Academic literature on the topic 'Solvent-solvent'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Solvent-solvent.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Solvent-solvent"

1

Zhou, Shi-Qi. "Influence of Solvent-Solvent and Solute-Solvent Interaction Properties on Solvent-Mediated Potential." Communications in Theoretical Physics 44, no. 2 (August 2005): 365–70. http://dx.doi.org/10.1088/6102/44/2/365.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Grigorescu, Gabriela, Silvia Ioan, and Bogdan C. Simionescu. "Solvent/solvent/polymer ternary systems." Polymer Bulletin 31, no. 1 (July 1993): 123–27. http://dx.doi.org/10.1007/bf00298774.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Chan, Joel, Joseph Chee Chang, Tom Hope, Dafna Shahaf, and Aniket Kittur. "SOLVENT." Proceedings of the ACM on Human-Computer Interaction 2, CSCW (November 2018): 1–21. http://dx.doi.org/10.1145/3274300.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Luca, Alfio A. Tamburello, Philippe Hébert, Pierre F. Brevet, and Hubert H. Girault. "Surface second-harmonic generation at air/solvent and solvent/solvent interfaces." J. Chem. Soc., Faraday Trans. 91, no. 12 (1995): 1763–68. http://dx.doi.org/10.1039/ft9959101763.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

da Silva, Domingas C., Ingrid Ricken, Marcos A. do R. Silva, and Vanderlei G. Machado. "Solute-solvent and solvent-solvent interactions in the preferential solvation of Brooker's merocyanine in binary solvent mixtures." Journal of Physical Organic Chemistry 15, no. 7 (2002): 420–27. http://dx.doi.org/10.1002/poc.519.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Souvignet, Isabelle, and Susan V. Olesik. "Solvent-Solvent and Solute-Solvent Interactions in Liquid Methanol/Carbon Dioxide Mixtures." Journal of Physical Chemistry 99, no. 45 (November 1995): 16800–16803. http://dx.doi.org/10.1021/j100045a048.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Vrentas, J. S., C. M. Vrentas, and N. Faridi. "Effect of Solvent Size on Solvent Self-Diffusion in Polymer−Solvent Systems." Macromolecules 29, no. 9 (January 1996): 3272–76. http://dx.doi.org/10.1021/ma9511356.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Villacampa, Manuel, Elena Diaz de Apodaca, Jose R. Quintana, and Issa Katime. "Diblock Copolymer Micelles in Solvent Binary Mixtures. 2. Selective Solvent/Good Solvent." Macromolecules 28, no. 12 (June 1995): 4144–49. http://dx.doi.org/10.1021/ma00116a014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kohl, Stephan W., Frank W. Heinemann, Markus Hummert, Walter Bauer, and Andreas Grohmann. "Solvent dependent reactivity: solvent activation vs. solvent coordination in alkylphosphane iron complexes." Dalton Transactions, no. 47 (2006): 5583. http://dx.doi.org/10.1039/b610792c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

YAMAGUCHI, T., and Y. KIMURA. "Effects of solute-solvent and solvent-solvent attractive interactions on solute diffusion." Molecular Physics 98, no. 19 (October 10, 2000): 1553–63. http://dx.doi.org/10.1080/00268970009483361.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Solvent-solvent"

1

Chun-Te, Lin Justin. "Organic solvent nanofiltration membrane cascades for solvent exchange and purification." Thesis, Imperial College London, 2008. http://hdl.handle.net/10044/1/11977.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Męcfel-Marczewski, Joanna. "Self Incompatible Solvent." Doctoral thesis, Universitätsbibliothek Chemnitz, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-201001195.

