traits for use in sorghum.
Ottman, Michael J. "Growing Grain Sorghum in Arizona." College of Agriculture, University of Arizona (Tucson, AZ), 2016. http://hdl.handle.net/10150/625542.
Full textProduction practices for grain sorghum are discussed including hybrid selection, planting date, seeding rate, row configuration, irrigation, fertilization, pest control, and harvesting. Grain sorghum (milo) is a warm season, annual grain crop. It is more resistant to salt, drought, and heat stress than most other crops. Nevertheless, highest yields are obtained when stresses are minimized. Revised 10/2016. Originally published 06/2009.
Ottman, Michael, and Mary Olsen. "Growing Grain Sorghum in Arizona." College of Agriculture and Life Sciences, University of Arizona (Tucson, AZ), 2009. http://hdl.handle.net/10150/147023.
Full textNeri-Luna, Cecilia. "The effect of arbuscular mycorrhizal fungi on water relations of sorghum (Sorghum bicolor L. cv.Tegemeo)." Thesis, University of Aberdeen, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.424983.
Full textMandumbu, Ronald. "The stability of tolerance of Sorghum spp to Striga asiatica L. Kuntze under diverse conditions and existence of pre-attachment resistance." Thesis, University of Fort Hare, 2017. http://hdl.handle.net/10353/2788.
Full textBekele, Wubishet Abebe [Verfasser]. "Genomics of abiotic stress responses and adaptation in sorghum (Sorghum bicolor (L.) Moench) / Wubishet Abebe Bekele." Gießen : Universitätsbibliothek, 2015. http://d-nb.info/1068921684/34.
Full textMahmood, Athar [Verfasser]. "Performance of Sorghum (Sorghum bicolor L. Moench) as an energy crop for biogas production / Athar Mahmood." Gießen : Universitätsbibliothek, 2012. http://d-nb.info/1063953839/34.
Full textLaidlaw, Hunter Kenneth Charles. "Investigating the sorghum transformation system and transgenic disease resistance /." [St. Lucia, Qld.], 2005. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe18574.pdf.
Full textRaditapole, Moorosi Vernet 1950. "Evaluation of selected grain sorghum hybrids (Sorghum bicolor (L.) Moench) and their three successive segregating generations in three different environments." Thesis, The University of Arizona, 1988. http://hdl.handle.net/10150/276880.
Full textPlews, Ian Kenneth. "Sorghum bioenergy genotypes, genes and pathways." [College Station, Tex. : Texas A&M University, 2007. http://hdl.handle.net/1969.1/ETD-TAMU-2432.
Full textKuhlman, Leslie Charles. "Sorghum introgression breeding utilizing S. macrospermum." [College Station, Tex. : Texas A&M University, 2007. http://hdl.handle.net/1969.1/ETD-TAMU-1598.
Full textGoff, Ben Michael. "Double-cropping sorghum for biomass production." [Ames, Iowa : Iowa State University], 2010. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:1476295.
Full textWeitzel, T. Timothy. "Optimization of sweet sorghum processing parameters." Thesis, Virginia Polytechnic Institute and State University, 1987. http://hdl.handle.net/10919/80180.
Full textMaster of Science
Ari, Akin Pervin. "Chemically leavened gluten free sorghum bread." Thesis, Kansas State University, 2017. http://hdl.handle.net/2097/35740.
Full textDepartment of Grain Science and Industry
Rebecca A. Regan
Sorghum is unique in terms of its resistance to drought and heat and is grown and consumed around the globe. Moreover, sorghum does not contain gluten and has potential in the gluten-free market. A blend of non-wheat flour, starch and hydrocolloid typically provide the structure of gluten-free products. Most research on sorghum bread uses a yeast leavened process, HPMC gum, rice flour and corn, potato, or tapioca starch. Little is known about the functionality or interactions of different starches and hydrocolloids in sorghum batter. The objectives of this study were to examine starch-hydrocolloid interaction in chemically leavened gluten free sorghum bread; to evaluate the effects of different ingredients on gluten free bread quality made with sorghum flour: starch (tapioca starch, rice flour and potato starch): hydrocolloid (HPMC, locust bean gum and xanthan) and to develop a chemically leavened gluten free sorghum bread method. Bread was baked as pup loaves. Volume index was measured using the AACCI Method 10-91.01 template, crumb grain was evaluated using the C-Cell Imaging System and texture was determined with the TA.XT Plus Texture Analyzer. The base formula was commercial sorghum flour, water, starch, hydrocolloid, sugar, salt, shortening and double acting baking powder. Sorghum flour: starch (tapioca starch, rice flour and potato starch) ratios of 70:30, 80:20 and 90:10 were tested. Loaves containing all levels of rice flour had the same volume index (~165) as 100% sorghum flour (168) while all levels of tapioca starch and potato starch produced significantly smaller loaves (~150). The ratio of 90% sorghum flour and 10% starch (tapioca starch, rice flour and potato starch) was selected. The type and level of hydrocolloid significantly impacted loaf volume, grain and texture. Starch-hydrocolloid combinations which produced the best loaves were tapioca starch + 3% HPMC, rice flour + 3% xanthan and potato starch + 4% xanthan. Following initial optimization experiment, egg ingredients, fat, baking powder and water were added and evaluated individually to develop an optimized formulation. In general, addition of egg ingredients, shortening and oil did not improve the overall quality of sorghum based bread and were not added to the formula. However, emulsified shortening was effective. The best level of emulsified shortening was determined to be 3% for the breads with sorghum flour: tapioca starch or sorghum flour: potato starch and 5% for bread made with sorghum flour: rice flour. The best baking powder (SALP and MCP) levels were 5, 8 and 5% for sorghum flour: tapioca starch bread, sorghum flour: rice flour bread and sorghum flour: potato starch bread, respectively. Optimum levels of water for sorghum flour: tapioca starch bread, sorghum flour: rice flour bread, and sorghum flour: potato starch bread were 120, 110 and 120%, respectively. This research showed that different starch sources have different interactions with other ingredients in chemically leavened sorghum based gluten free bread.
Puppala, Vamshidhar. "Extruded foods from white grain sorghum /." Search for this dissertation online, 2003. http://wwwlib.umi.com/cr/ksu/main.
Full textPerez, Gonzalez Alejandro Jose. "Specialty sorghums in direct-expansion extrusion." Texas A&M University, 2005. http://hdl.handle.net/1969.1/4872.
Full textMpofu, Leo Thokoza. "Evaluation of the heterotic potential of sorghum [Sorghum bicolor (L.) Moench] adapted to the southern Africa region." Thesis, Texas A&M University, 2005. http://hdl.handle.net/1969.1/4891.
Full textKatile, Seriba Ousmane. "Expression of defense genes in sorghum grain mold and tagging and mapping a sorghum anthracnose resistance gene." Texas A&M University, 2007. http://hdl.handle.net/1969.1/85878.
Full textYilmaz, Kutay. "Seeding Date and Genotype Maturity Interactions on Grain Sorghum [Sorghum bicolor –(L.) Moench] Performance In North Dakota." Thesis, North Dakota State University, 2020. https://hdl.handle.net/10365/32043.
Full text