Dissertations / Theses on the topic 'Somatosensory plasticity'

To see the other types of publications on this topic, follow the link: Somatosensory plasticity.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 31 dissertations / theses for your research on the topic 'Somatosensory plasticity.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Bender, Vanessa Anne. "Cannabinoid-dependent plasticity in rodent somatosensory cortex." Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2006. http://wwwlib.umi.com/cr/ucsd/fullcit?p3221443.

Full text
Abstract:
Thesis (Ph. D.)--University of California, San Diego, 2006.
Title from first page of PDF file (viewed September 18, 2006). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references.
APA, Harvard, Vancouver, ISO, and other styles
2

Kiss, Zelma H. T. "Plasticity in the adult human somatosensory thalamus." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp02/NQ35206.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Dolan, Sharron. "Plasticity in the adult rat somatosensory system following sensory deprivation." Thesis, University of Stirling, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.244606.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Al-Shahry, Fayz. "Changes in the somatosensory evoked potentials during recovery from stroke." Thesis, University of Southampton, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.241792.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Macchione, Silvia. "Topography of the perceptual improvement induced by repetitive somatosensory stimulation." Thesis, Lyon, 2018. http://www.theses.fr/2018LYSE1302.

Full text
Abstract:
Le toucher joue un rôle prépondérant dans notre vie quotidienne. Il est connu depuis longtemps que l’acuité tactile peut être améliorée par effet de la plasticité cérébrale, suite à entraînement. Une autre forme d’amélioration, indépendante de l’entraînement, peut être obtenue grâce à une simple stimulation mécanique d’une petite région de la peau, appelée stimulation somatosensorielle répétée (RSS). Avant de commencer ce travail de thèse, il avait été montré que la RSS pouvait améliorer l’acuité tactile localement (sur le doigt stimulé) et aussi à distance (sur le visage) mais la topographie de l’amélioration tactile, notamment sur les autres doigts, demeurait inconnue. Également, l’hypothèse d’appliquer la RSS sur une autre région du corps (notamment le visage) et vérifier ses effets à la fois locaux sur le visage, ainsi qu’à distance sur les doigts, n’avait jamais été investiguée. Le but de mon travail de thèse constituait donc à investiguer la topographie de l’amélioration tactile induite par RSS au sein d’une même et entre plusieurs régions du corps. Une première étude a révélé que la RSS d’un doigt est capable d’induire une amélioration tactile locale ainsi qu’à distance entre les deux mains. La deuxième étude a prouvé que la RSS d’une région du visage est capable d’induire une amélioration tactile locale ainsi qu’une amélioration tactile à distance sur la main. De plus, l’effet d’amélioration tactile entre la main et le visage est bidirectionnel. Dans leur ensemble, les données expérimentales constituent une contribution significative à l'étude de la topographie des changements tactiles induits par la RSS
Touch plays a fundamental role in our daily activities. It has long been known that, thanks to brain plasticity, tactile acuity can be improved following training. Another form of tactile improvement, independent from training, can be achieved through a simple mechanical stimulation of a small region of the skin, called repetitive somatosensory stimulation (RSS). RSS of a finger was well known to improve tactile acuity locally (on the stimulated finger) and also remotely (on the face). However, topography of tactile improvement, especially on other unstimulated fingers, was unknown. In addition, the hypothesis of applying the RSS to another body region (notably the face) and investigate the possible effects, both in face and fingers, was not explored. The aim of this work of thesis was therefore investigating the topography of the RSS-induced tactile improvement within and between body regions. One first study revealed that RSS of a finger induces tactile improvement both locally and remotely in fingers. The second study showed that, when applied on the face, RSS is able to induce tactile improvement both locally, on the face, and remotely, in the hand, demonstrating that the tactile improvement between the hand and the face is bidirectional. Overall, the experimental data I provide constitute a significant contribution to the study of the topography of RSS-induced tactile changes
APA, Harvard, Vancouver, ISO, and other styles
6

Michel, Niklas [Verfasser]. "Touch comes of Age - Maturational Plasticity in Somatosensory Mechanosensation / Niklas Michel." Göttingen : Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2020. http://d-nb.info/1235756831/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kolasinski, James. "Assessing sensorimotor plasticity with multimodal magnetic resonance imaging." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:9fb9008b-e3e9-4883-8a08-d13a223d3ee5.

Full text
Abstract:
The sensorimotor network receives a rich variety of somesthetic afferents and outputs considerable motor efferents, both of which drive experience-dependent plasticity in the system. It remains unclear to what extent subtle changes in somaesthesis and motor function extrinsic to the brain drive plasticity in the functional organisation and anatomy of the sensorimotor network. This thesis contains a series of multimodal MRI experiments to investigate how altered-use and disuse can induce plastic changes in the sensorimotor network of the human brain. In Chapter 3, a method of mapping digit somatotopy in primary somatosensory cortex at the single-subject level using 7.0 tesla fMRI was developed and applied for a study of healthy participants. Using a phase-encoding paradigm, digit representations were accurately mapped in under 10 minutes. These maps were reproducible over time and comparable to a standard block design. In Chapter 4, a further fMRI study assessed the potential for short-term reorganisation of digit representations in primary somatosensory cortex following a manipulation whereby the right index and right middle fingers were glued together for 24 hours. There was a marked shift in the cortical overlap of adjacent digits after the glued manipulation, not seen across an equivalent control period, providing strong evidence for short-term remapping of primary somatosensory cortex. In Chapter 5, a patient study investigated plasticity associated with chronic unilateral disuse of the upper limb. A cross-sectional comparison with control participants showed reduced grey matter density in the posterior right temporoparietal junction, and increased radial diffusivity in the white matter of the right superior longitudinal fasciculus, consistent with change in the right ventral attention network. A complementary longitudinal study in Chapter 6 investigated structural plasticity associated with rehabilitation of the disused limb. There were localised increases in grey matter density, notably in the right temporoparietal junction, further implicating a potential role for regions responsible for egocentric attention in regaining upper limb use. In Chapter 7, a further patient study investigated candidate predictive biomarkers at the sub-acute stage of stroke recovery, identifying CST-lesion cross-section and sensorimotor network strength as correlates of motor function, which warrant further study. The results of the studies presented in this thesis provide a novel insight into the nature and time frame of functional and structural plasticity associated with altered use and disuse. Further study of how subtle changes in our sensory and motor use shape the sensorimotor network is warranted, particularly in the context of disuse in non-neurological clinical populations.
APA, Harvard, Vancouver, ISO, and other styles
8

Muret, Dolly-Anne. "On the limits of cortical somatosensory plasticity and their functional consequences : a novel form of cross-border plasticity." Thesis, Lyon 1, 2015. http://www.theses.fr/2015LYO10063/document.

Full text
Abstract:
Le toucher a un rôle critique dans notre vie quotidienne pour saisir, manipuler des objets, ou simplement marcher. Les aires primaires somatosensorielles présentent la particularité d'être organisées somatotopiquement, donnant lieu au dénommé Homunculus. Alors que la plupart de notre surface corporelle est représentée suivant un ordre similaire à sa continuité physique, l'Homunculus présente une discontinuité majeure, la main et le visage étant représentés côte à côte. La frontière main-visage a été souvent utilisée comme un repère pour étudier l'une des particularités les plus fascinantes de notre cerveau, sa capacité de réorganisation. En particulier, la plasticité somatosensorielle a été trouvée capable de traverser la frontière main-visage suite à une privation d'afférences. Alors qu'il est connu depuis longtemps que l'augmentation des afférences conduit également à des changements corticaux souvent associés à des bénéfices perceptifs, la possibilité qu'une telle plasticité puisse traverser la frontière main-visage reste inexplorée. Le travail de ma thèse a pour but d'examiner cette question. Une première étude comportementale a révélé que le fait d'augmenter les afférences d'un doigt améliore non seulement l'acuité tactile de ce doigt, mais aussi du visage, suggérant un transfert de changements plastiques au travers de la frontière main-visage. Afin d'examiner ceci, deux études supplémentaires ont été réalisées en utilisant deux techniques complémentaires d'imagerie cérébrales, à savoir l'IRMf et la MEG. En adéquation avec nos hypothèses, une réorganisation des représentations de la main et du visage a été trouvée. Dans l'ensemble, ce travail révèle qu'une plasticité adaptative menant à des bénéfices perceptifs peut se propager sur de larges distances corticales, en particulier au-delà de la frontière main-visage, et par conséquent ouvre une nouvelle fenêtre d'investigation pouvant avoir un réel impact dans la promotion de rééducation
Touch plays a critical role in our daily life to grasp and manipulate objects, or simply walk. The primary somatosensory areas exhibit the striking feature of being somatotopically organized, giving rise to the so-called Homunculus. While most of our body surface is represented following an order similar to its physical continuity, the Homunculus displays a major discontinuity, the hand and the face being represented next to each other. The hand-face border has been widely used as a somatotopic hallmark to study one of the most fascinating features of our brain, its capacity for reorganization. Particularly, somatosensory plasticity was found to cross the hand-face border following deprivation of inputs. While it has long been known that increasing inputs also leads to cortical changes typically associated with perceptual benefits, whether such plasticity can cross the hand-face border remains unknown. My thesis work aimed to investigate this question. A first behavioural study revealed that increasing inputs to a finger improves not only the tactile acuity at this finger, but also at the face, suggesting a transfer of plastic changes across the hand-face border. To investigate this, two additional studies were performed using two complementary brain imaging techniques, namely high-field fMRI and MEG. In agreement with our hypotheses a reorganization of both hand and face representations was found. Altogether, this work reveals that adaptive plasticity leading to perceptual benefits can spread over large cortical distances, in particular across the hand-face border, and thus opens up a new window of investigation that may have a real impact in promoting rehabilitation
APA, Harvard, Vancouver, ISO, and other styles
9

Wen, Jing. "Experience-dependent plasticity of layer 2/3 circuits in developing somatosensory neocortex." Research Showcase @ CMU, 2012. http://repository.cmu.edu/dissertations/121.