Full text
Abstract:
In dieser Arbeit wird das neue Prinzip der „Selbstinkompatiblen Lösungsmittel“ vorgestellt. Es wird theoretisch abgeleitet, dass eine Mischung aus zwei Substanzen mit ungünstigen Wechselwirkungen bereitwillig eine weitere Substanz aufnehmen sollte, die diese ungünstigen Wechselwirkungen durch Verdünnen vermindert. Dies sollte umso stärker ausgeprägt sein, je ungünstiger die Wechselwirkungen zwischen den beiden ersten Substanzen sind. Da sich jedoch Substanzen mit sehr ungünstigen Wechselwirkungen physikalisch nicht mischen, entstand die Idee, diese Substanzen durch eine kovalente Bindung aneinander zu binden. Ein solches Molekül, das aus zwei inkompatiblen Hälften besteht, wird im Folgendem Selbstinkompatibles Lösungsmittel genannt. Die in dieser Arbeit gewählten Substanzen zeigen mäßige Inkompatibilität, deshalb ist ein Vergleich zwischen einfachen physikalischen Mischungen und kovalent verknüpften Molekülhälften noch möglich. Dieses Prinzip wird für binäre und ternäre Mischungen quantitativ berechnet und experimentell in drei Serien von Experimenten bestätigt: i) unter Verwendung von Lösungskalorimetrie und Bestimmung der Wechselwirkungsparameter zwischen Komponente 3 und einer bereits hergestellt physikalischen binären Mischung aus Komponente 1 und 2, ii) unter Verwendung von Lösungskalorimetrie und Bestimmung der Wechselwirkungsparameter zwischen Komponente 3 und den selbstinkompatiblen Losungsmitteln, die den in (i) gewählten Mischungen entsprechen und iii) aus der Sättigungslöslichkeit der Komponente 3 in den entsprechenden selbstinkompatiblen Lösungsmitteln. In diesen drei verschiedenen Messserien wird stets der gleichen Trend beobachtet: Die Selbstinkompatibilität eines Lösungsmittels begünstigt den Lösevorgang
In this thesis a new principle of Self Incompatible Solvent is introduced. It is shown theoretically that a preexisting mixture of two substances (compound 1 and 2) with unfavorable interactions will readily dissolve a third compound because it diminishes the unfavorable interaction between the compound 1 and 2 by dilution. This behavior should be the stronger the more unfavorable the interactions between compound 1 and 2 are. However, substances with strong unfavorable interactions will not mix. Therefore the idea pursued here is to enforce the desired preexisting mixture for example by linking compound 1 covalently to compound 2. Such a molecule that is composed of two incompatible parts is called Self Incompatible Solvent in this work. In this thesis examples of incompatible compounds that show moderate incompatibility are chosen, therefore it was possible to do a comparison between simple physical mixtures and covalently linked incompatible molecules. The theoretical prediction of the theory is compared with experiments. This principle is calculated quantitatively for binary and ternary mixtures and compared with the experimental results in three distinct series of experiments: i) by using solution calorimetry and calculation of the interaction parameters between compounds 3 and the preexisting binary mixture of compound 1 and 2, ii) by using solution calorimetry and calculation of the interaction parameters between compound 3 and the Self Incompatible Solvent that correspond to the mixtures used in (i) and iii) from the saturation solubility of compound 3 in the Self Incompatible Solvent. The results obtained from the theoretical prediction and these obtained from the three different series of experiments show the same trend: the self incompatibility of the solvent improves the dissolution process
APA, Harvard, Vancouver, ISO, and other styles
3

Rodarte, Alma Isabel Marín. "Predispersed solvent extraction." Thesis, Virginia Tech, 1988. http://hdl.handle.net/10919/45173.

Full text
Abstract:

A new solvent extraction method has been developed for the extraction of metal and organic ions from very dilute aqueous solutions. The new method, which has been named Predispersed Solvent Extraction (POSE), is based on the principle that 1 there is no need to comminute both phases. All that is necessary is to comminute the solvent phase prior to contacting it with the feed. This is done by converting the solvent into aphrons, which are micron-sized globules encapsulated in a soapy film. Since the aphrons are so small, it takes a long time for the solvent to rise to the surface under the influence of gravity alone. Therefore, the separation is expedited by piggy-back flotation of the aphrons on specially prepared gas bubbles, which are somewhat larger than aphrons and are called colloidal gas aphrons (CGA).

Copper, uranium and chromium ions, and alizarin yellow were extracted from very dilute aqueous solutions using PDSE. Tests were performed in a vertical glass column in both batch and continuous modes, and in a continuous horizontal trough. The new solvent extraction procedure worked very efficiently and very quickly under laboratory conditions. Higher than 99% extraction was achieved in many of the tests performed.


Master of Science
APA, Harvard, Vancouver, ISO, and other styles
4

Xu, Zhuang. "PARTITIONING OF SOLVENT MOLECULES SURROUNGDING POLYMER CHIANS IN SOLVENT-SHIFTING PROCESS." University of Akron / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=akron1555690517286259.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wang, Nan. "CO2 Separation - from Aqueous Amine Solvent to Ionic Liquid-based solvent." Licentiate thesis, Luleå tekniska universitet, Energivetenskap, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-84244.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Tarkan, Haci Mustafa. "Air-assisted solvent extraction." Thesis, McGill University, 2006. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=102735.

