Journal articles on the topic 'Solvable models'

To see the other types of publications on this topic, follow the link: Solvable models.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Solvable models.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Akutsu, Yasuhiro, Atsuo Kuniba, and Miki Wadati. "Exactly Solvable IRF Models. III. A New Hierarchy of Solvable Models." Journal of the Physical Society of Japan 55, no. 6 (June 15, 1986): 1880–86. http://dx.doi.org/10.1143/jpsj.55.1880.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Pulé, Joe V., André F. Verbeure, and Valentin A. Zagrebnov. "On solvable boson models." Journal of Mathematical Physics 49, no. 4 (April 2008): 043302. http://dx.doi.org/10.1063/1.2898480.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Suzko, A. A. "Multichannel Exactly Solvable Models." Physica Scripta 34, no. 1 (July 1, 1986): 5–7. http://dx.doi.org/10.1088/0031-8949/34/1/001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Date, E., M. Jimbo, A. Kuniba, T. Miwa, and M. Okado. "Exactly solvable SOS models." Nuclear Physics B 290 (January 1987): 231–73. http://dx.doi.org/10.1016/0550-3213(87)90187-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Cugliandolo, L. F., J. Kurchan, G. Parisi, and F. Ritort. "Matrix Models as Solvable Glass Models." Physical Review Letters 74, no. 6 (February 6, 1995): 1012–15. http://dx.doi.org/10.1103/physrevlett.74.1012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Popkov, V. "Multilayer Extension of Two-Dimensional Solvable Statistical Models to Three Dimensions." International Journal of Modern Physics B 11, no. 01n02 (January 20, 1997): 175–81. http://dx.doi.org/10.1142/s021797929700023x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
We review the method of constructing solvable models in three dimensions, by starting from two-dimensional solvable models. The solvable three-dimensional models thus constructed do possess positive Boltzmann weights. These are multilayer two-dimensional systems with interactions in the third direction which can be interpreted as nearest-neighbour interactions. The set of conditions corresponding to the general 3D multilayer extension of solvable 2D models is derived.
7

Kulish, Petr P. "Models solvable by Bethe Ansatz." Journal of Generalized Lie Theory and Applications 2, no. 3 (2008): 190–200. http://dx.doi.org/10.4303/jglta/s080317.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Carlone, R., R. Figari, C. Negulescu, and L. Tentarelli. "Solvable models of quantum beating." Nanosystems: Physics, Chemistry, Mathematics 9, no. 2 (April 12, 2018): 162–70. http://dx.doi.org/10.17586/2220-8054-2018-9-2-162-170.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ghosh, Ranjan Kumar, P. K. Mohanty, and Sumathi Rao. "Exactly solvable fermionicN-band models." Journal of Physics A: Mathematical and General 32, no. 24 (January 1, 1999): 4343–50. http://dx.doi.org/10.1088/0305-4470/32/24/302.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Mézard, M., J. P. Nadal, and G. Toulouse. "Solvable models of working memories." Journal de Physique 47, no. 9 (1986): 1457–62. http://dx.doi.org/10.1051/jphys:019860047090145700.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Fendley, P. "New exactly solvable orbifold models." Journal of Physics A: Mathematical and General 22, no. 21 (November 7, 1989): 4633–42. http://dx.doi.org/10.1088/0305-4470/22/21/024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Alcaraz, Francisco C., and Matheus J. Lazo. "Exactly solvable interacting vertex models." Journal of Statistical Mechanics: Theory and Experiment 2007, no. 08 (August 1, 2007): P08008. http://dx.doi.org/10.1088/1742-5468/2007/08/p08008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Shou-Feng, Shen. "Two BT-VSA Solvable Models." Communications in Theoretical Physics 45, no. 4 (April 2006): 593–95. http://dx.doi.org/10.1088/0253-6102/45/4/004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Zhdanov, R. Z. "Quasi-exactly solvable matrix models." Physics Letters B 405, no. 3-4 (July 1997): 253–56. http://dx.doi.org/10.1016/s0370-2693(97)00655-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Ranjani, S. Sree, A. K. Kapoor, and P. K. Panigrahi. "Periodic Quasi-Exactly Solvable Models." International Journal of Theoretical Physics 44, no. 8 (August 2005): 1167–76. http://dx.doi.org/10.1007/s10773-005-4436-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Sire, C. "Exactly Solvable Almost Periodic Models." Europhysics Letters (EPL) 15, no. 1 (May 1, 1991): 43–47. http://dx.doi.org/10.1209/0295-5075/15/1/008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Grasselli, Martino, and Claudio Tebaldi. "SOLVABLE AFFINE TERM STRUCTURE MODELS." Mathematical Finance 18, no. 1 (December 13, 2007): 135–53. http://dx.doi.org/10.1111/j.1467-9965.2007.00325.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Isacker, Piet, and Kristiaan Heyde. "Exactly solvable models of nuclei." Scholarpedia 9, no. 2 (2014): 31279. http://dx.doi.org/10.4249/scholarpedia.31279.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Dijk, W. van, M. W. Kermode, and S. A. Moszkowski. "Solvable separable nonlocal potential models." Journal of Physics A: Mathematical and General 31, no. 47 (November 27, 1998): 9571–77. http://dx.doi.org/10.1088/0305-4470/31/47/016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Console, Sergio, Gabriela P. Ovando, and Mauro Subils. "Solvable Models for Kodaira Surfaces." Mediterranean Journal of Mathematics 12, no. 1 (May 16, 2014): 187–204. http://dx.doi.org/10.1007/s00009-014-0399-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Osipov, E. P. "Solvable models in quantum mechanics." Acta Applicandae Mathematicae 20, no. 1-2 (1990): 194–96. http://dx.doi.org/10.1007/bf00046917.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Shvartsburg, Aleksandr B., and Nikolai S. Erokhin. "Acoustic gradient barriers (exactly solvable models)." Physics-Uspekhi 54, no. 6 (June 30, 2011): 605–23. http://dx.doi.org/10.3367/ufne.0181.201106c.0627.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Bougie, Jonathan, Asim Gangopadhyaya, Jeffry Mallow, and Constantin Rasinariu. "Supersymmetric Quantum Mechanics and Solvable Models." Symmetry 4, no. 3 (August 16, 2012): 452–73. http://dx.doi.org/10.3390/sym4030452.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Goldfarb, Warren. "Random models and solvable Skolem classes." Journal of Symbolic Logic 58, no. 3 (September 1993): 908–14. http://dx.doi.org/10.2307/2275103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
A Skolem class is a class of formulas of pure quantification theory in Skolem normal form: closed, prenex formulas with prefixes ∀…∀∃…∃. (Pure quantification theory contains quantifiers, truth-functions, and predicate letters, but neither the identity sign nor function letters.) The Gödel Class, in which the number of universal quantifiers is limited to two, was shown effectively solvable (for satisfiability) sixty years ago [G1]. Various solvable Skolem classes that extend the Gödel Class can be obtained by allowing more universal quantifiers but restricting the combinations of variables that may occur together in atomic subformulas [DG, Chapter 2]. The Gödel Class and these extensions are also finitely controllable, that is, every satisfiable formula in them has a finite model. In this paper we isolate a model-theoretic property that connects the usual solvability proofs for these classes and their finite controllability. For formulas in the solvable Skolem classes, the property is necessary and sufficient for satisfiability. The solvability proofs implicitly relied on this fact. Moreover, for any formula in Skolem normal form, the property implies the existence of a finite model.The proof of the latter implication uses the random models technique introduced in [GS] for the Gödel Class and modified and applied in [Go] to the Maslov Class. The proof thus substantiates the claim made in [Go] that random models can be adapted to the Skolem classes of [DG, Chapter 2]. As a whole, the results of this paper provide a more general, systematic approach to finite controllability than previous methods.
25

Sergeev, S. "Complex of three-dimensional solvable models." Journal of Physics A: Mathematical and General 34, no. 48 (November 28, 2001): 10493–503. http://dx.doi.org/10.1088/0305-4470/34/48/314.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Shvartsburg, Aleksandr B., and Nikolai S. Erokhin. "Acoustic gradient barriers (exactly solvable models)." Uspekhi Fizicheskih Nauk 181, no. 6 (2011): 627. http://dx.doi.org/10.3367/ufnr.0181.201106c.0627.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Rosengren, Hjalmar. "Elliptic pfaffians and solvable lattice models." Journal of Statistical Mechanics: Theory and Experiment 2016, no. 8 (August 19, 2016): 083106. http://dx.doi.org/10.1088/1742-5468/2016/08/083106.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Ghosh, Ranjan Kumar, and Sumathi Rao. "Exactly solvable models in arbitrary dimensions." Physics Letters A 238, no. 4-5 (February 1998): 213–18. http://dx.doi.org/10.1016/s0375-9601(97)00826-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Antoniou, I., M. Gadella, J. Mateo, and G. P. Pronko. "Gamow Vectors in Exactly Solvable Models." International Journal of Theoretical Physics 42, no. 10 (October 2003): 2389–402. http://dx.doi.org/10.1023/b:ijtp.0000005965.79611.7b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Santopinto, E., F. Iachello, and M. M. Giannini. "Exactly solvable models of baryon spectroscopy." Nuclear Physics A 623, no. 1-2 (September 1997): 100–109. http://dx.doi.org/10.1016/s0375-9474(97)00427-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Hasslacher, Brosl, and David A. Meyer. "Lattice gases and exactly solvable models." Journal of Statistical Physics 68, no. 3-4 (August 1992): 575–90. http://dx.doi.org/10.1007/bf01341764.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Wadati, Miki, Tetsuo Deguchi, and Yasuhiro Akutsu. "Exactly solvable models and knot theory." Physics Reports 180, no. 4-5 (September 1989): 247–332. http://dx.doi.org/10.1016/0370-1573(89)90123-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Katsura, Shigetoshi, and Wataru Fukuda. "Exactly solvable models showing chaotic behavior." Physica A: Statistical Mechanics and its Applications 130, no. 3 (April 1985): 597–605. http://dx.doi.org/10.1016/0378-4371(85)90048-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Mikolajewicz, Uwe. "Some solvable models of shear dispersion." Deutsche Hydrographische Zeitschrift 39, no. 1 (January 1986): 1–29. http://dx.doi.org/10.1007/bf02330520.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Degasperis, A., and F. Tinebra. "1+1 solvable relativistic field models." Journal of Mathematical Physics 34, no. 7 (July 1993): 2950–64. http://dx.doi.org/10.1063/1.530107.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Foda, Omar, Michio Jimbo, Tetsuji Miwa, Kei Miki, and Atsushi Nakayashiki. "Vertex operators in solvable lattice models." Journal of Mathematical Physics 35, no. 1 (January 1994): 13–46. http://dx.doi.org/10.1063/1.530783.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Akutsu, Yasuhiro, Atsuo Kuniba, and Miki Wadati. "Exactly Solvable IRF Models. II.SN-Generalizations." Journal of the Physical Society of Japan 55, no. 5 (May 15, 1986): 1466–74. http://dx.doi.org/10.1143/jpsj.55.1466.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Duxbury, P. M., and P. L. Leath. "Exactly solvable models of material breakdown." Physical Review B 49, no. 18 (May 1, 1994): 12676–87. http://dx.doi.org/10.1103/physrevb.49.12676.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Derrida, B., M. Mend�s France, and J. Peyri�re. "Exactly solvable one-dimensional inhomogeneous models." Journal of Statistical Physics 45, no. 3-4 (November 1986): 439–49. http://dx.doi.org/10.1007/bf01021080.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Kuperin, Yu A., B. S. Pavlov, G. E. Rudin, and S. I. Vinitsky. "Spectral geometry: two exactly solvable models." Physics Letters A 194, no. 1-2 (October 1994): 59–63. http://dx.doi.org/10.1016/0375-9601(94)00725-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

BRIHAYE, YVES, and ANCILLA NININAHAZWE. "ON PT-SYMMETRIC EXTENSIONS OF THE CALOGERO AND SUTHERLAND MODELS." International Journal of Modern Physics A 19, no. 26 (October 20, 2004): 4391–400. http://dx.doi.org/10.1142/s0217751x04019858.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The original Calogero and Sutherland models describe N quantum particles on the line interacting pairwise through an inverse square and an inverse sinus-square potential respectively. These models are well known to be integrable and solvable. Here we extend the Calogero and Sutherland Hamiltonians by means of new interactions which are PT-symmetric but not self-adjoint. Some of these new interactions lead to integrable PT-symmetric Hamiltonians. The algebraic properties of these interactions reveal further that they are also solvable. In addition, we consider PT-symmetric interactions which lead to new quasi-exactly-solvable deformations of the Calogero and Sutherland Hamiltonians.
42

Shafiekhani, A., and M. Khorrami. "Exactly and Quasi-Exactly Solvable Models on the Basis of OSP(2|1)." Modern Physics Letters A 12, no. 22 (July 20, 1997): 1655–61. http://dx.doi.org/10.1142/s0217732397001680.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The exactly and quasi-exactly solvable problems for spin one-half in one dimension on the basis of a hidden dynamical symmetry algebra of Hamiltonian are discussed. We take the supergroup, OSP(2|1), as such a symmetry. A number of exactly solvable examples are considered and their spectrum are evaluated explicitly. Also, a class of quasi-exactly solvable problems on the basis of such a symmetry has been obtained.
43

DEGUCHI, TETSUO. "BRAIDS, LINK POLYNOMIALS AND TRANSFORMATIONS OF SOLVABLE MODELS." International Journal of Modern Physics A 05, no. 11 (June 10, 1990): 2195–239. http://dx.doi.org/10.1142/s0217751x9000101x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
It is shown that braid matrices and link polynomials can be systematically constructed from exactly solvable models in statistical mechanics. Through symmetry breaking transformations, different braid matrices are derived from a solvable model. By associating the Markov traces with multi-variable representations, multi-variable link polynomials are obtained. Infinitesimal operators for braid matrices are constructed. Connection of our approach to the conformal field theories and the topological quantum field theory is discussed.
44

VAFA, CUMRUN. "STRING VACUA AND ORBIFOLDIZED LG MODELS." Modern Physics Letters A 04, no. 12 (June 20, 1989): 1169–85. http://dx.doi.org/10.1142/s0217732389001350.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
We investigate how string vacua arise from N=2 superconformal models. In particular, we discuss how Landau-Ginzburg models with appropriate central charge can be orbifol-dized to construct string vacua. We develop techniques to compute the degeneracy and quantum numbers of the ground states of the LG models in the twisted sectors, even for the cases where the underlying LG model is not exactly solvable. This allows us to compute some interesting physical quantities such as the number of generations and anti-generations in the simplest compactification scenarios. The results agree with explicit computations in the cases where LG model is exactly solvable.
45

Kuniba, Atsuo, Yasuhiro Akutsu, and Miki Wadati. "Exactly Solvable IRF Models. IV. Generalized Rogers-Remanujan Identities and a Solvable Hierarchy." Journal of the Physical Society of Japan 55, no. 7 (July 15, 1986): 2166–76. http://dx.doi.org/10.1143/jpsj.55.2166.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

DUKELSKY, J., S. LERMA H., B. ERREA, S. PITTEL, S. DIMITROVA, V. G. GUEORGUIEV, and P. VAN ISACKER. "RANK-TWO RICHARDSON-GAUDIN MODELS." International Journal of Modern Physics E 15, no. 08 (November 2006): 1665–79. http://dx.doi.org/10.1142/s0218301306005289.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
We first review the development of the Richardson-Gaudin exactly-solvable pairing models and then discuss several new models based on rank-two algebras and their applications to problems in nuclear structure.
47

Mansini, Renata, Włodzimierz Ogryczak, and M. Grazia Speranza. "On LP Solvable Models for Portfolio Selection." Informatica 14, no. 1 (January 1, 2003): 37–62. http://dx.doi.org/10.15388/informatica.2003.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Nikoghosyan, G., A. Balabekyan, E. A. Kolganova, R. V. Jolos, and D. A. Sazonov. "Isovector pair correlations in analytically solvable models." International Journal of Modern Physics E 29, no. 10 (October 2020): 2050091. http://dx.doi.org/10.1142/s0218301320500913.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The eigensolutions of the collective Hamiltonian with different potentials suggested for description of the isovector pair correlations are obtained, analyzed and compared with the experimental energies. It is shown that the isovector pair correlations in nuclei around [Formula: see text]Ni can be described as anharmonic pairing vibrations. The results obtained indicate the presence of the [Formula: see text]-particle type correlations in these nuclei and the existence of the interaction different from isovector pairing which also influences on the isospin dependence of the energies.
49

Karwowski, J. "Few-particle systems: quasi-exactly solvable models." Journal of Physics: Conference Series 104 (March 1, 2008): 012033. http://dx.doi.org/10.1088/1742-6596/104/1/012033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Zemskov, E. P., and K. Kassner. "Analytically solvable models of reaction–diffusion systems." European Journal of Physics 25, no. 3 (March 10, 2004): 361–67. http://dx.doi.org/10.1088/0143-0807/25/3/003.

Full text
APA, Harvard, Vancouver, ISO, and other styles

To the bibliography