Full text
Abstract:
Experience-dependent plasticity is the adaptability of brain circuits as a result of changes in neural activity, a phenomenon that has been proposed as the neural basis for important brain function in health and disease. The underlying mechanisms of experience-dependent plasticity can take different forms, depending on the organisms and brain areas under investigation. A better understanding of these mechanisms will help to interpret normal brain function as well as to guide therapies for neurological diseases. Mouse vibrissa system offers great experimental advantages to studying experience-dependent plasticity and the underlying molecular mechanisms at different levels. Using sensory experience paradigms of unbalanced whisker activity, we find that sensory experience induces rapid synaptic strengthening at excitatory synapses converged onto single layer 2/3 pyramidal neurons, although the plasticity at these synapses displays remarkable input specificity. Furthermore, we discover that recently potentiated layer 4-2/3 excitatory synapses are labile and subject to activity-dependent weakening in vitro. Calcium-permeable AMPARs (CP-AMPARs) that are sometimes associated with synaptic strengthening are not essential for activity-induced synaptic weakening. Finally, we demonstrate that ongoing sensory experience triggers distinct phases of synaptic plasticity, which are tightly correlated with changes in NMDAR properties and function. Taken together, the results from this thesis show distinct manifestations and mechanisms of how sensory experience modulates synaptic properties and neuronal function that may provide insights into information processing and coding in the neocortex.
APA, Harvard, Vancouver, ISO, and other styles
10

Ceko, Marta. "The role of insula in somatosensory plasticity: MRI studies in human subjects." Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=119591.

Full text
Abstract:
The insula is an important cortical processing area for thin fiber somatosensory input, including nociceptive and thermal input. This thesis desribes a series of studies focusing on the human insular cortex, in which structural and functional MRI, together with psychophysical testing, were used to explore the relationship between brain changes and alterations in somatosensory processing and regulation. In Study 1, we reported insular gray matter (GM) changes in a unique patient lacking large-fiber somatosensory input (proprioception, discriminative touch), but with intact thin-fiber input projecting into insular cortex. The patient had increased cortical thickness and resting state connectivity of the insula compared to matched controls. In Study 2, we reported increases in insular GM volume, and white matter (WM) integrity and connectivity in long-term yoga practitioners, who had heightened pain tolerance compared to matched controls. In addition, we observed a positive correlation between insular GM and individual pain tolerance across yoga practitioners and controls. In Study 3, which was part of a larger investigation of age-related GM changes in chronic pain (fibromyalgia) patients, we observed insular GM increase in younger patients compared to matched controls, and this GM increase was inversely related to patients' experimental pain sensitivity. Further, the anterior insula of younger patients had relative to matched controls decreased resting state connectivity to a cortical area involved in processing of the emotional salience of painful stimuli. This thesis provides three novel contributions to our understanding of the insula. Study 1 revealed insular structural and functional correlates of loss of specific somatosensory fibers in humans, Study 2 provided the first evidence for the effects of yoga practice on brain structure in general and on insular GM in particular, and related these effects to pain tolerance, and Study 3 was the first study to directly investigate age-related effects of chronic pain on brain GM, and in particular on insular GM structure and functional connectivity. We interpret the observed insular GM enhancements across all three studies as being suggestive of adaptive plasticity related to a) compensatory use of thin-fiber input – most notably temperature – in lieu of abolished large-fiber sensations b) pain regulation, likely via increased intra-insular processing and c) increased pain regulation, likely via functional disengagement from a cortical salience processing network. This work has improved our understanding of the insula in somatosensory and notably pain processing, and could thus help guide future studies aimed at developing treatments for chronic pain.
L'insula est une aire corticale importante impliquée dans le traitement de l'input des fines fibres somato-sensorielles incluant l'input nociceptive et thermal. Cette thèse décrit une série d'études centrées sur le cortex insulaire humain dans lesquelles l'IRM structural et fonctionnel et l'évaluation psychophysique ont été utilisées pour explorer la relation entre les changements du cerveau et ceux liés au traitement somato-sensoriel et à sa régulation. Dans la première étude, nous décrivons les changements dans la matière grise (MG) de l'insula chez une patiente n'ayant pas d'input somato-sensoriel provenant des larges fibres (proprioception, touché discriminatif), mais ayant un input intact des fines fibres projetant au cortex insulaire. Lorsque comparée à un groupe apparié de sujets contrôle, cette patiente présentait une augmentation de l'épaisseur du cortex et de la connectivité insulaire à l'état de repos. Dans la deuxième étude, nous observons une augmentation du volume de MG insulaire ainsi que de l'intégrité et de la connectivité de la matière blanche (MB) insulaire chez des adeptes du yoga expérimentés présentant une augmentation de la tolérance à la douleur lorsque comparés au sujets d'un groupe contrôle apparié. Nous avons de plus observé une corrélation positive entre la MG insulaire et les résultats de tolérance à la douleur de l'ensemble des sujets (adeptes du yoga et groupe contrôle). Dans la troisième étude, qui représente l'examen des changements de MG liés à l'âge chez des patients souffrant de douleurs chronique (fibromyalgie), nous observons une augmentation de la MG insulaire chez les jeunes patientes comparativement aux sujets du groupe contrôle apparié. Cette augmentation de MG est inversement corrélée à la sensibilité des patientes à la douleur expérimentale. De plus, l'insula antérieure des jeunes patientes montre, lorsque comparée à celle des sujets du groupe contrôle, une diminution de la connectivité à l'état de repos à une aire corticale impliquée dans le traitement de l'aspect émotionnel des stimuli douloureux. Cette thèse apporte trois contributions nouvelles à notre compréhension de l'insula. L'étude 1 révèle les conséquences structurale et fonctionnelle liées à la perte de fibres nerveuses somato-sensorielles spécifiques chez l'humain. L'étude 2 apporte la première démonstration des effets de la pratique du yoga sur la MG insulaire et de sa relation avec la tolérance à la douleur et l'étude 3 est la première étude qui recherche directement les effets liés à l'âge de la douleur chronique sur la structure et la fonction de l'insula. Nous interprétons les augmentations observées de MG insulaire dans les trois études comme reflétant une plasticité d'adaptation liée a) à l'utilisation compensatoire de l'input des fines fibres nerveuses – notamment celles liées à la perception de la température – en remplacement des fibres de plus gros calibre; b) au contrôle de la douleur, probablement par l'augmentation du traitement intra-insulaire; et c) à l'augmentation du contrôle de la douleur, probablement via un désengagement fonctionnel d'un réseau cortical impliqué dans le traitement de la salliance. Ce travail a amélioré notre compréhension de l'implication de l'insula dans le traitement de l'information somato-sensorielle et douloureuse et pourrait aider à éclairer de futures études visant à développer des traitements contre la douleur chronique.
APA, Harvard, Vancouver, ISO, and other styles
11

Sun, Liting. "Investigation of plasticity in somatosensory processing following early life adverse events or nerve injury." Thesis, University of Edinburgh, 2012. http://hdl.handle.net/1842/9606.

Full text
Abstract:
Chronic hypersensitive pain states can become established following sustained, repeated or earlier noxious stimuli and are notably difficult to treat, especially in cases where nerve injury contributes to the trauma. A key underlying reason is that a variety of plastic changes occur in the central nervous system (CNS) at spinal and potentially also supraspinal levels to upregulate functional activity in pain processing pathways. A major component of these changes is the enhanced function of excitatory amino acid receptors and related signalling pathways. Here we utilised rodent models of neuropathic and inflammatory pain to investigate whether evidence could be found for lasting hypersensitivity following neonatal (or adult) noxious stimuli, in terms of programming hyper-responsiveness to subsequent noxious stimuli, and whether we could identify underlying biochemical mechanisms. We found that neonatal (postnatal day 8, P8) nerve injury induced either long lasting mechanical allodynia or shorter lasting allodynia that nonetheless was associated with hyper-responsiveness to a subsequent noxious formalin stimulus at P42 despite recovery of normal mechanical thresholds. By developing a new micro-scale method for preparation of postsynaptic densities (PSD) from appropriate spinal cord quadrants we were able to show increased formalin-induced trafficking of GluA1- containing AMPA receptors into the PSD of animals that had received (and apparently recovered from) nerve injury at P8. This was associated with increased activation of ERK MAP kinase (a known mediator of GluA1 translocation) and increased expression of the ERK pathway regulator, Sos-1. Synaptic insertion of GluA1, as well as its interaction with a key partner protein 4.1N, was also seen in adults during a nerve injury-induced hypersensitive pain state. Further experiments were carried out to develop and optimise a new technological platform enabling fluorometric assessment of Ca2+ and membrane potential responses of acutely isolated CNS tissue; 30-100 μm tissue segments, synaptoneurosomes (synaptic entities comprising sealed and apposed pre- and postsynaptic elements) and 150 × 150 μm microslices. After extensive trials, specialised conditions were found that produced viable preparations, which could consistently deliver dynamic functional responses. Responsiveness of these new preparations to metabotropic and ionotropic receptor stimuli as well as nociceptive afferent stimulant agents was characterised in frontal cortex and spinal cord. These studies have provided new opportunities for assessment of plasticity in pain processing (and other) pathways in the CNS at the interface of in vivo and in vitro techniques. They allow for the first time, valuable approaches such as microscale measurement of synaptic insertion of GluA1 AMPA receptor subunits and ex vivo assessment of dynamic receptor-mediated Ca2+ and membrane potential responses.
APA, Harvard, Vancouver, ISO, and other styles
12

Marcano-Reik, Amy Jo. "Sleep-related activity and recovery of function in the somatosensory cortex during early development." Diss., University of Iowa, 2011. https://ir.uiowa.edu/etd/2743.