Full text
Abstract:
Air-Assisted Solvent Extraction (AASX) is a novel concept that uses a solvent-coated bubble to contact the organic and aqueous phases. The advantages over conventional solvent extraction (SX) are high solvent to aqueous contact area with reduced solvent volume and ease of phase separation due to the buoyancy imparted by the air core. This opens the way to treat dilute solutions (<1 g/L), such as effluents.
The novel contribution in this thesis is the production of solvent-coated bubbles by exploiting foaming properties of kerosene-based solvents.
The basic set-up is a chamber to generate foam which is injected through a capillary (orifice diameter 2.5 mm) to produce solvent-coated bubbles (ca. 4.4 mm) which release into the aqueous phase. This generates a solvent specific surface area of ca. 3000 cm-1, equivalent to solvent droplets of ca. 20 mum. Demonstrating the process on dilute Cu solutions (down to 25 mg/L), high aqueous/organic ratios (ca. 75:1) and extractions are achieved. The solvent readily disengages to accumulate at the surface of the aqueous solution.
The LIX family of extractants imparts some foaming to kerosene based solvents but D2EHPA does not. An extensive experimental program determined that 1.5 ppm silicone oil provided the necessary foaming action without affecting extraction or stripping efficiency, greatly expanding the range of solvents that can be used in AASX.
To complement the foam study, films on bubbles blown in solvent were examined by interferometry (film thickness) and infra-red spectroscopy (film composition). A "bound" solvent layer was identified with an initial thickness of ca. 2 - 4 mum, comparable to that determined indirectly (by counting bubbles in an AASX trial and measuring solvent consumption). The film composition appeared to be independent of film thickness as it decreased with time.
As a start to scaling up, the single bubble generation system was adapted by installing up to 8 horizontal capillaries. The bubbles generated were ca. 3.4 mm. Trials showed the multi-bubble set up was a simple replication of the individual bubble case. Preliminary analysis of kinetic data shows a fit to a first-order model.
APA, Harvard, Vancouver, ISO, and other styles
7

Brogan, Alex P. S. "Solvent-free liquid proteins." Thesis, University of Bristol, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.573415.

Full text
Abstract:
The work presented in this thesis represents the first investigation into the structure, function, and material properties of solvent-free liquids of globular proteins. Using myoglobin as an archetypal system, it has been shown that solvent-free liquid proteins can be synthesized through the engineering of protein surfaces with an organic corona made from polymer surfactants. These novel materials have been shown to be stoichiometric constructs of protein and surfactant, with respect to charge, that once lyophilized form liquid-like materials with unique thermal properties and very low water contents. The generality of the synthetic procedure was tested with the formation of solvent-free liquid proteins with a variety of surfactants. The result of which was that for myoglobin, there was a surfactant molecular weight limit of c. 700 mg.mL-1 with respect to the constructs that possessed liquid phases. The suggestion of which was that the corona had to extended from the surface of the protein enough to satisfy the interparticle interactions required to yield an accessible liquid state. Spectroscopic measurements were used to assess the secondary structure of proteins in the solvent-free liquid state. UV/Vis spectroscopy showed that the prosthetic heme of myoglobin (and hemoglobin) was retained in a structurally conserved environment, and CD spectroscopy showed the retention of a significant amount of secondary structure. These studies were extended to show that in the absence of water, proteins retained the ability to thermally denature and subsequently refold. This proceeded with extraordinary thermal stability, with solvent-free liquid myoglobin exhibiting a half denaturation temperature of c. 160 QC. With the persistence of secondary structure in solvent-free liquid proteins, the function of myoglobin was also investigated. It has been shown that in the absence of water, oxygen binding was achievable up to 125 QC.
APA, Harvard, Vancouver, ISO, and other styles
8

Sackin, Robert. "Solvent ingress in polymers." Thesis, University of Surrey, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.326197.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bajpayee, Anurag. "Directional solvent extraction desalination." Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/78539.

Full text
Abstract:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2012.
"September 2012." Cataloged from PDF version of thesis.
Includes bibliographical references (p. 131-137).
World water supply is struggling to meet demand. Production of fresh water from the oceans could supply this demand almost indefinitely. As global energy consumption continues to increase, water and energy resources are getting closely intertwined, especially with regards to the water consumption and contamination in the unconventional oil and gas industry. Development of effective, affordable desalination and water treatment technologies is thus vital to meeting future demand, maintaining economic development, enabling continued growth of energy resources, and preventing regional and international conflict. We have developed a new low temperature, membrane-free desalination technology using directional solvents capable of extracting pure water from a contaminated solution without themselves dissolving in the recovered water. This method dissolves the water into a directional solvent by increasing its temperature, rejects salts and other contaminants, then recovers pure water by cooling back to ambient temperature, and re-uses the solvent. The directional solvents used here include soybean oil, hexanoic acid, decanoic acid, and octanoic acid with the last two observed to be the most effective. These fatty acids exhibit the required characteristics by having a hydrophilic carboxylic acid end which bonds to water molecules but the hydrophobic chain prevents the dissolution of water soluble salts as well the dissolution of the solvent in water. Directional solvent extraction may be considered a molecular-level desalination approach. Directional Solvent Extraction circumvents the need for membranes, uses simple, inexpensive machinery, and by operating at low temperatures offers the potential for using waste heat. This technique also lends itself well to treatment of feed waters over a wide range of total dissolved solids (TDS) levels and is one of the very few known techniques to extract water from saturated brines. We demonstrate >95% salt rejection for seawater TDS concentrations (35,000 ppm) as well as for oilfield produced water TDS concentrations (>100,000 ppm) and saturated brines (300,000 ppm) through a benchtop batch process, and recovery ratios as high as 85% for feed TDS of 35,000 ppm through a multi-stage batch process. We have also designed, constructed, and demonstrated a semi-continuous process prototype. The energy and economic analysis suggests that this technique could become an effective, affordable method for seawater desalination and for treatment of produced water from unconventional oil and gas extraction.
by Anurag Bajpayee.
Ph.D.
APA, Harvard, Vancouver, ISO, and other styles
10

TRUJILLO, REBOLLO ANDRES. "SOLVENT EXTRACTION OF MOLYBDENUM." Diss., The University of Arizona, 1987. http://hdl.handle.net/10150/184009.

Full text
Abstract:
The equilibrium and the kinetics of the reaction of Mo (VI) with 8-hydroxyquinoline; 8-hydroxyquinaldine; KELEX 100; LIX63; and LIX65N were studied by solvent extraction. From the equilibrium studies it was concluded that in weakly acidic solution (pH 5 to 6) the overall extraction reaction is (UNFORMATTED TABLE FOLLOWS) MoO₄²⁻ + 2H⁺ + 2HL(o) ↔ (K(ex)) MoO₂L ₂(o) + 2H₂O (TABLE ENDS) where HL is the monoprotic bidentate ligand, "(o)" refers to the organic phase, and K(,ex) is the extraction constant. It was concluded that the complexation reaction requires four protons to convert molybdate into molybdenyl. The extractions constants for LIX63 and 8-hydroxyquinaldine, corrected for the side reaction of the ligand and metal, are 10¹⁶·⁴³ and 10¹⁴·⁴⁰, respectively. In the case of LIX65N, the plot of log(D) vs pH has a maximum at pH 1.0, which was explained qualitatively in terms of protonation of the ligand and molybdic acid at low pH. The extraction constant for the reaction of molybdic acid and the neutral ligand was estimated to be 100,000. The kinetics of extraction Mo (VI) with LIX63, 8-hydroxyquinoline, 8-hydroxyquinaldine, and Kelex 100 were studied in this work. In all cases, except 8-hydroxyquinoline, the rate-determining step of the reaction involves the formation of a 1:1 complex between the neutral ligand and several Mo(VI) species differing in the degree of protonation. The rate-determining step for the reaction of Mo(VI) with 8-hydroxyquinoline involves the formation of a 1:2 complex. The rate constant for the reaction of HMoO₄ with 8-hydroxyquinaldine is four orders of magnitude smaller than the corresponding value reported in the literature for 8-hydroxyquinoline. The slower reaction with 8-hydroxyquinaldine was attributed to the presence of the methyl group next to the nitrogen atom of the ligand which hinders its binding with molybdenum in the rate determining step of the reaction.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Solvent-solvent"

1

Chadwick, Oliver, H. Ross Anderson, J. Martin Bland, and John Ramsey. Solvent Abuse. New York, NY: Springer New York, 1991. http://dx.doi.org/10.1007/978-1-4612-3184-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Barrett, Kevin. Solvent abuse. London: National Society for the Prevention of Cruelty to Children, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Connolly, Sean. Solvent abuse. Oxford: Heinemann Library, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Birmingham Advisory Committee on Solvent Abuse. Solvent abuse. Birmingham: BACSA, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bureau, National Children's, ed. Solvent misuse. London: National Children's Bureau, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Birmingham Advisory Committee on Solvent Abuse., ed. Solvent abuse. Birmingham: Birmingham Advisory Committee on Solvent Abuse, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Arlien-Søborg, Peter. Solvent neurotoxicity. Boca Raton, Fla: CRC Press, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

United States. Environmental Protection Agency. Office of Emergency and Remedial Response. and United States. Environmental Protection Agency. Office of Research and Development., eds. Solvent extraction. Washington, DC: U.S. Environmental Protection Agency, Office of Emergency and Remedial Response, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Leahy, R. B. Laboratory comparison of solvent-loaded and solvent-free emulsions. Salem, OR: Oregon Dept. of Transportation, Research Group, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Cocchiarella, Linda. Stoddard solvent toxicity. Atlanta, GA: U.S. Dept. of Health & Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Solvent-solvent"

1

Gooch, Jan W. "Solvent." In Encyclopedic Dictionary of Polymers, 678–82. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_10886.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lynch, Gordon S., David G. Harrison, Hanjoong Jo, Charles Searles, Philippe Connes, Christopher E. Kline, C. Castagna, et al. "Solvent." In Encyclopedia of Exercise Medicine in Health and Disease, 800. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-540-29807-6_3053.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gooch, Jan W. "Solvent." In Encyclopedic Dictionary of Polymers, 924. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_14823.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bährle-Rapp, Marina. "solvent." In Springer Lexikon Kosmetik und Körperpflege, 520. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-71095-0_9815.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mohamed, Khayet. "Bore Liquid: Solvent and Non-solvent." In Encyclopedia of Membranes, 1–3. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-40872-4_1180-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Jones, David T., and David R. Woods. "Solvent Production." In Clostridia, 105–44. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4757-9718-3_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Medrzycka, Krystyna, and Sebastian Pastewski. "Solvent Sublation." In Chemistry for the Protection of the Environment 2, 67–74. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-0405-0_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Morgan, Michael M., MacDonald J. Christie, Luis De Lecea, Jason C. G. Halford, Josee E. Leysen, Warren H. Meck, Catalin V. Buhusi, et al. "Solvent Abuse." In Encyclopedia of Psychopharmacology, 1252. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-68706-1_3587.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gooch, Jan W. "Adhesive, Solvent." In Encyclopedic Dictionary of Polymers, 20. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_276.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gooch, Jan W. "Differentiating Solvent." In Encyclopedic Dictionary of Polymers, 219. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_3649.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Solvent-solvent"

1

Gupta, Subodh Chandra, Simon Gittins, Arun Sood, and Khalil Zeidani. "Optimal Amount of Solvent in Solvent Aided Process." In Canadian Unconventional Resources and International Petroleum Conference. Society of Petroleum Engineers, 2010. http://dx.doi.org/10.2118/137543-ms.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gupta, Subodh Chandra, and Simon Gittins. "Measurement of Recovered Solvent in Solvent Aided Process." In Canadian Unconventional Resources and International Petroleum Conference. Society of Petroleum Engineers, 2010. http://dx.doi.org/10.2118/136402-ms.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ivory, J., T. Frauenfeld, and C. Jossy. "Thermal Solvent Reflux and Thermal Solvent Hybrid Experiments." In Canadian International Petroleum Conference. Petroleum Society of Canada, 2007. http://dx.doi.org/10.2118/2007-067.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Chang, Jeannine, John Joseph Ivory, Ken Forshner, and Yu Feng. "Impact Of Solvent Loss During Solvent Injection Processes." In SPE Heavy Oil Conference-Canada. Society of Petroleum Engineers, 2013. http://dx.doi.org/10.2118/165476-ms.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Rasaiah, Jayendran C., and Jianjun Zhu. "Solvent dynamics and electron transfer reactions." In Ultrafast reaction dynamics and solvent effects. AIP, 1994. http://dx.doi.org/10.1063/1.45397.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mialocq, J. C., P. Hébert, G. Baldacchino, and T. Gustavsson. "Relaxation dynamics of a polar solvent cage around a nonpolar electronically excited solvent probe. A subpicosecond laser study." In Ultrafast reaction dynamics and solvent effects. AIP, 1994. http://dx.doi.org/10.1063/1.45390.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Balos, Vasileios, Hossam Elgabarty, Martin Wolf, Thomas Kühne, Roland Netz, Douwe Jan Bonthuis, Naveen Kumar Kaliannan, Philip Loche, Tobias Kampfrath, and Mohsen Sajadi. "Ultrafast solvent-to-solvent and solvent-to-solute energy transfer driven by single-cycle THz electric fields." In Terahertz Emitters, Receivers, and Applications XII, edited by Manijeh Razeghi and Alexei N. Baranov. SPIE, 2021. http://dx.doi.org/10.1117/12.2594143.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Muguet, Francis F., and G. Wilse Robinson. "Energetics and formation of the ‘‘hydrated electron’’ within an itinerant radical model." In Ultrafast reaction dynamics and solvent effects. AIP, 1994. http://dx.doi.org/10.1063/1.45404.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Grabowska, A. "Proton transfer reactions prepared by the hydrogen bonds in electronically excited polyatomic molecules." In Ultrafast reaction dynamics and solvent effects. AIP, 1994. http://dx.doi.org/10.1063/1.45385.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Declémy, Alain, and Claude Rullière. "Relaxation dynamics of the solvent cage around an excited molecule in solution." In Ultrafast reaction dynamics and solvent effects. AIP, 1994. http://dx.doi.org/10.1063/1.45386.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Solvent-solvent"

1

Klatt, L. N. Caustic-Side Solvent Extraction Solvent-Composition Recommendation. Office of Scientific and Technical Information (OSTI), May 2002. http://dx.doi.org/10.2172/814130.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Fraga, Carlos, Kai-For Mo, David Abrecht, Amanda Casella, Nicolas Uhnak, Zachary Kennedy, and Gregg Lumetta. Solvent Exchange. Office of Scientific and Technical Information (OSTI), September 2020. http://dx.doi.org/10.2172/1983975.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Leonard, R. A. Caustic-side solvent extraction Flowsheet for optimized solvent. Office of Scientific and Technical Information (OSTI), July 2002. http://dx.doi.org/10.2172/799858.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Delmau, Laetitia Helene, and Bruce A. Moyer. Solvent Blending Strategy to Upgrade MCU CSSX Solvent to Equivalent Next-Generation CSSX Solvent. Office of Scientific and Technical Information (OSTI), December 2012. http://dx.doi.org/10.2172/1057946.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Moyer, Bruce, and Nathan Bessen. Density of Next-Generation Caustic-Side Solvent Extraction Solvent. Office of Scientific and Technical Information (OSTI), August 2021. http://dx.doi.org/10.2172/1819565.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Paffhausen, M. W., D. L. Smith, and S. N. Ugaki. Solvent recycle/recovery. Office of Scientific and Technical Information (OSTI), September 1990. http://dx.doi.org/10.2172/6153281.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Crowder, M. L. Solvent Quality Testing. Office of Scientific and Technical Information (OSTI), September 2002. http://dx.doi.org/10.2172/802626.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Leigh R. Martin and Bruce J. Mincher. TALSPEAK Solvent Degradation. Office of Scientific and Technical Information (OSTI), September 2009. http://dx.doi.org/10.2172/971366.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bonnesen, P. V. Stability of the Caustic-Side Solvent Extraction (CSSX) Process Solvent: Effect of High Nitrite on Solvent Nitration. Office of Scientific and Technical Information (OSTI), June 2002. http://dx.doi.org/10.2172/814158.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Duncan, Nathan C., Laetitia Helene Delmau, Dale Ensor, Denise L. Lee, Joseph F. Birdwell Jr, Talon G. Hill, Neil J. Williams, et al. Next Generation Solvent Development for Caustic-Side Solvent Extraction of Cesium. Office of Scientific and Technical Information (OSTI), July 2013. http://dx.doi.org/10.2172/1087500.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography