Contents
Academic literature on the topic 'Solvent eutectique'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Solvent eutectique.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Solvent eutectique"
MOUFAWAD, Tarek, Margarida COSTA GOMES, and Sophie FOURMENTIN. "Solvants eutectiques profonds - Vers des procédés plus durables." Chimie verte, April 2021. http://dx.doi.org/10.51257/a-v1-chv4002.
Full textDissertations / Theses on the topic "Solvent eutectique"
Augis, Luc. "Développement de systèmes à base de solvants eutectiques profonds pour la délivrance cutanée d'anti-infectieux hydrophobes." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASQ011.
Full textInfections caused by pathogens such as bacteria, fungi, parasites, and viruses pose a significant health challenge, particularly when existing treatments lead to substantial side effects or prove too costly for developing countries. Given these challenges, the imperative to explore innovative pharmacotechnical methods is clear, especially for treating fungal and parasitic skin infections that are prone to causing undesirable systemic side effects with traditional administration routes. Against this backdrop, deep eutectic solvents (DES) have emerged as a promising topical alternative. This thesis investigates a range of DES- based systems, from predominantly hydrophobic mixtures to hydrophilic blends that incorporate amphiphilic molecules like surfactants, phospholipids, or amphiphilic cyclodextrins. The aim is to elucidate the self-organization of these lipids and their interactions within the DES environment. Our assessment of these systems concentrated on numerous aspects, including their physicochemical properties, ability to solubilize active molecules, and impact on the skin. Our research identified a particularly promising system, comprising a phosphonium salt and monoolein, which effectively solubilizes Amphotericin B in its most active and body-tolerated form. This formulation has shown no significant adverse effects on the epidermis, representing a significant stride towards developing effective and safe therapeutic solutions for combating skin infections
Mahi, Mohammed Ridha. "Captage du CO2 par des amines en milieu aqueux et non aqueux (solvant eutectique profond)." Thesis, Lyon, 2019. http://www.theses.fr/2019LYSE1104.
Full textThis work focuses on the study of the absorption capacity of CO2 by different types of dissolved amines in aqueous and non-aqueous media. The latter consists of a mixture of choline chloride and ethylene glycol in a molar proportion of 1 to 2 respectively. This solvent, commonly called "Ethaline", belongs to the category called "Deep Eutectic Solvents" so designated because their eutectic composition makes it possible to obtain mixtures that are generally liquid at room temperature. With this aim, a liquid-vapor equilibrium apparatus with on-line analysis of the vapor phase by GC was performed and its operation validated. The CO2 absorption isotherms and the volatility (composition of the vapor phase) of the studied mixtures, with and without CO2, were determined at different temperatures and for different amine compositions. The explored pressure range is particularly large: from 1 Pa to 800 kPa. The study showed that the substitution of water by "Ethaline" leads to a CO2 absorption capacity almost identical to that of MEA and DEA in aqueous solution. On the other hand, in the case of MDEA, a lower absorption capacity is observed in Ethaline than in aqueous medium. In the hypothesis of a use of the DES+amine solvent for CO2 capture in post-combustion process, a decrease of the vapor pressure of the solvent (comparing to that of water+amine) has an advantage because of the low solvent loss due to vaporization in the absorber. The second advantage is most likely a lower effect of equipment corrosion, the third positive point is a lower enthalpy of absorption of MEA and MDEA in (1 ChCl : 2 EG) comparing to aqueous medium, resulting in a possible saving of energy in the regenerator of almost 40%. The disadvantage of the use of amines in "Ethaline" solution is the high viscosity of this solvent which decreases the kinetics of material transfer and reaction with CO2. The CO2 absorption isotherms and the experimental values of the amine volatilities in the different Amine-H2O-CO2 mixtures were well correlated by different semi-empirical models. Three thermodynamic models based on the activity coefficients; the Wilson model, NRTL and UNIQUAC were used to restitute experimental data for the liquid-vapor equilibrium of aqueous amine systems (without CO2). A satisfactory representation of the experimental results by the three models was obtained
Xie, Yuelin. "Electrodeposition of Co, Ni-based Alloys in Ionic Solutions and their Electrocatalytic Propert." Electronic Thesis or Diss., Sorbonne université, 2023. http://www.theses.fr/2023SORUS560.
Full textThe use of fossil energy, one of the main contributors to carbon emissions and a major source of pollution, has become a hot topic of discussion in recent years. Predicted energy shortages and the resulting environmental challenges are forcing mankind to look for alternatives to fossil fuels. Hydrogen is attracting increasing attention as a clean energy source, with high energy density and minimal emissions. It represents a promising, low-carbon energy carrier ready to supplant fossil fuels, particularly in the demanding industrial and transport sectors, where decarbonization is particular difficult to implement. According to existing literature, there are three main methods for producing hydrogen: hydrogen production from (i) fossil fuels, (ii) gasification, and (iii) water splitting. Water electrolysis under renewable resource conditions can practically eliminate carbon emissions, which is a significant difference compared to hydrogen production from fossil fuels (66 gCO2 e/MJ) or gasification (55 gCO2 e/MJ). Clearly, hydrogen production by electrolysis under ideal conditions has the distinct advantage of being environmentally friendly, with a low carbon footprint. Furthermore, water electrolysis offers many advantages, including the production of high-purity hydrogen, the simultaneous production of oxygen as a by-product, and simple installation. Although the hydrogen evolution reaction (HER) by water electrolysis provides numerous advantages for hydrogen production applications, its industrial adoption remains relatively limited, especially behind the production of hydrogen from fossil fuels. One of the main obstacles to its widespread use is the choice of electrocatalytic materials. Precious metals have exceptional electrocatalytic properties; however, their high cost and limited abundance on earth limit their practical application in all industries. Consequently, the search for cost-effective alternatives involving transition metals and the improvement of electrocatalyst performance through alloying and adjustments of surface morphology has emerged as important and dynamic lines of research. A wide range of techniques have been explored for synthesizing transition metal alloys used in electrocatalytic HER. Among these methods, electrodeposition stands out for its streamlined process, ease of implementation, and precise control, making it a versatile choice for large-scale applications. However, the hydrolysis of water during electrodeposition poses a problem. This can be effectively resolved by employing ionic liquids (ILs) as electrolytes, which are becoming increasingly popular due to their wide electrochemical window, high ionic conductivity, and user-friendly characteristics arising from their non-volatile and non-flammable nature. Surprisingly, research on the electrodeposition of alloys in ionic liquids remains relatively scarce. Consequently, combining the electrodeposition of alloy electrocatalysts with ionic liquids represents an attractive avenue to explore. In this work, we address the following questions: (1) Is it possible to prepare transition metal-based alloys by electrodeposition in ionic liquids? (2) What kinds of alloys can be prepared by electrodeposition in ionic liquids? (3) What is the impact of other elements (Co, Zn, Cu) on the HER properties of alloys? (4) How can the HER properties of alloys be enhanced by surface modification (dealloying)?
Miyazaki, Gabrielly. "Modeling solvent selection for biorefinery application." Electronic Thesis or Diss., Université Paris sciences et lettres, 2023. http://www.theses.fr/2023UPSLM067.
Full textIn the context of biorefineries, selecting an appropriate solvent is crucial for sustainable and economically viable separation processes. A comprehensive approach integrating criteria like Life Cycle Assessment , toxicity analysis, energy-efficient solvent regeneration, minimal solvent losses, and high selectivity is required. However, the choice becomes challenging when considering Deep Eutectic Solvents (DES) due to a lack of comprehensive experimental data, particularly regarding critical thermodynamic and physical properties like phase equilibrium, density, viscosity, heat capacity, thermal conductivity, solubility, and more. To bridge this gap, this research proposes generating essential experimental data (such as density, viscosity, and phase equilibrium properties) to optimize theoretical models. Moreover, this work proposes a solvent screening approach based on modeling thermodynamic properties using the (COnductor-like Screening MOdel segment activity coefficient (COSMO-SAC) model. The study aims to enhance the COSMO-SAC model by investigating computational variables, establishing a PSL sigma-profile database, and refining predictions through enthalpic, entropic, and intermolecular contributions. Despite encountering challenges in accurately predicting activity coefficients at infinite dilution (IDAC) for DES systems, an optimization approach significantly reduces deviations, offering a promising route for precise solvent selection in biorefinery processes
Kern, Barreto Cynara Caroline. "Dispersão de nanopartículas magnéticas em meios complexos biodegradáveis." Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066419/document.
Full textMagnetic nanocolloids are dispersions of magnetic nanostructures in a carrier fluid. Thanks to the original properties of both the liquid and the magnetic particles, these dispersions can be confined, moved, deformed and controlled by applying an external magnetic field. Such dispersions thus have many applications in nanoscience and nanotechnologies.We studied the dispersion of magnetic nanoparticles in deep eutectic solvents (DES). These solvents (DES), obtained by mixing a quaternary ammonium salt (e.g., choline chloride Ch) and a hydrogen bond donor (e.g., ethyleneglycol EG or Urea U) have properties similar to ionic liquids, and are also biodegradable. One of the questions about these dispersions is the nature of the forces implied in colloidal stability, since the DLVO model classically used in water cannot be invoked here due to the very high ionic strength of the solvent.In a first step, we have carefully characterized two DES ((ChEG (1:3) and ChU (1:2) in mol), measuring the density and viscosity for temperatures between 20 and 45°C. We could thus show the high association in these liquids.A protocol to disperse nanoparticles of maghemite (Fe2O3) or mixed ferrite (CoxZn1-xFe2O4) is then proposed, and the obtained dispersions are studied by dynamic light scattering and SAXS. The size polydispersity was reduced by size sorting, and it reveals that the smallest particles are the most easy to disperse in the DES.Last, a synthesis of NMP in clay dispersion was tested and showed promising results with a reduced size polydispersity
Nessakh, Fatima Zohra. "Étude de nouveaux fluides de travail constitués de solvants à eutectique profond pour les pompes à chaleur." Electronic Thesis or Diss., Université de Lorraine, 2022. http://www.theses.fr/2022LORR0262.
Full textA significant amount of waste heat is generated and rejected by industrial processes. This waste heat at low temperature can be upgraded using absorption heat transformers. Absorption heat thermo-transformers use conventional working fluids such as {water + lithium bromide} or {ammonia + water} systems. Nevertheless, the use of these working pairs in the processes has certain drawbacks such as corrosivity, toxicity or even crystallization. Other working fluids consisting of ionic liquid have also been considered. However, these solvents show significant toxicity and high costs. This study aims to evaluate the performance of working fluids consisting of a deep eutectic solvent (DES) and water in absorption heat thermo-transformers. The liquid-vapor equilibria of five {H2O + DES} systems as well as their thermophysical properties such as density, molar heat capacity and excess molar enthalpy were measured. This experimental work made it possible to develop empirical correlations and to adjust the parameters of the NRTL model in order to characterize the working fluids studied at any point of the absorption heat thermo-transformer. Simulations indicate that the working fluids {H2O + DES} have a performance close to {H2O + LiBr} mixture and they could be an alternative to traditional working fluids
Longeras, Olympe. "Design et compréhension de nouveaux solvants eutectiques profonds." Thesis, Université Clermont Auvergne (2017-2020), 2020. http://www.theses.fr/2020CLFAC048.
Full textDeep Eutectics Solvents (DES) is a new class of solvent which has emerged during the last decades. DES have been increasingly studied because of their low cost and low toxicity. Because of these properties, DES could potentially replace toxic solvents used in large area of chemistry. To reach this goal, a broader knowledge of these new systems has to be acquired. Therefore, in the first work of this thesis, solid-liquid phase diagrams of three partially renewable DES have been established. The comparison of these diagrams to an ideal mixing model is showing a negative deviation that allows to considered them as “deep” eutectics solvents. Following this work on the binary mixture, water was added to these DES. A first aqueous - DES mixture with a lower critical solution temperature (LSCT) has been highlighted and the origin of this remarkable property has been elucidated. To complete the initial work aiming to get a deeper understanding of these new DES, these solvents have also been tested for two applications: carbon dioxide capture and liquid-liquid extractions of dyes
Beliaeva, Kristina. "Captage et conversion électrochimique du CO2 dans des liquides ioniques et des solvants eutectiques profonds avec des catalyseurs à base de Pd." Electronic Thesis or Diss., Université Grenoble Alpes, 2023. http://www.theses.fr/2023GRALI094.
Full textCarbon dioxide capture and utilization (CCU) is a way to decarbonize industrial sector. This technology provides a valorization of cheap carbon feedstock by its transformation to carbonaceous value-added chemicals. Multiple CO2 capture and utilization techniques exist to prevent the release of the greenhouse gas to the atmosphere. Here, we propose an integrated process of CO2 capture sequenced by electroconversion to C-based products in electrochemical cell. Electrochemical CO2 conversion is a promising method due to mild reaction conditions and possibility to power the reaction with electricity produced by renewable energy sources. This process necessitates the development of solvents capable to capture CO2 and to play a role of electrolyte during electrochemical reduction reaction. At the same time, efficient catalytic materials are vital for selective CO2 conversion to targeted product(s). The choice of capture solvent is usually based on CO2 capture ability, chemical and electrochemical stabilities, environmental issue and cost. Economically affordable deep eutectic solvent (DES) electrolytes seem to be promising candidates for CO2 capture and electroreduction because of good thermal and electrochemical stabilities, competitive CO2 uptake and large electrochemical windows. In this work, we focused on the development of novel deep eutectic solvent electrolytes for CO2 electroreduction with Pd-based electrocatalysts. Palladium proved its efficiency for selective conversion of carbon dioxide to C1 molecules such as carbon monoxide.During the thesis, we synthesized and electrochemically tested multiple DESs and Pd-based electrocatalysts with different morphologies and particle sizes to get more insights into reaction mechanism of CO2 electroreduction to C1 molecules. The implementation of different characterization techniques helped to study catalytic materials and DESs structures, to analyze gaseous and liquid reaction intermediates and products, and to understand main challenges of the studied system. Overall, this study is a one step forward the application of CO2ER (carbon dioxide electrochemical reduction) for valorisation of carbon dioxide and climate change mitigation
Minart, Gaël. "Étude de l'influence de la morphologie, de modifications de surface et de la composition de matériaux d'électrode positive pour batteries Na-ion." Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0340.
Full textThis manuscript investigates the influence of morphology, surface modification, and composition of positive electrode material particles for Na-ion batteries on their electrochemical performance. Initially, three materials with the Na3V2(PO4)FO2 formula were synthesized with three different morphologies via a topochemical reaction in an ionic liquid medium. The morphology that exhibited the best performance was selected for the application of a conductive carbon coating by thermal treatment from the ionic liquid layer left on the particles surface. The same method was later applied using a deep eutectic solvent, which has the advantage of being less expensive than ionic liquids. Subsequently, the topochemical synthesis in ionic liquid was used to partially substitute vanadium with manganese, starting from a homemade Mn0.2V0.8PO4.2H2O precursor. A material with the formula Na2.85Mn0.4V1.6(PO4)2F2.4O0.6 was thus obtained. Its structure and electrochemical performance were then evaluated. Thereafter, several materials with different sodium contents were obtained by varying the synthesis parameters. The effects of the composition modification on their atomic structures and electrochemistry were then determined. Finally, a material with the Na3V2(PO4)2F3 formula synthesized by a ceramic route and coated with a conductive carbon layer was mechanically grinded to increase its tapped density, thereby increasing its volumetric energy density. The impact of grinding on the crystalline structure, morphology, and electrochemical performance was then evaluated for different grinding durations
Moufawad, Tarek. "Développement de nouveaux solvants de lavage pour l'absorption des Composés Organiques Volatils." Thesis, Littoral, 2019. http://www.theses.fr/2019DUNK0534.
Full textThe aim of this thesis was to develop new solvents for the absorption of volatile organic compounds (VOC). VOC are primary air pollutants generally used as solvents and emitted directly from industries. They have adverse health effects and some of them are classified as carcinogenic. Consequently, the reduction of the emissions of these pollutants remains a major challenge to reduce air pollution. Hence, our objective was to evaluate deep eutectic solvants (DES) as absorbents for VOCs. DESs represent a new generation of solvents that is formed by simply mixing two or more compounds. They can be produced from cheap, natural and biodegradable compounds. The preparation of these solvents is easy and is 100% atom efficient. This work was divided into three parts.The first part focused on the physicochemical properties of DES, such as density and viscosity. Analysis of the infrared spectra of DES and their pure compounds showed that hydrogen bonds are essential for the formation of DES. Their polarity was studied using the Nile red probe. In addition, solubility of various gases (CO₂, CH₄ and Ar) was measured as a function of temperature. The second part dealt with the evaluation of the aborsption capacity of DESs using static headspace coupled with gas chromatography. The determination of gas/liquid partition coefficient was performed for various VOC and DES at different temperatures. In addition, the influence of VOC mixtures on DES absorption capacities was determined. DES showed high absorption capacities for a variety of VOCs, without saturation even at high concentration. A new DES-cyclodextrin system was developed and showed improved absorption capacities due to the complexation ability of the cyclodextrin. The last part was oriented towards the industrial application of DESs. The absorption capacities of DESs were evaluated using a dynamic set-up which simulated an industrial absorption column. This set-up allows the modulation of the VOC flow rate, water content and column temperature. Finally, the regeneration of the absorbent was carried out by several absorption/desorption cycles without loss of absorption capacity. In conclusion, the overall results showed that DES have characteristics that allow them to be considered as promising solvents for VOC absorption