Full text
Abstract:
The corpus callosum, the major interhemispheric fiber tract, mediates communication between homotopic regions within the primary somatosensory cortex (S1). Recently, in 1- to 6-day-old neonatal rats, brief bursts of high-frequency, oscillatory activity - called spindle-bursts (SBs) - were described in S1 following sensory feedback from endogenously generated sleep-related myoclonic twitch movements and exogenously generated peripheral stimulation. To determine whether interhemispheric communication via the corpus callosum modulates the expression of SBs during this early period of development and contributes to cortical organization and plasticity, we investigated the endogenous (spontaneous) expression and exogenous (evoked) activity of SBs in neonatal rats with intact or surgically severed callosal fibers (i.e., callosotomy; CCx). We used Ag/AgCl cortical surface electrodes in the S1-forelimb region of the cortex to measure neurophysiological and behavioral activity in both intact and CCx subjects across the sleep-wake cycle during the first two postnatal weeks of development. Our results demonstrate, for the first time, that the corpus callosum modulates spontaneous and evoked activity between homotopic regions in S1 as early as 24-hours after birth. In addition, CCx disinhibits cortical activity, nearly doubling the rate of spontaneous SBs through, but not after, postnatal day 6 (P6). CCx also significantly and reliably disrupts the evoked response to peripheral stimulation of the forepaw. To examine the role of sleep-related twitches and their associated sensory feedback (SBs in S1) - modulated by the corpus callosum - in cortical development and plasticity, we performed CCx or sham surgeries at P1, P6, or P8, and tested subjects the day of surgery or over the ensuing week of recovery. Regardless of age, CCx immediately disrupted SBs evoked by forepaw stimulation. The P1 and P6 CCx groups exhibited full recovery after one week; in contrast, the P8 group did not exhibit recovery of function, thus indicating an abrupt decrease in cortical plasticity between P6 and P8. Together, these results provide the first evidence that sleep-related myoclonic twitches and the associated sensory feedback in S1 (SBs) contribute to cortical development, plasticity, and recovery of function after interhemispheric communication is disrupted by callosotomy. CCx-induced disinhibition of spontaneous SBs is a transient phenomenon whose disappearance coincides with the onset of increased intrinsic connectivity, establishment of excitatory-inhibitory balance, and diminished plasticity in S1. Our findings indicate that CCx-induced disinhibition of spontaneous twitch-related SBs and disruption of evoked response to peripheral stimulation serve as a bioassay of somatosensory cortical plasticity during the early postnatal period.
APA, Harvard, Vancouver, ISO, and other styles
13

Chappell, Tyson. "The long-term teratogenic effect of prenatal alcohol exposure on the somatosensory and motor cortex of rats." View the abstract Download the full-text PDF version, 2007. http://etd.utmem.edu/ABSTRACTS/2007-013-Chappell-index.htm.

Full text
Abstract:
Thesis (Ph.D.)--University of Tennessee Health Science Center, 2007.
Title from title page screen (viewed on February 29, 2008). Research advisor: Robert S. Waters, Ph.D. Document formatted into pages (xix, 179 p. : ill.). Vita. Abstract. Includes bibliographical references (p. 152-178).
APA, Harvard, Vancouver, ISO, and other styles
14

Gunner, Georgia. "Sensory Deprivation Induces Microglial Synapse Engulfment." eScholarship@UMMS, 2021. https://escholarship.umassmed.edu/gsbs_diss/1148.

Full text
Abstract:
Synaptic connectivity is highly plastic in early development and undergoes extensive remodeling in response to changes in neuronal activity and sensory experience. Microglia, the resident central nervous system macrophages, participate in shaping mature neuronal circuits by dynamically surveying the brain parenchyma and pruning away less active synaptic connections. However, it is unknown how changes in neuronal activity regulates microglial pruning within circuits and whether this activity-dependent pruning is necessary to achieve plasticity. Using the rodent somatosensory circuit, I identified that microglia engulf and eliminate synapses in the cortex following early postnatal (P4) unilateral removal of mouse whiskers. I found this early life microglial synaptic remodeling requires specific chemokine signaling between neurons and microglia. Mice that lack expression of either the neuronal chemokine CX3CL1 (fractalkine), or its microglial receptor CX3CR1, have significantly reduced microglial synapse engulfment and fail to eliminate synapses following whisker removal. To gain more insight into how this signaling is regulated, I performed both single-cell RNA sequencing of the primary somatosensory cortex as well as microglia-specific Translating Ribosome Affinity Purification (TRAP) sequencing. I identified that the majority of central nervous system (CNS) cell populations in the somatosensory cortex, including microglia, undergo transcriptional changes following whisker removal. Further, the transcriptional changes in microglia after whisker cauterization require expression of the receptor CX3CR1. Importantly, I also found that Adam10, a gene encoding the metalloprotease known to post-translationally cleave CX3CL1 into a soluble chemokine, is upregulated in the deprived cortex after whisker ablation. Pharmacological inhibition of ADAM10 inhibits microglia-mediated removal of synapses in the deprived cortex. These data support a mechanism by which cleavage of membrane-bound CX3CL1 by ADAM10 is necessary for neuronal signaling to microglia via CX3CR1 to induce transcriptional changes within microglia upstream of synaptic engulfment and elimination following sensory deprivation.
APA, Harvard, Vancouver, ISO, and other styles
15

Bradley, Claire. "The first steps of cortical somatosensory and nociceptive processing in humans : anatomical generators, functional plasticity, contribution to sensory memory and modulation by cortical stimulation." Thesis, Lyon 1, 2015. http://www.theses.fr/2015LYO10213.

Full text
Abstract:
Les sensations en provenance de notre corps se combinent pour donner lieu à des perceptions extrêmement variées, pouvant aller de la brûlure douloureuse au toucher agréable. Ces deux types d'informations dites nociceptives et non nociceptive sont traitées au sein du système nerveux somatosensoriel. Dans ce travail de thèse, nous avons modélisé et caractérisé l'activité électrique du cortex operculo-insulaire au sein des réseaux somatosensoriels non-douloureux et nociceptif, grâce à des enregistrements non-invasifs chez l'Homme. La validité du modèle en réponse à un stimulus nociceptif a été évaluée par comparaison avec des enregistrements intra-corticaux réalisés chez des patients épileptiques. Nous avons ensuite utilisé ce modèle pour déterminer si la stimulation corticale non invasive classiquement utilisée pour soulager les douleurs neuropathiques (stimulation magnétique du cortex moteur) permettait de modifier les réponses nociceptives chez des participants sains. Nous avons montré que cette intervention n'est pas plus efficace qu'une stimulation factice (placebo) sur le plan du blocage nociceptif. Finalement, nous avons tenté de stimuler directement le cortex operculo-insulaire, par trois méthodes différentes : par stimulation électrique locale, intracrânienne et par stimulations non-invasives magnétique (rTMS) et électrique (tDCS). Dans l'ensemble, les travaux présentés ici montrent comment une approche non-invasive chez l'Homme permet de caractériser et de moduler l'activité du cortex operculo-insulaire, qui pourrait être une cible intéressante pour le traitement des douleurs réfractaires
The somatosensory system participates in both non-nociceptive and nociceptive information Processing. In this thesis work, we model and characterize the electrical activity of the operculo-insular cortex within non-painful and nociceptive networks, using non-invasive electrophysiological recordings in humans. Validity of the modeled response to a nociceptive stimulus was evaluated by comparing it to intra-cranial recordings in epileptic patients, revealing excellent concordance. We went on to use this model to determine whether a technique of non-invasive cortical stimulation currently used to relieve neuropathic pain (motor cortex magnetic stimulation) was able to modulate acute nociceptive processing in healthy participants. We show that this intervention is not more efficacious than placebo stimulation in blocking nociception. This raises questions regarding the mechanisms of action of this technique in patients, which might implicate a modulation of pain perception at a higher level of processing. Finally, we attempted to stimulate the operculo-insular cortex directly, using three different methods. Low-frequency intra-cortical stimulation in epileptic, transcranial magnetic stimulation (TMS) of the same region in healthy participants and multipolar transcranial electrical stimulation (tDCS).Altogether, the studies presented here show how a non-invasive approach in humans allows characterising and modulating the activity of the operculo-insular cortex. While this region might be an interesting target for future treatment of drug-resistant pain, its stimulation in patients would require further investigation of parameters and procedures
APA, Harvard, Vancouver, ISO, and other styles
16

BERNARDI, NICOLO' FRANCESCO. "Mental practice: rehearsal strategies and sensorimotor outcomes." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2013. http://hdl.handle.net/10281/41783.

Full text
Abstract:
Mental practice (MP) is the cognitive rehearsal of a task in the absence of overt physical movements. It has been shown that MP allows performance improvements in various tasks, but little is known about the effectiveness of different strategies of MP and about the exact sensorimotor mechanisms that underlie this improvement. Several strategies of MP are here investigated in relation to the practice outcome. In particular, in the context of music performance, it is shown that pitch imagery is strongly associated with better performance, regardless of the specific nature of the musical task. Conversely, structural/formal analysis appears to be important for music memorization, and motor imagery for fine motor control. In terms of sensorimotor outcomes of the practice, it is shown that MP results in improvements of movement velocity, movement anticipation and coarticulation. Additional experiments from force-field learning paradigm show that MP can also result in changes of somatosensory perception. Results are discussed in the context of the simulation theories of motor control.
APA, Harvard, Vancouver, ISO, and other styles
17

Gatica, Tossi Mario [Verfasser], Hubert R. [Gutachter] Dinse, and Martin [Gutachter] Tegenthoff. "The role of stimulus timing parameters in passively induced plasticity of the human somatosensory system / Mario Gatica Tossi ; Gutachter: Hubert R. Dinse, Martin Tegenthoff ; International Graduate School of Neuroscience." Bochum : Ruhr-Universität Bochum, 2012. http://d-nb.info/1211174573/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Delcour, Maxime. "Développement d'un modèle animal de paralysie cérébrale : basé sur l'ischémie prénatale et l'expérience sensorimotrice anormale." Thesis, Aix-Marseille, 2012. http://www.theses.fr/2012AIXM4744/document.

Full text
Abstract:
La paralysie cérébrale (PC) regroupe un ensemble varié de troubles moteurs, sensoriels et cognitifs, liés à des lésions de la substance blanche (i.e. leucomalacie périventriculaire, PVL) survenant, le plus souvent, après un épisode hypoxo-ischémique autour de la naissance. Afin de reproduire la PVL chez l'animal, nous utilisons une ischémie prénatale (PI) qui induit des lésions des substances blanche et grise. Les rats ischémiés développent des déficits cognitifs visuo-spatiaux et une hyperactivité, également observés chez les patients atteints de PC, liés à des lésions du cortex entorhinal, préfrontal et cingulaire. La PI n'induit que des troubles locomoteurs modérés associés à des signes de spasticité, et une atteinte anatomique et fonctionnelle du cortex somesthésique primaire (S1), tandis que le cortex moteur (M1) reste intact. Ainsi, la PI reproduit les symptômes observés chez les enfants et adultes nés prématurément. La présence de mouvements spontanés anormaux au cours de la 1ère année conduisant à la PC suggère une implication de l'expérience sensorimotrice anormale dans le développement de cette pathologie. La combinaison d'une restriction sensorimotrice (SMR) durant le développement et de la PI induit des troubles cognitifs atténués mais une hyperactivité importante. Les rats combinant PI et SMR présentent des déficits posturo-moteurs drastiques et une spasticité, associés à une dégradation des tissus musculo-squelettiques, comparables à ceux observés chez les patients. Ces troubles moteurs, associés à une désorganisation importante des cartes corticales dans S1 et M1, suggèrent un dysfonctionnement important des boucles d'intégration sensorimotrice
Cerebral palsy (CP) corresponds to various motor, sensory and cognitive disorders related to white matter damage (i.e. periventricular leucomalacia, PVL) often occurring after perinatal hypoxic-ischemic events. To reproduce PVL in rodents, we used a prenatal ischemia (PI) that induces white and gray matter damage. The ischemic rats exhibit visual-spatial cognitive deficits and hyperactivity, as observed in patients with CP, related to lesions of entorhinal, prefrontal and cingular cortices. Only mild locomotor disorders are induced by PI, associated to signs of spasticity, along with anatomical and functional degradation in the primary somatosensory cortex (S1), while the primary motor cortex (M1) remains unchanged. Thus, PI recapitulates the main symptoms found in children born preterm. Abnormal spontaneous movements (i.e. general movements) observed in infants who develop CP later on suggest that abnormal sensorimotor experience during maturation is key in the development of this catastrophic disease. The combination of a sensorimotor restriction (SMR) and PI in animal induces fewer cognitive deficits but still hyperactivity. Such a combination leads to severe postural and motor disorders, and spasticity, associated with musculoskeletal pathologies, as observed in patients with CP. In addition to motor disorders, drastic topographical disorganization of cortical maps in S1 and M1 suggest a major dysfunction of sensorimotor loops
APA, Harvard, Vancouver, ISO, and other styles
19

Conde, Ruiz Virginia. "The role of network interactions in timing-dependent plasticity within the human motor cortex induced by paired associative stimulation." Doctoral thesis, Universitätsbibliothek Leipzig, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-129770.

Full text
Abstract:
Spike timing-dependent plasticity (STDP) has been suggested as one of the key mechanism underlying learning and memory. Due to its importance, timing-dependent plasticity studies have been approached in the living human brain by means of non-invasive brain stimulation (NIBS) protocols such as paired associative stimulation (PAS). However, contrary to STDP studies at a cellular level, functional plasticity induction in the human brain implies the interaction among target cortical networks and investigates plasticity mechanisms at a systems level. This thesis comprises of two independent studies that aim at understanding the importance of considering broad cortical networks when predicting the outcome of timing-dependent associative plasticity induction in the human brain. In the first study we developed a new protocol (ipsilateral PAS (ipsiPAS)) that required timing- and regional-specific information transfer across hemispheres for the induction of timing-dependent plasticity within M1 (see chapter 3). In the second study, we tested the influence of individual brain structure, as measured with voxel-based cortical thickness, on a standard PAS protocol (see chapter 4). In summary, we observed that the near-synchronous associativity taking place within M1 is not the only determinant influencing the outcome of PAS protocols. Rather, the online interaction of the cortical networks integrating information during a PAS intervention determines the outcome of the pairing of inputs in M1.
APA, Harvard, Vancouver, ISO, and other styles
20

Detorakis, Georgios. "Plasticité corticale, champs neuronaux dynamiques et auto-organisation." Phd thesis, Université de Lorraine, 2013. http://tel.archives-ouvertes.fr/tel-00879910.

Full text
Abstract:
L'objectif de ce travail est de modéliser la formation, la maintenance et la réorganisation des cartes corticales somesthésiques en utilisant la théorie des champs neuronaux dynamiques. Un champ de neurones dynamique est une équation intégro-différentiel qui peut être utilisée pour décrire l'activité d'une surface corticale. Un tel champ a été utilisé pour modéliser une partie des aires 3b de la région du cortex somatosensoriel primaire et un modèle de peau a été conçu afin de fournir les entrées au modèle cortical. D'un point de vue computationel, ce modèle s'inscrit dans une démarche de calculs distribués, numériques et adaptatifs. Ce modèle s'avère en particulier capable d'expliquer la formation initiale des cartes mais aussi de rendre compte de leurs réorganisations en présence de lésions corticales ou de privation sensorielle, l'équilibre entre excitation et inhibition jouant un rôle crucial. De plus, le modèle est en adéquation avec les données neurophysiologiques de la région 3b et se trouve être capable de rendre compte de nombreux résultats expérimentaux. Enfin, il semble que l'attention joue un rôle clé dans l'organisation des champs récepteurs du cortex somato-sensoriel. Nous proposons donc, au travers de ce travail, une définition de l'attention somato-sensorielle ainsi qu'une explication de son influence sur l'organisation des cartes au travers d'un certain nombre de résultats expérimentaux. En modifiant les gains des connexions latérales, il est possible de contrôler la forme de la solution du champ, conduisant à des modifications importantes de l'étendue des champs récepteurs. Celà conduit au final au développement de zones finement cartographiées conduisant à de meilleures performances haptiques.
APA, Harvard, Vancouver, ISO, and other styles
21

GUIDALI, GIACOMO. "Cross-modal plasticity in sensory-motor cortices and non-invasive brain stimulation techniques: new ways to explore and modulate brain plasticity." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2021. http://hdl.handle.net/10281/306484.

Full text
Abstract:
Nella presente tesi di dottorato, ho esplorato se fenomeni di apprendimento Hebbiano possano governare il funzionamento dei sistemi cross-modali e sensorimotori del cervello umano. A tal fine, durante il mio dottorato, ho sviluppato e testato due nuovi protocolli Paired Associative Stimulation (PAS), una classe di tecniche di stimolazione cerebrale non invasiva in cui una stimolazione sensoriale periferica viene ripetutamente accoppiata con un impulso di stimolazione magnetica transcranica (TMS) su un’area bersaglio al fine di indurre plasticità associativa Hebbiana. I due protocolli PAS presentati nella mia tesi mirano a due sistemi cerebrali sensoriali-motori con funzionamento a specchio (tactile mirror system e action observation network), sfruttando rispettivamente una via cross-corticale visuo-tattile (cross-modal PAS) e una visuo-motoria (mirror PAS). Nel primo capitolo del presente lavoro, dopo una breve introduzione al concetto di plasticità associativa Hebbiana, fornirò una revisione esaustiva dei protocolli PAS che mirano ai sistemi sensorimotori, proponendo una classificazione in tre macro-categorie (within-system, cross-systems e cortico-cortical), a seconda delle caratteristiche delle stimolazioni accoppiate. Nel secondo capitolo descriverò le principali proprietà del sistema dei neuroni specchio (MNS) considerando anche le sue proprietà cross-modali visuo-tattili ed i meccanismi di plasticità neuronale che sono stati ipotizzati alla base dello sviluppo dei neuroni specchio. Nel terzo capitolo, introdurrò il cross-modal PAS (cm-PAS), un nuovo cross-systems PAS sviluppato per sfruttare le proprietà visuo-tattili della corteccia somatosensoriale primaria, al fine di indurre plasticità associativa Hebbiana in tale regione sensoriale. In una serie di tre esperimenti, ho testo la dipendenza temporale (Esperimento 1), la specificità corticale (Esperimento 2) e visiva (Esperimento 3) del protocollo, misurando possibili cambiamenti nell'acuità tattile dei partecipanti. Nell'esperimento 3, ho valutato anche possibili cambiamenti neurofisiologici all'interno di S1, registrando i potenziali evocati somatosensoriali. Infine, in un quarto esperimento, la dipendenza temporale del cm-PAS è stata ulteriormente studiata, testando l'ipotesi che meccanismi anticipatori di tipo predittivo possano svolgere un ruolo centrale nell'efficacia del protocollo. Nel quarto capitolo introdurrò un secondo cross-systems PAS: il mirror PAS (m-PAS) che sfrutta le proprietà ‘mirror’ visuo-motorie del cervello umano. A differenza del cm-PAS, questo secondo protocollo sfrutta la natura associativa dell'integrazione visuo-motoria all'interno del MNS, mirando a indurre un nuovo, atipico, fenomeno di risonanza motoria attraverso apprendimento Hebbiano. In tre esperimenti ho testato la dipendenza temporale (Esperimento 1), la specificità visiva (Esperimento 2) e corticale (Esperimento 3) del protocollo registrando i potenziali evocati motori durante la visione di semplici movimenti (i.e., risonanza motoria). Inoltre, nel terzo esperimento, ho esplorato anche possibili effetti comportamentali dell’m-PAS, utilizzando un compito di compatibilità imitativa che sfrutta il fenomeno dell'imitazione automatica. Infine, nel capitolo conclusivo, discuterò i risultati teorici, metodologici e clinici e le prospettive future che derivano da questi due protocolli.
In the present doctoral thesis, I have explored whether Hebbian learning may rule the functioning of cross-modal and sensory-motor networks of the human brain. To this aim, during my doctorate, I have developed and tested two novel Paired Associative Stimulation (PAS) protocols, a class of non-invasive brain stimulation techniques in which a peripheral, sensory, stimulation is repeatedly paired with a Transcranial Magnetic Stimulation (TMS) pulse to induce Hebbian associative plasticity. The two PAS protocols presented in my thesis target sensory-motor networks with mirror functioning, exploiting a visuo-tactile (cross-modal PAS), and a visuo-motor pathway (mirror PAS), respectively. In the first chapter of the present work, after a brief introduction to the concept of Hebbian associative plasticity, I will provide an exhaustive review of PAS protocols targeting sensory-motor systems, proposing a classification in three macro-categories: within-system, cross-systems, and cortico-cortical protocols, according to the characteristics of the paired stimulations. In the second chapter, I will describe the principal properties of the Mirror Neuron System (MNS) also considering its cross-modal (i.e., visuo-tactile) characteristics and the plastic mechanisms that are been hypothesize at the ground of the development of mirror neurons’ matching properties. In the third chapter, I will introduce the cross-modal PAS (cm-PAS), a novel cross-systems PAS developed to exploit the visuo-tactile mirroring properties of the primary somatosensory cortex (S1) to induce Hebbian associative plasticity in such primary sensory region. In a series of three experiments, timing dependency (Experiment 1), cortical (Experiment 2), and visual specificity (Experiment 3) of the protocol have been tested, by measuring changes in participants’ tactile acuity. In Experiment 3, also possible neurophysiological changes within S1 has been assessed, recording somatosensory-evoked potentials (SEP). Then, in a fourth experiment, cm-PAS timing dependency has been further investigated, testing the hypothesis that anticipatory, predictive-like, mechanisms within S1 may play a central role in the effectiveness of the protocol. In the fourth chapter, a second cross-systems PAS will be introduced: the mirror PAS (m-PAS) which exploits visuo-motor mirroring properties of the human brain. Differently from the cm-PAS, this second protocol targets visuo-motor integration within the MNS and aims at induce a novel, atypical, motor resonance phenomena (assessed recording motor-evoked potentials – MEPs) following Hebbian learning. In three experiments, timing dependency (Experiment 1), visual (Experiment 2), and cortical specificity (Experiment 3) of the protocol have been tested. Furthermore, in the third experiment, the behavioral effects of the m-PAS are explored, using an imitative compatibility task exploiting automatic imitation phenomenon. Finally, in the conclusive chapter, I will discuss theoretical, methodological, and clinical outcomes and future perspectives that arise from these two protocols and the related results.
APA, Harvard, Vancouver, ISO, and other styles
22

Del, Grosso Veronica. "Cortical microvessels and the tripartite synapse in chronic pain studied with synchrotron radiation." Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAS034/document.

Full text
Abstract:
La douleur chronique (DC) est un trouble sensoriel complexe caractérisé par des changements structurels, c'est-à-dire par des réarrangements anatomiques sévères du cortex somatosensoriel et des changements fonctionnels, à savoir des anomalies dans la connectivité fonctionnelle du réseau et la transmission de l'information au niveau du circuit thalamo-cortical. Structurellement, dans chaque module cortical, une unité morpho-fonctionnelle peut être reconnue, appelée unité neuro-gliale-vasculaire, où les cellules gliales représentent les structures de pontage permettant le transfert de métabolites et d'oxygène aux neurones. La dépendance fonctionnelle entre les éléments neuronaux et vasculaires, explorée en grande partie par microscopies confocale 3D et biphotonique a élargi le concept de l'espace synaptique en une forme plus complexe, appelé «synapse tripartite», où malgré la présence de neurones pré et post-synaptiques, un composant glial est ajouté face au contexte microvasculaire. Il semble donc correct d'analyser les effets microscopiques corticaux de l'image macroscopique. Des études récentes de notre groupe ont traité de l'origine et l'évolution de la DC dans des modèles expérimentaux de rat DC (Seltzer) grâce à des analyses microstructurales et fonctionnelles axées sur le substrat neuronal corticale et les propriétés micromorphologiques et vasculodynamiques du sang. La microarchitecture du réseau vasculaire cortical a été révélée via la microtomographie par rayonnement X synchrotron aux lignes ID17 et ID16A (ESRF, Grenoble) ainsi qu’à la ligne TOMCAT (SLS, Villigen). S’en est suivi une analyse morphométrique du réseau vasculaire 3D par squelettisation et transformation du graphe spatial. Ensuite, une étude comparative "Neuropathique vs Contrôle", basée sur les propriétés du réseau vasculaire (nombre de vaisseaux, points de branche, segments de squelette et diamètre du vaisseau) a montré des changements évidents dans les compartiments microvasculaires corticaux: une augmentation généralisée des micro-vaisseaux et des capillaires sanguins dans les régions étudiées (cortex somatosensoriel SS1) caractérisent tous les rats DC. Parallèlement, une réduction du diamètre moyen des vaisseaux des rats DC prouve que les capillaires et les microvaisseaux ont une affinité prédominante pour ces événements angiogénétiques. L'évolution de la néogénèse est très présente dès la première étape de la neuropathie (2 semaines), puis diminue mais persiste durant la dernière étape considérée (6 mois). En outre, un flux sanguin maximal accru a été trouvé dans l'état de DC, indiquant que les réseaux vasculaires DC sont compatibles avec un flux enrichi soutenu par l'angiogenèse. Ces résultats provenant de la micro et nanotomographie ont été confirmés via microscopie en immunofluorescence: les échantillons DC ont montré la positivité à trois marqueurs de néogénèse vasculaire (VEGFR1, VEGFR2 et VWF). En parallèle, pour analyser fonctionnellement la genèse et l'évolution des circuits thalamo-corticaux dans les conditions de DC, l'activité neurale a été enregistrée par une matrice de 32 microélectrodes implantée dans le cerveau, recevant simultanément des signaux du noyau thalamique VPL et du cortex SS1. Tous les rats DC montrent des troubles de connectivité révélés aussi par l'évolution de la topologie du réseau de «Modules et Hubs» à une organisation «aléatoire» où les connexions fonctionnelles intra et intercommunautaires diminuent. Ces résultats confirment comment la dynamique neuronale est liée à l'activité vasculaire: les événements néo-génétiques des microvaisseaux corticaux dans la DC sont fortement corrélés aux anomalies fonctionnelles de la dynamique des réseaux neuronaux. L'implication microvasculaire dans la DC ouvre une nouvelle façon de l’interpréter, non seulement reconnue comme pathologie sensorielle, mais aussi comme une maladie neurologique où les réseaux de connectivité neuronale et vasculaire sont largement impliqués dans le système
Chronic pain (CP) is a complex sensory disorder characterized by structural changes, i.e. severe anatomical rearrangements of somatosensory cortex, and functional changes, i.e. anomalies in network functional connectivity and in information transmission at the level of thalamo-cortical circuit. From the structural point of view, within each cortical module, a morpho-functional unit can be recognized, also called neuro-glial-vascular unit, where the glial cells represent the bridging structures allowing for the transfer of metabolites and oxygen to neurons. Namely, the functional dependency between neuronal and vascular elements, largely explored by 3D confocal microscopy and two photon microscopy, has expanded the concept of synaptic space to a more complex form, indicated as “tripartite synapse”, where besides the presence of the pre- and post- synaptic neurons, a glial component is added facing on the microvascular context. Due to this dependency it appears, thus, correct to analyse the cortical microscopical effects of the macroscopical picture. Novel studies by our group have recently investigated CP origin and evolution in experimental CP rat models (Seltzer) through microstructural and functional analyses focused both on the cortical neuronal substrate and the blood micromorphological and vasculodynamic properties. The 3D microarchitecture of cortical vascular network has been revealed by means of synchrotron X-ray micro Computed Tomography (CT) at the ID17 and ID16A beamlines (ESRF, Grenoble) and the TOMCAT beamline (SLS, Villigen). A subsequent morphometric analysis of the 3D vascular network has been implemented by means of skeletonization and spatial graph transformation. Then, a comparative study “Neuropathic vs Control”, based on the estimated vascular network properties (number of vessels, branch points, skeleton segments and vessel diameter), showed evident changes in cortical microvascular compartments: a widespread increase of blood microvessels and capillaries in the investigated regions (the somatosensory [SSI] cortical area) has been found in all CP rats. In parallel, a reduced mean value of vessel diameter in all CP rats prove that capillaries and small microvessels are predominantly interested by these angiogenetic events. By investigating the time evolution of the neogenesis, it appears strongly present since the first stage of the neuropathy (2 weeks), fading away, but still present, during the last time stage considered (6 months). In addition, an increased maximum blood flow, sustained by the vascular network, has been found in CP condition, indicating that CP vascular networks are compatible with an enriched blood flow sustained by the promoted novel angiogenesis. These results from micro- and nano-tomography have been further confirmed also by immunofluorescence microscopy analysis: CP samples have shown the positivity to three markers of vascular neo-genesis (VEGFR1, VEGFR2 and VWF). In parallel, to functionally analyse the genesis and the evolution of the thalamo-cortical circuits in CP conditions, the neural activity has been recorded by means of 32-microelectrode matrices implanted in the brain, simultaneously receiving signals from the VPL thalamic nucleus and the SS1 cortex. All the CP groups show connectivity disorders exhibited also by the evolution of the network topology from “Modules and Hubs” to a “random” network organisation where the intra-community and inter-community functional connections decrease. These results clearly confirm how the neuronal dynamics is strictly linked to the vascular activity: the cortical microvessel neo-genetic events in CP are strongly correlated to the functional anomalies in neuronal network dynamic. The microvascular involvement in CP opens a new way of interpretation of CP disease, not only recognized as sensory pathology, but also as a neurological disease where neuronal and vascular connectivity networks are extensively involved in the whole system
APA, Harvard, Vancouver, ISO, and other styles
23

Morissette, Josee. "Plasticity in mammalian somatosensory cerebellar maps." Thesis, 1996. https://thesis.library.caltech.edu/4469/1/Morissette_j_1996.pdf.

Full text
Abstract:
The organization of sensory maps in mammalian brains can change following peripheral injury or experience. Such plasticity has been demonstrated for somatotopic somatosensory maps in various cortical and subcortical areas. In contrast to somatotopic maps, whose representation is distorted but nevertheless shows a detectable relationship to the topography of the body surface, cerebellar somatosensory maps have a fractured organization. Fractured cerebellar tactile maps display a mosaic of discrete, irregular patches representing nonadjacent areas of the body surface. This thesis describes the effect of peripheral injury on somatosensory maps in the cerebellum and the influence of their cortical and subcortical afferent structures on the pattern of reorganization. In normal rats, cerebellar granule cell layer field potentials evoked by a brief tactile stimulus consist of two components at different latencies. We carefully investigated the temporal relationship between the evoked tactile responses of the somatosensory cortex (SI) and the cerebellar granule cell layer, and demonstrated that SI is the primary contributor to the long-latency cerebellar response to peripheral tactile stimulation. Following lesion of the infraorbital branch of the trigeminal nerve, we investigated the developmental plasticity of the fractured tactile map in crus IIa. The tactile maps in the granule cell layer of crus IIa reorganized, maintaining a fractured somatotopy, after lesions made at all ages (from 1 to 90 days postnatal). The denervated upper lip region was consistently and predominantly replaced by representation of the upper incisors, a surprising result since this pattern does not correspond with plasticity studies in somatotopic somatosensory areas. The age of the animal at deafferentation affected the short-latency component of the cerebellar field potential but not the long-latency component. This suggests a difference in the developmental sensitivity of the cerebellum-related pathways to nerve lesion. Possible cerebellar mechanisms for the reorganization were examined. We also explored reorganization in SI, an afferent structure, which we found to have a strong influence on cerebellar granule cell activity. The upper incisor representation in SI, which we showed to be adjacent to the upper lip representation in the cortex of normal animals, increased significantly in SI of deafferented rats. Our results suggest that the site of plasticity following deafferentation is not in the cerebellum itself but in its afferent pathways. To explore this possibility, a network model of the major somatosensory pathways to the cerebellum was developed. Computer simulations, assuming plasticity only in the cerebellar afferent pathways, produced patterns of cerebellar reorganization similar to those observed experimentally.
APA, Harvard, Vancouver, ISO, and other styles
24

Michel, Niklas. "Touch comes of Age - Maturational Plasticity in Somatosensory Mechanosensation." Doctoral thesis, 2019. http://hdl.handle.net/21.11130/00-1735-0000-0005-144D-F.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Sweetnam-Holmes, Danielle. "Diabetes impairs cortical map plasticity and functional recovery following ischemic stroke." Thesis, 2011. http://hdl.handle.net/1828/3739.

Full text
Abstract:
One of the most common risk factors for stroke is diabetes. Diabetics are 2 to 4 times more likely to have a stroke and are also significantly more likely to show poor functional recovery. In order to determine why diabetes is associated with poor stroke recovery, we tested the hypotheses that diabetes either exacerbates initial stroke damage, or inhibits neuronal circuit plasticity in surviving brain regions that is crucial for successful recovery. Type 1 diabetes was chemically induced in mice four weeks before receiving a targeted photothrombotic stroke in the right forelimb somatosensory cortex to model a chronic diabetic condition. Following stroke, a subset of diabetic mice were treated with insulin to determine if controlling blood glucose levels could improve stroke recovery. Consistent with previous studies, one behavioural test revealed a progressive improvement in sensory function of the forepaw in non-diabetic mice after stroke. By contrast, diabetic mice treated with and without insulin showed persistent deficits in sensori-motor forepaw function. To determine whether these different patterns of stroke recovery correlated with changes in functional brain activation, forepaw evoked responses in the somatosensory cortex were imaged using voltage sensitive dyes at 1 and 14 weeks after stroke. In both diabetic and non-diabetic mice that did not have a stroke, brief mechanical stimulation of the forepaw evoked a robust and near simultaneous depolarization in the primary (FLS1) and secondary somatosensory (FLS2) cortex. One week after stroke, forepaw-evoked responses had not been remapped in the peri-infarct cortex in both diabetic and non-diabetic mice. Fourteen weeks after stroke, forepaw evoked responses in non-diabetic mice re-emerged in the peri-infarct cortex whereas diabetic mice showed very little activation, reminiscent of the 1 week recovery group. Moreover, controlling hyperglycemia using insulin therapy failed to restore sensory evoked responses in the peri-infarct cortex. In addition to these differences in peri-infarct responsiveness, we discovered that stroke was associated with increased responsiveness in FLS2 of non-diabetic, but not diabetic or insulin treated mice. To determine the importance of FLS2 in stroke recovery, we silenced the FLS2 cortex and found that it re-instated behavioural impairments in stroke recovered mice, significantly more so than naïve mice that still had a functioning FLS1. Collectively, these results indicate that both diabetes and the secondary somatosensory cortex play an important role in determining the extent of functional recovery after ischemic cortical stroke. Furthermore, the fact that insulin therapy after stroke did not normalize functional recovery, suggests that prolonged hyperglycemia (before stroke) may induce pathological changes in the brain’s circulation or nervous system that cannot be easily reversed.
Graduate
APA, Harvard, Vancouver, ISO, and other styles
26

Walz, Corinna Gabriele [Verfasser]. "Developmental plasticity at glutamatergic synapses in mouse somatosensory cortex / vorgelegt von Corinna Gabriele Walz." 2008. http://d-nb.info/989205274/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Tai-Hsiang, Liao, and 廖泰翔. "Effects of Additional Somatosensory Inputs on Use-Dependent Plasticity of Human Motor Cortex:A TMS Mapping Study." Thesis, 2006. http://ndltd.ncl.edu.tw/handle/32005001814585364807.

Full text
Abstract:
碩士
長庚大學
復健科學研究所
94
It is established that the primary motor cortex (MI) possesses the ability to reorganize after motor skill training or altering somatosensory inputs. However, information regarding how somatosensory stimulation optimizing use-dependent plasticity of MI were inconclusive. The purpose of this study was to investigate the effects of additional somatosensory inputs with concurrent motor practice in developing isolated control of hand movement and to observe its effect on promoting motor cortex reorganization. Eighteen healthy adults were recruited and assigned randomly to 3 different training groups. Each participant received either somatosensory stimulation alone (SS), motor practice alone (MP), or motor practice combined with somatosensory stimulation (MP+SS). Participants was observed at 2 pre-training sessions, after a 15-minute training session for 3 consecutive days and a retest session 1 day after training has completed. Outcome measures included the isolated control ability of the fifth finger abduction , maximal velocity and acceleration of the fifth finger abduction via motion analysis, and motor map parameters of abductor digiti minimi (ADM) muscle, resting motor threshold, map areas, volume and center of gravity, via the transcranial magnetic stimulation technique. Both the MP+SS and the MP groups showed similar improvements in the isolated control ability of the fifth finger abduction in the end of training but no training effect was observed for SS group. Whereas, the MP+SS group demonstrated better training effect than the MP group after the first day of training (p=.021). In addition, over the course of training, the cortical map areas and volume of ADM both increased significantly in MP and MP+SS groups while SS group increased map areas only. However, the MP+SS group resulted in faster, larger and longer changes than all other groups. According to the findings of this study we concluded that additional somatosensory inputs with concurrent motor practice can enhance use-dependent plasticity and promote early acquisition of motor skill.
APA, Harvard, Vancouver, ISO, and other styles
28

Clary, Rachel Cecelia. "Dynamics of touch-receptor plasticity in the mammalian peripheral nervous system." Thesis, 2020. https://doi.org/10.7916/d8-3peb-6737.

Full text
Abstract:
Somatosensory neurons densely innervate skin, our largest sensory organ. Adult skin continually remodels throughout the lifespan to maintain a protective barrier for our bodies. How sensory neurons maintain their peripheral endings in the face of continual turnover of their target tissue is not well understood. To address this gap in knowledge, I analyzed the temporal dynamics and mechanisms of structural plasticity of touch receptors in healthy adult skin. My studies focused on the terminals of Merkel-cell afferents in mouse touch domes. These two-part touch receptors comprise epithelial Merkel cells innervated by branching axons of fast-conducting sensory neurons. I show that Merkel cells and their afferents are structurally plastic over the course of hair growth in adults. These two components simplify during active hair growth, with fewer terminal neurites and fewer Merkel cells per touch dome at this stage compared with other phases of hair growth. Merkel-cell removal was observed with multiple molecular markers. Additionally, mice showed diminished touch-evoked behavior during hair growth compared with follicle quiescence. Next, I showed that Sarm1, a key effector of Wallerian degeneration, is not required for structural plasticity of Merkel cell-neurite complexes in young adulthood. Finally, I developed a technique to perform time-lapse in vivo imaging of identified Merkel cells and afferent terminals over the course of a month. These structures were highly plastic, with afferent terminals undergoing frequent growth and regression, as well as both Merkel cells and terminal branches being added or removed. Together, these studies reveal that peripheral nerve terminals undergo a previously unsuspected amount of structural plasticity in healthy tissue.
APA, Harvard, Vancouver, ISO, and other styles
29

Farhoomand, Farnoosh. "Sensory-evoked activity in somatosensory cortex as a model to probe cortical plasticity in a mouse model of Rett syndrome." Thesis, 2021. http://hdl.handle.net/1828/13330.

Full text
Abstract:
Rett syndrome (RTT), a severe neurodevelopmental disorder, affects females resulting from loss-of-function mutations in the X-linked transcription factor methyl-CpG-binding protein 2 (MECP2). RTT patients show severe verbal, motor, respiratory, and intellectual impairments. We studied two forms of activity-dependent plasticity in Mecp2 mutant mice to better understand the loss of MECP2 function in neuronal circuit and sensory processing. Sensory deprivation was applied by trimming one whisker to 3 mm to study long-term cortical plasticity in Mecp2-/y mice. Intrinsic optical signaling (IOS) imaging showed the neuronal response to wiggling a non-trimmed was consistent from day 0 to 14 but reduced for the trimmed whisker by 49.0 ± 4.3% in wild type (WT) and 22.7 ± 4.6% (p=0.0135) in RTT mice. Primary hindlimb (HL) somatosensory cortical responses to vibratory stimulation were assessed by IOS and intracortical local field potential (LFP). Responses were assessed before, during and, after 1 hour of repeated HL vibratory stimulation (100Hz,1sec, ISI 6 sec) in symptomatic male (4-6 week), female (10-12 month) and pre-symptomatic young female (4 week) RTT model mice. After 1-hour, cortical responses to test vibrations were reduced by approximately 40% in RTT and WT mice as assessed by both methods. Recovery of the IOS responses (1 sec vibration at 100Hz) and LFP (300µm below pia, 7 stimuli, 100mse ISI) were tested at 15 min intervals for 1 hour after ceasing the repeated stimulation. Reduced responses persisted for at least 60 min in WT but recovered to 90-100% of normal within 15-30 min in RTT. Analysis of the LFP responses within the test train indicated that the reduced cortical sensitivity during and after continuous stimulation resulted primarily from an increase in adaptation during the 7-stimulus test train rather than a reduction in the response to a single vibratory stimulus in all groups. Retention of this increased STA is the primary cause of the persistently reduced tactile response in young WT female mice, while in RTT mice the rapid recovery of tactile sensitivity was due to the return of STA to lower, baseline levels. Male RTT mice exhibited a marked increased excitability to the first stimulus in the test train resulting in hypersensitivity to a single vibration by 45 minutes. Old females exhibited the same pattern of adaptation and recovery but retention of adaptation was less pronounced in both WT and RTT compared to younger animals suggesting an age-dependent reduction in neural plasticity may mask deficits specific to RTT. Recording sciatic nerve sensory afferent activity did not reveal any STA, persistent adaptation or sensitization of peripheral afferent endings in any groups. I propose persistent sensory adaptation mediated by increased short-term adaptation may reflect enhanced feedback by inhibitory elements of circuits within the sensory pathway. The rapid recovery of responsiveness in young female RTT mice may therefore reflect a deficit in the capacity for activity dependent plasticity to consolidate and thus could provide a platform to understand the causes of learning and cognitive deficits in RTT patients.
Graduate
APA, Harvard, Vancouver, ISO, and other styles
30

Σταυρινού, Μαρία. "Μελέτη της βραχύχρονης πλαστικότητας του σωματοαισθητικού φλοιού του ανθρώπου μέσω χωροχρονικού εντοπισμού των μαγνητικών δίπολων σε ηλεκτρική διέγερση των δακτύλων." Thesis, 2006. http://nemertes.lis.upatras.gr/jspui/handle/10889/1197.

Full text
Abstract:
Η μελέτη της πλαστικότητας του ανθρώπινου εγκεφάλου σε όλα τα επίπεδα είναι ένα πολύ σημαντικό βήμα στην εξερεύνηση της λειτουργίας του εγκεφάλου και παίζει πολύ σημαντικό ρόλο στον σχεδιασμό θεραπειών αποκατάστασης μετά από εγκεφαλικές και κινητικές βλάβες. Τα τελευταία είκοσι χρόνια έχει καθιερωθεί πλέον η ιδέα ότι ο ώριμος εγκέφαλος μπορεί να ανακατανέμει τις περιοχές του στην περίπτωση μιας βλάβης ή στην περίπτωση περισσότερης χρήσης ή νέας λειτουργίας, αναδιοργανώνοντας έτσι την λειτουργικότητά του. Και ενώ υπάρχουν αρκετές μελέτες σε ζώα και λιγότερες σε ανθρώπους όπου μελετάται η χωρική έκταση των αλλαγών αυτών, λίγες εργασίες υπάρχουν που να μελετούν τη δυναμική των αλλαγών αυτών σε ένα πεδίο χρόνου μερικών ωρών. Η παρούσα διδακτορική διατριβή συνεισφέρει ακριβώς σε αυτόν τον τομέα: τη μελέτη των πλαστικών αλλαγών σε ένα εύρος χρόνου 6 ωρών με διαδοχικές μαγνητοεγκεφαλογραφικές (ΜΕΓ) μετρήσεις ανά μία ώρα της αναπαράστασης των δακτύλων στον πρωτεύοντα σωματοαισθητικό φλοιό. Μέχρι τώρα στην βιβλιογραφία οι μελέτες για βραχύχρονη πλαστικότητα εστίαζαν στη μελέτη αλλαγών μετά από συγκεκριμένη σωματοαισθητική διέγερση για συγκεκριμένο κάθε φορά χρόνο από μερικά λεπτά και έως τρεις με τέσσερις ώρες. Τα αποτελέσματα των ερευνών αυτών παρουσιάστηκαν διαφορετικά για διαφορετικούς χρόνους μελέτης. Έτσι και για την περίπτωση των δακτύλων στον σωματοαισθητικό φλοιό, μετά από σύντομο χρονικό διάστημα σωματοαιθητικής αλλαγής, η Ευκλείδεια απόσταση μεταξύ των μελετούμενων περιοχών έδειχνε να συρρικνώνεται (Braun et al, 2000; Ziemus et al, 2000) ενώ μετά από περισσότερο χρονικό διάστημα, αυτή να αυξάνεται (Godde et al, 2003; Schaeffer et al, 2004). Η παρούσα μελέτη, συνεισφέρει στην έρευνα της δυναμικής των πλαστικών αλλαγών σε μικρό εύρος χρόνου. Το πρωτόκολλο, είναι εμπνευσμένο από το πρώτο πείραμα πού έδειξε την ύπαρξη πλαστικότητας στον ώριμο εγκέφαλο μέσω της δημιουργίας συνδακτυλίας σε πιθήκους (Allard et al, 1988; 1991). Οι συγγραφείς παρατήρησαν σημαντικές αλλαγές στην αντιπροσώπεση των δύο αυτών δακτύλων στον σωματοαισθητικό φλοιό (Δ3 και Δ4) μετά από 3-7.5 μήνες. Οι δύο περιοχές εμφανίστηκαν ενοποιημένες, και χωρίς την διαχωριστική γραμμή που συνήθως τις διαχωρίζει. Επίσης παρατηρήθηκε η ύπαρξη ιδιοδεκτικών πεδίων που ανταποκρίνονταν στον ερεθισμό και των δύο δακτύλων. Οι συγγραφείς εξέφρασαν αυτό το αποτέλεσμα ως μία ένδειξη του ρόλου του χρονικού συγχρονισμού όπως εκφράζεται και με την αρχή του Hebb για την ομαδοποίηση των εισερχόμενων σημάτων και τον σχηματισμό των ιδιοδεκτικών πεδίων στον φλοιό. Το πρωτόκολλο που χρησιμοποιήθηκε στην παρούσα μελέτη και εμπνευσμένο από το προηγούμενο πείραμα περιλαμβάνει το δέσιμο των δακτύλων του δεξιού χεριού εθελοντών από τον δείκτη (Δ2) έως το μικρό δάκτυλο (Δ5) και τον ξεχωριστό ηλεκτρικό ερεθισμό των Δ2 και Δ5 για τον εντοπισμό της αντιπροσώπευσής τους στον σωματοαισθητικό φλοιό μέσα σε συνολικό χρονικό διάστημα 5.5 ωρών. Οι καταγραφές πραγματοποιήθηκαν με την τεχνική της Μαγνητοεγκεφαλογραφίας, και η ανάλυση έγινε βάσει της μεθόδου της Μαγνητικής Απεικόνισης Πηγών (Μagnetic Source Imaging). H MΕΓ, χάρη της μη αλλοίωσης των μαγνητικών σημάτων από τις ενδιάμεσες δομές του εγκεφάλου χαρίζει καλλίτερο εντοπισμό των ενεργοποιημένων περιοχών. Το κάθε πείραμα αποτελείτο από 7 ΜΕΓ μετρήσεις, με διαλείμματα μεταξύ των μετρήσεων. Η μέση απόσταση μεταξύ των καταγραφών ήταν περίπου 50 λεπτά της ώρας και το κάθε διάλειμμα διαρκούσε μισή ώρα. Η πρώτη καταγραφή έγινε πριν το δέσιμο των δακτύλων. Επίσης καταγραφές της ποσότητας του ηλεκτρικού παλμού (Sensory nerve action potential, SNAP) πάνω στο ωλένιο και μέσο νεύρο γινόταν ταυτόχρονα για την διασφάλιση της σταθερότητας του ηλεκτρικού παλμού που εισέρχεται στο σωματοαισθητικό φλοιό. Δύο πειράματα ελέγχου συμπληρώνουν το πρωτόκολλο, σε μερικούς από τους συμμετέχοντες, ένα με επανάληψη της διαδικασίας χωρίς δέσιμο των δακτύλων μετά από μερικούς μήνες και ένα με συμπληρωματικές ταυτόχρονες μετρήσεις στο άλλο ημισφαίριο. Τέλος η ανατομική μαγνητική τομογραφία, για κάθε συμμετέχοντα λήφθηκε, για επιβεβαίωση του εντοπισμού του ισοδύναμου διπόλου. Μέσω της τεχνικής λοιπόν του ισοδύναμου δίπολου, για κάθε δάκτυλο και κάθε ΜΕΓ καταγραφή κατά την διάρκεια των 5.5 ωρών εντοπίστηκε το ισοδύναμο δίπολο που χαρακτηρίζει το κέντρο βάρους της αντιπροσώπευσης του μεσοποιημένου προκλητού δυναμικού στον πρωτοταγή σωματοαισθητικό φλοιό. Στην συνέχεια ελήφθησαν οι συντεταγμένες του. Μετά την επεξεργασία προ-ανάλυσης του σήματος, μελετήθηκε το ισοδύναμο δίπολο που περιγράφει την κορυφή P30m. Το κύμα P30m προσδιορίζει την είσοδο του ηλεκτρικού σήματος στον σωματοαισθητικό φλοιό. Η θέση του διπόλου κατά τη διάρκεια των μετρήσεων παρουσίασε στατιστικώς σημαντικές αλλαγές, παραμένοντας εντούτοις μέσα στον σωματοαισθητικό φλοιό. Όπως έχει αποδειχθεί και από άλλες μελέτες, στατιστικά σημαντικές αλλαγές στη θέση του ισοδύναμου διπόλου ισοδυναμούν με αλλαγές στην σωματοτοπία (Hodzic et al, 2004; Pleger et al, 2003; 2001). Τα αποτελέσματά λοιπόν έδειξαν ότι συμβαίνουν στατιστικώς σημαντικές αλλαγές στην Ευκλείδεια απόσταση (ΕΑ) των περιοχών μέσα στις 5 περίπου ώρες που διαρκεί η ‘τεχνητή συνδακτυλία’ που επιβάλαμε. Αναλυτικά, και όπως φαίνεται στην Εικόνα 1, στην διάρκεια της πρώτης μισής ώρας, μια μείωση της ΕΑ μεταξύ του δεύτερου (Δ2) και πέμπτου δακτύλου (Δ5) έλαβε χώρα ακολουθούμενη από μία αύξηση της ΕΑ για τις επόμενες δύο ώρες. Στη συνέχεια, ξεκινάει μια μείωση της ΕΑ η οποία διαρκεί πάλι περίπου 2 ωρες. Σημειώνουμε εδώ ότι στα πειράματα ελέγχου, δεν παρατηρήθηκαν αλλαγές στην ΕΑ μεταξύ των δακτύλων, κάτι που μας κάνει να πιστεύουμε ότι η αλλαγές στην ΕΑ οφείλονται αποκλειστικά στην νέα σωματοαισθητική κατάσταση που δημιουργήθηκε με το δέσιμο των δακτύλων. Οι παρατηρούμενες αλλαγές, οι οποίες συμβαίνουν καθ’ όλη τη διάρκεια των έξι ωρών, οδηγούν στο συμπέρασμα ότι συμβαίνει μία συνεχής ανακατανομή (remapping) των περιοχών των δύο δακτύλων στη διάρκεια του χρόνου αυτού. Σημειώνουμε εδώ ότι στα πειράματα ελέγχου, δεν παρατηρήθηκαν αλλαγές στην ΕΑ μεταξύ των δακτύλων, κάτι που μας κάνει να πιστεύουμε ότι οι αλλαγές στην ΕΑ οφείλονται αποκλειστικά στην νέα σωματοαισθητική κατάσταση που δημιουργήθηκε με το δέσιμο των δακτύλων. Επειδή ενδείξεις δεν έχουμε για αλλαγή στην ισχύ του διπόλου συμπεραίνουμε ότι οι αλλαγές αυτές οφείλονται σε μετατόπιση και όχι σε εξάπλωση των αντίστοιχων περιοχών της αντιπροσώπευσης των δακτύλων. Ιδιαίτερο ενδιαφέρον παρουσιάζει το γεγονός ότι οι αλλαγές που παρατηρήσαμε συμβαδίζουν με αλλαγές άλλων ερευνητών στον σωματοαισθητικό φλοιό, ανάλογα με τον χρόνο της παρατήρησης. Δηλαδή, παρόμοιες αλλαγές συμβαίνουν στους αντίστοιχους χρόνους. Αναλυτικά, αύξηση της ΕΑ έχει παρατηρηθεί σε μικρά χρονικά διαστήματα ενώ μείωση της ΕΑ μετά από μεγαλύτερα (της τάξεως των μερικών ωρών) διαστήματα μετά από κάποια σωματοαισθητική αλλαγή/τροποποίηση. Τα αποτελέσματά μας λοιπόν ενοποιούν τα προηγούμενα αποτελέσματα παρουσιάζοντας ένα ενοποιημένο χρονικό πλαίσιο μέσα στο οποίο παρουσιάζονται οι αλλαγές αυτές. Ένα συμπέρασμα που μπορεί να εξαχθεί είναι ότι η ανακατανομή των ιδιοδεκτικών πεδίων των νευρώνων του σωματοαισθητικού φλοιού γίνεται με μη γραμμικό τρόπο. Ο εγκέφαλος προκειμένου να προσδιορίσει τις ομάδες νευρώνων που αναπαριστούν καλλίτερα τη νέα σωματοαισθητική πραγματικότητα ανακαταμερίζει τις δυνάμεις του και επαναπροσδιορίζει τα όριά του. Η αναδιάρθρωση των χαρτών του εγκεφάλου σε τόσο μικρά χρονικά διαστήματα έχει αποδοθεί σε μεταβολή της αναστολής. Το γεγονός ότι οι αλλαγές αυτές στην αναπαράσταση των δακτύλων Δ2 και Δ5 έγιναν τόσο γρήγορα δεν πρέπει να μας εκπλήσσει καθώς μελέτες σε in vivo και in vitro έχουν αποδείξει ότι παρόμοιες αλλαγές στο συναπτικό επίπεδο συμβαίνουν σε χρονικά όρια παρόμοια με αυτά του πειράματός μας, όπως στο LTP και LTD. Επίσης, άλλοι μηχανισμοί όπως αυτοί της ομοιόστασης συμμετέχουν ενεργά σε παρόμοιες περιπτώσεις που έχει παρουσιαστεί πλαστικότητα μετά από αλλαγή στην σωματοαισθητική εμπειρία. Η παρούσα μελέτη εκτός του ότι θέτει ένα χρονικό πλαίσιο μέσα στο οποίο, διαφορετικές αλλαγές στην ΕΑ λαμβάνουν χώρα, αποτελεί μια πρώτη ένδειξη της σημαντικότητας του χρόνου ως παραμέτρου σε ηλεκτροφυσιολογικές μετρήσεις.
The adult primary somatosensory cortex (SI) exhibits a detailed topographic organization of the hand and fingers, which undergoes plastic reorganizational changes following modifications of the sensory input. Although the spatial properties of these changes have been extensively investigated, little is known about their temporal dynamics. The current PhD thesis, contributes exactly to this field: to the study of plastic changes in time frame of 6 hours with consecutive Magnetoencephalographic measurements every hour. The inspiration for the protocol came from the finger webbing paradigm first employed to study adult human representational plasticity. In this paradigm of finger webbing, 4 fingers are temporarily webbed together, hence modifying their sensory feedback, for about 6 hours. We used Magnetoencephalography, a non invasive technique to study magnetic fields of the human brain, in order to measure changes in the hand representation in SI, before, during, and after finger webbing for this time frame of 6 hours. Cortical sources representing the index and little finger were localized using electric current stimulation and with the Equivalent Current Dipole method for all the recording sessions. Our results showed a decrease in the Euclidean distance (ED) between the cortical sources of the index and small finger 30 min after webbing, followed by an increase lasting for about 2 h after webbing, which was followed by a return toward baseline values. These results provide a unique frame in which the different representational changes occur, merging previous findings that were only apparently controversial, in which either increases or decreases in ED were reported after sensory manipulation for relatively long or short duration, respectively. Moreover, these observations further confirm that the mechanisms that underlie cortical reorganization are extremely rapid in their expression and, for the first time, show how brain reorganization occurs over time.
APA, Harvard, Vancouver, ISO, and other styles
31

Labbé, Sara. "Les effets de la stimulation électrique transcrânienne à courant direct appliquée au cortex somatosensoriel primaire sur la perception vibrotactile." Thèse, 2015. http://hdl.handle.net/1866/13119.

Full text
Abstract:
La stimulation électrique transcrânienne à courant direct (tDCS) est une technique non invasive de neuromodulation qui modifie l’excitabilité corticale via deux grosses électrodes de surface. Les effets dépendent de la polarité du courant, anodique = augmentation de l’excitabilité corticale et cathodique = diminution. Chez l’humain, il n’existe pas de consensus sur des effets de la tDCS appliquée au cortex somatosensoriel primaire (S1) sur la perception somesthésique. Nous avons étudié la perception vibrotactile (20 Hz, amplitudes variées) sur le majeur avant, pendant et après la tDCS appliquée au S1 controlatéral (anodale, a; cathodale, c; sham, s). Notre hypothèse « shift-gain » a prédit une diminution des seuils de détection et de discrimination pour la tDCS-a (déplacement vers la gauche de la courbe stimulus-réponse et une augmentation de sa pente). On attendait les effets opposés avec la tDCS-c, soit une augmentation des seuils (déplacement à droite et diminution de la pente). Chez la majorité des participants, des diminutions des seuils ont été observées pendant et immédiatement suivant la tDCS-a (1 mA, 20 min) en comparaison à la stimulation sham. Les effets n’étaient plus présents 30 min plus tard. Une diminution du seuil de discrimination a également été observée pendant, mais non après la tDCS-c (aucun effet pour détection). Nos résultats supportent notre hypothèse, uniquement pour la tDCS-a. Une suite logique serait d’étudier si des séances répétées de tDCS-a mènent à des améliorations durables sur la perception tactile. Ceci serait bénéfique pour la réadaptation sensorielle (ex. suite à un accident vasculaire cérébral).
Transcranial direct-current stimulation (tDCS) is a non-invasive neuromodulation technique which aims to modify cortical excitability using large surface-area electrodes. tDCS is thought to increase (anodal, a-tDCS) or decrease (cathodal, c-tDCS) cortical excitability. At present, there is no consensus as to whether tDCS to primary somatosensory cortex (S1) modifies somatosensory perception. This study examined vibrotactile perception (frequency, 20 Hz, various amplitude) on the middle finger before, during and after contralateral S1 tDCS (a-, c- and sham, s-). The experiments tested our shift-gain hypothesis which predicted that a-tDCS would decrease vibrotactile detection and discrimination thresholds (leftward shift of the stimulus-response function with increased gain/slope), while c-tDCS would increase thresholds (shift to right; decreased gain). The results showed that weak, a-tDCS (1 mA, 20 min), compared to sham, led to a reduction in both thresholds during the application of the stimulation in a majority of subjects. These effects persisted after the end of a-tDCS, but were absent 30 min later. Cathodal tDCS, vs sham, had no effect on detection thresholds; in contrast, there was a decrease in discrimination threshold during but not after c-tDCS. The results thus supported our hypothesis, but only for anodal stimulation. Our observation that enhanced vibrotactile perception outlasts, albeit briefly, the period of a-tDCS is encouraging. Future experiments should determine whether repeated sessions of a-tDCS can produce longer lasting improvements. If yes, clinical applications could be envisaged, e.g. to apply a-tDCS to S1 in conjunction with retraining of sensory function post-stroke.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography