Dissertations / Theses on the topic 'Solvable groups'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 48 dissertations / theses for your research on the topic 'Solvable groups.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Bissler, Mark W. "Character degree graphs of solvable groups." Kent State University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=kent1497368851849153.
Full textWetherell, Chris. "Subnormal structure of finite soluble groups." View thesis entry in Australian Digital Theses Program, 2001. http://thesis.anu.edu.au/public/adt-ANU20020607.121248/index.html.
Full textSale, Andrew W. "The length of conjugators in solvable groups and lattices of semisimple Lie groups." Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:ea21dab2-2da1-406a-bd4f-5457ab02a011.
Full textBleak, Collin. "Solvability in groups of piecewise-linear homeomorphisms of the unit interval." Diss., Online access via UMI:, 2005.
Find full textVershik, A. M., and Andreas Cap@esi ac at. "Geometry and Dynamics on the Free Solvable Groups." ESI preprints, 2000. ftp://ftp.esi.ac.at/pub/Preprints/esi899.ps.
Full textRoth, Calvin L. (Calvin Lee). "Example of solvable quantum groups and their representations." Thesis, Massachusetts Institute of Technology, 1994. http://hdl.handle.net/1721.1/28104.
Full textYang, Yong. "Orbits of the actions of finite solvable groups." [Gainesville, Fla.] : University of Florida, 2009. http://purl.fcla.edu/fcla/etd/UFE0024783.
Full textDugan, Carrie T. "Solvable Groups Whose Character Degree Graphs Have Diameter Three." Kent State University / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=kent1185299573.
Full textVassileva, Svetla. "The word and conjugacy problems in classes of solvable groups." Thesis, McGill University, 2009. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=66827.
Full textCette thèse est une synthèse de certains problèmes algorithmiques dans la thèoriedes groupes et leur complexité computationnelle. Plus particulièrement, elle présenteune revue détaillée de la décidabilité et de la complexité des problèmes du mot et dela conjugaison dans plusieurs classes de groupes solubles, suivie de deux nouveauxrésultats. Le premier résultat énonce que le problème de la conjugaison dans lesproduits couronne qui satisfont certaines conditions élémentaires est décidable entemps polynomial. Elle part d'une publication de Jane Matthews (1969). Le deuxièmerésultat, basé sur des idées de Remeslennikov et Sokolov (1970) et de Myasnikov, Roman'kov,Ushakov et Vershik (2008), présente un algorithme en temps polynomial uniformepour décider le problème de conjugaison dans les groupes solubles libres.
Sass, Catherine Bray. "Prime Character Degree Graphs of Solvable Groups having Diameter Three." Kent State University / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=kent1398110266.
Full textPsaras, Emanuel S. "A Study of Fixed-Point-Free Automorphisms and Solvable Groups." Youngstown State University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ysu1588762170044899.
Full textDecker, Erin. "On the construction of groups with prescribed properties." Diss., Online access via UMI:, 2008.
Find full textThomas, Teri M. "A generalization of Sylow's theorem /." Connect to resource online, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=ysu1256911896.
Full textTorres, Bisquertt María de la Luz. "Symmetric generation of finite groups." CSUSB ScholarWorks, 2005. https://scholarworks.lib.csusb.edu/etd-project/2625.
Full textMebane, Palmer. "Uniquely Solvable Puzzles and Fast Matrix Multiplication." Scholarship @ Claremont, 2012. https://scholarship.claremont.edu/hmc_theses/37.
Full textWood, Lisa M. "ON THE SOLVABLE LENGTH OF ASSOCIATIVE ALGEBRAS, MATRIX GROUPS, AND LIE ALGEBRAS." NCSU, 2004. http://www.lib.ncsu.edu/theses/available/etd-10272004-164622/.
Full textMohammed, Zakiyah. "Carter Subgroups and Carter's Theorem." Youngstown State University / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=ysu1310158687.
Full textELSHARIF, RAMADAN. "The Average of Some Irreducible Character Degrees." Kent State University / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=kent1616410634054592.
Full textSantos, Edson Carlos Licurgo. "Estruturas complexas comauto-espaços nilpotentes e soluveis." [s.n.], 2007. http://repositorio.unicamp.br/jspui/handle/REPOSIP/305823.
Full textTese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica
Made available in DSpace on 2018-08-10T11:48:47Z (GMT). No. of bitstreams: 1 Santos_EdsonCarlosLicurgo_D.pdf: 405695 bytes, checksum: 334d5172d85f7bc35539dbd900fbef67 (MD5) Previous issue date: 2007
Resumo: Seja (g; [·,·]) uma álgebra de Lie com uma estrutura complexa integrável J. Os ± i-auto-espaços de J são subálgebras complexas de gC isomorfas a álgebra (g; [*]J ) com colchete [X * Y ]J = ½ ([X, Y ] - [JX, JY ]). Consideramos, no capítulo 2, o caso onde estas subálgebras são nilpotentes e mostramos que a álgebra de Lie original (g, [·,·]) é solúvel. Consideramos também o caso 6-dimensional e determinamos explicitamente a única álgebra de Lie possível (g; [*]J ). Finalizamos esse capítulo pruduzindo vários exemplos ilustrando diferentes situações, em particular mostramos que para cada s existe g com estrutura complexa J tal que (g; [*]J ) é s-passos nilpotente. Exemplos similares para estruturas hipercomplexas são também construidos. No capítulo 3 consideramos o caso onde os ±i-auto-espaços de J são subálgebras complexas solúveis e a álgebra complexa é uma álgebra de Lie semi-simples. Mostramos que, se a álgebra real é compacta, uma tal estrutura complexa depende unicamente de um subespaço da subálgebra de Cartan. Finalizamos esse capítulo considerando o caso em que as subálgebras solúveis complexas estão contidas em subálgebras de Borel de uma órbita aberta da ação dos automorfismos internos da álgebra real. Mostramos que, assim como no caso compacto, as estruturas complexas são determinandas, de modo único, por subespaços da subálgebra de Cartan. Ao final da tese apresentamos um procedimento, elaborado em MAPLE, que possibilita testar a identidade de Jacobi quando os colchetes de Lie são dados pelas constantes de estrutura
Abstract: Let (g; [·,·]) be a Lie algebra with an integrable complex structure J. The ±i eigenspaces of J are complex subalgebras of gC isomorphic to the algebra (g; [*]J )with bracket [X * Y ]J = ½ ([X, Y ] - [JX, JY ]). We consider, in chapter three, thecase where these subalgebras are nilpotent and prove that the original Lie algebra(g, [·,·]) must be solvable. We consider also the 6-dimensional case and determineexplicitly the possible nilpotent Lie algebras (g; [*]J ). We finish this chapter byproducing several examples illustrating different situations, in particular we showthat for each given s there exists g with complex structure J such that (g; [*]J ) iss-step nilpotent. Similar examples of hypercomplex structures are also built.In Chapter 3 we consider the case where the ± i eigenspaces of J are solvablecomplex subalgebras and gC is a semisimple Lie algebra. We prove that, if g is compact, such a complex structure comes from a subspace of the Cartan subalgebra.We finish this chapter by considering the case where the solvable complex subalgebras are contained in Borel subalgebras of an open orbit of the action of inner automorphisms of the real algebra.At the end of the thesis we present an algorithm, made in MAPLE, that allowus to verify the Jacobi identity when the Lie brackets are defined by the structureconstants
Doutorado
Mestre em Matemática
Qi, Dongwen. "On irreducible, infinite, non-affine coxeter groups." Columbus, Ohio : Ohio State University, 2007. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1185463175.
Full textZergane, Amel. "Séparation des représentations des groupes de Lie par des ensembles moments." Thesis, Dijon, 2011. http://www.theses.fr/2011DIJOS086/document.
Full textTo a unitary irreducible representation (π,H) of a Lie group G, is associated a moment map Ψπ. The closure of the range of Ψπ is the moment set of π. Generally, this set is Conv(Oπ), if Oπ is the corresponding coadjoint orbit. Unfortunately, it does not characterize π : 2 distincts orbits can have the same closed convex hull. We can overpass this di culty, by considering an overgroup G+ for G and a non linear map ø from g* into (g+)* such that, for generic orbits, ø(O) is an orbit and Conv( ø(O)) characterizes O. In the present thesis, we show that we can choose the pair (G+,ø), with deg ø ≤2 for all the nilpotent groups with dimension ≤6, except one, for all solvable groups with diemnsion ≤4, and for an example of motion group. Then we study the G=SL(n,R) case. For these groups, there exists ø with deg ø =n, if n>2, there is no such ø with deg ø=2, if n=4, there is no such ø with deg ø=3. Finally, we show that the moment map Ψπ is coming from a stronly Hamiltonian G-action on the Frécht symplectic manifold PH∞. We build a functor, which associates to each G an infi nite diemnsional Fréchet-Lie overgroup G̃,and, to each π a strongly Hamiltonian action, whose moment set characterizes π
Zelaya, Carlos A. "6,6’-Dimethoxygossypol: Molecular Structure, Crystal Polymorphism, and Solvate Formation." ScholarWorks@UNO, 2011. http://scholarworks.uno.edu/td/136.
Full textSircana, Carlo [Verfasser], and Claus [Akademischer Betreuer] Fieker. "On the construction of number fields with solvable Galois group / Carlo Sircana ; Betreuer: Claus Fieker." Kaiserslautern : Technische Universität Kaiserslautern, 2021. http://d-nb.info/1236571916/34.
Full textAziziheris, Kamal. "Determining Group Structure From the Sets of Character Degrees." Kent State University / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=kent1292619355.
Full textGutierrez, Renan Campos. "O teorema da alternativa de Tits." Universidade de São Paulo, 2012. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-05092012-113104/.
Full textThis masters project aims to give an elementary proof of the following theorem of Tits, known as the Alternative Tits Theorem: Let G be a finitely generated linear group over a field. Then either G is solvable by finite or G contains a noncyclic free subgroup. This theorem was proved by J. Tits in 1972 [4], was considered by the mathematician J.P. Serre, as one of the most important algebra results of the XX century. When we say an elementary proof, we absolutely not mean a simple proof. We will follow the simplified proof of John D. Dixon
Turkan, Erkan Murat. "On The Index Of Fixed Point Subgroup." Phd thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12613522/index.pdf.
Full textKouki, Sami. "Étude des restrictions des séries discrètes de certains groupes résolubles et algébriques." Thesis, Poitiers, 2014. http://www.theses.fr/2014POIT2257/document.
Full textLet G be a connected solvable Lie group and H a closed connected subgroup with Lie algebra g and h respectively. We denote g* (resp. h*) the dual of g (resp. h). The aim of my thesis is to study the restriction of a discrete series π of G, associated with a coadjoint orbit Ω C g* to H. If the restriction of π to H can be decomposed in to a direct sum of representations of H with finite multiplicities, we say that π is H-admissible. Let Pg,n : Ω → h* denote the restriction map. My objective is to show the following conjecture due to Michel Duflo : 1. The representation π i s H-admissible if and only if the moment application Pg,n is proper on the image. 2. If π is H-admissible, and if T is a discrete series of H then it s multiplicity in the restriction of π to H must be calculated by « quantifying » the corresponding reduced space (that is compact in this case). In this thesis, we provide a positive response to this conjecture in two situations, namely when: (i) G is exponential solvable Lie group. (ii) G is the semi direct product of a compact torus and the Heisenberg group and H is a connected algebraic subgroup
Lyons, Corey Francis. "INDUCED CHARACTERS WITH EQUAL DEGREE CONSTITUENTS." Kent State University / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=kent1461594819.
Full textThiery, Thimothée. "Analytical methods and field theory for disordered systems." Thesis, Paris Sciences et Lettres (ComUE), 2016. http://www.theses.fr/2016PSLEE017/document.
Full textThis thesis presents several aspects of the physics of disordered elastic systems and of the analytical methods used for their study.On one hand we will be interested in universal properties of avalanche processes in the statics and dynamics (at the depinning transition) of elastic interfaces of arbitrary dimension in disordered media at zero temperature. To study these questions we will use the functional renormalization group. After a review of these aspects we will more particularly present the results obtained during the thesis on (i) the spatial structure of avalanches and (ii) the correlations between avalanches.On the other hand we will be interested in static properties of directed polymers in 1+1 dimension, and in particular in observables related to the KPZ universality class. In this context the study of exactly solvable models has recently led to important progress. After a review of these aspects we will be more particularly interested in exactly solvable models of directed polymer on the square lattice and present the results obtained during the thesis in this direction: (i) classification ofBethe ansatz exactly solvable models of directed polymer at finite temperature on the square lattice; (ii) KPZ universality for the Log-Gamma and Inverse-Beta models; (iii) KPZ universality and non-universality for the Beta model; (iv) stationary measures of the Inverse- Beta model and of related zero temperature models
Benjamin, Diane Mullan. "Character degrees and structure of solvable and p-solvable groups." 1997. http://catalog.hathitrust.org/api/volumes/oclc/37959599.html.
Full textTypescript. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 54-55).
Lewis, Mark Lanning. "A new character correspondence for solvable groups." 1995. http://catalog.hathitrust.org/api/volumes/oclc/33663656.html.
Full textTypescript. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaf 131).
Hamblin, James. "On solvable groups satisfying the two-prime hypothesis." 2002. http://www.library.wisc.edu/databases/connect/dissertations.html.
Full textNewton, Benjamin Willard. "Complex p-solvable linear groups of finite order." 2006. http://catalog.hathitrust.org/api/volumes/oclc/83777251.html.
Full textAli, Asif. "Supersoluble groups of Wielandt length two." Phd thesis, 1997. http://hdl.handle.net/1885/145328.
Full textShort, M. W. "The primitive soluble permutation groups of degree less than 256." Phd thesis, 1990. http://hdl.handle.net/1885/139503.
Full textWängefors, Magnus. "Estimates for Riesz operators on some solvable lie groups." 2000. http://catalog.hathitrust.org/api/volumes/oclc/48798876.html.
Full textMarshall, Mary K. "Derived lengths of solvable groups with abelian Sylow subgroups." 1993. http://catalog.hathitrust.org/api/volumes/oclc/30117461.html.
Full textTypescript. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaf 44).
Riedl, Jeffrey Mark. "Fitting heights of solvable groups with few irreducible character degrees." 1998. http://catalog.hathitrust.org/api/volumes/oclc/40810140.html.
Full textTypescript. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaf 61).
Smith, Michael J. "Computing automorphisms of finite soluble groups." Phd thesis, 1994. http://hdl.handle.net/1885/133102.
Full textChen, Ingrid. "Partial complements in finite soluble groups." Phd thesis, 2012. http://hdl.handle.net/1885/149677.
Full textNiemeyer, Alice C. "Computing presentations for finite soluble groups." Phd thesis, 1993. http://hdl.handle.net/1885/133191.
Full textJarso, Tamiru. "Automorphisms fixing subnormal subgroups of certain infinite soluble groups." Phd thesis, 2003. http://hdl.handle.net/1885/148800.
Full textLin, Cheng-Chieh, and 林正傑. "Irreducible Characters and Taketa's Inequality for Finite Solvable PC-Groups of First Type." Thesis, 2005. http://ndltd.ncl.edu.tw/handle/67973923203328288235.
Full text國立高雄師範大學
數學系
93
A finite group is said to be power-commutative ($PC$) if the commutativity of nontrivial powers of two elements implies the commutativity of the two elements. We study irreducible characters of finite solvable $PC$-groups of first type and related problems to the Taketa's inequality in this article.
Tolcachier, Alejandro. "Grupos de Bieberbach y holonomía de solvariedades planas." Bachelor's thesis, 2018. http://hdl.handle.net/11086/11323.
Full textUna solvariedad es una variedad compacta de la forma L/G donde G es un grupo de Lie soluble simplemente conexo y L es un retículo de G. En este trabajo estudiamos solvariedades equipadas con una métrica riemanniana plana, a partir de la caracterización dada por Milnor de los grupos de Lie que admiten una métrica riemanniana invariante a izquierda plana. Las solvariedades planas son ejemplos de variedades compactas planas, por lo cual podemos aplicar los teoremas clásicos de Bieberbach para describir el grupo fundamental L de la variedad L/G. En particular, todo grupo de Bieberbach posee un subgrupo abeliano maximal de índice finito. Más aún, el cociente del grupo L por este subgrupo es finito y se identifica con la holonomía riemanniana de la variedad compacta plana. Probamos primero que el grupo de holonomía riemanniana de cualquier solvariedad plana es abeliano y que todo grupo abeliano finito se puede obtener así. Luego, nos restringimos al caso de grupos de Lie casi abelianos, para los cuales hay un criterio para determinar la existencia de retículos, el cual utilizamos para clasificar las solvariedades planas en dimensión 3, 4 y 5. Para dimensiones mayores, probamos que para todo n>2 la dimensión mínima de una variedad compacta plana con grupo de holonomía Z_n coincide con la dimensión mínima de una solvariedad plana con grupo de holonomía Z_n.
A solvmanifold is a compact manifold L/G where G is a simply connected solvable Lie group and L is a lattice of G. In this article we study solvmanifolds equipped with a flat Riemannian metric, according to Milnor's characterization of Lie groups that admit a flat left invariant metric. Flat solvmanifolds are examples of compact flat manifolds, so we can apply the classic theory of Bieberbach groups to describe the fundamental group L of the manifold L/G. In particular, every Bieberbach group has a maximal normal abelian subgroup which has finite index. Fruthermore, the quotient of the group L by this subgroup is finite and can be with the riemannian holonomy group of the compact flat manifold. First, we prove that the holonomy group of every flat solvmanifold is abelian and, conversely, that every finite abelian group can be obtained as a holonomy group of a flat solvmanifold. Then, we focus on almost abelian Lie groups, for which there is a well known criterion to determine the existence of lattices that we use to classify flat solvmanifolds of dimension 3, 4 and 5. Concerning arbitrary dimensions, we prove that for every n>2 the minimum dimension of a compact flat manifold with holonomy group Z_n is equal to the minimum dimension of a flat solvmanifold with holonomy group Z_n.
Gallo, Andrea Lilén. "Análisis armónico en nilvariedades." Doctoral thesis, 2020. http://hdl.handle.net/11086/15949.
Full textEsta tesis se encuadra en el estudio del análisis armónico en pares de Gelfand de la forma (K,N), donde N es un grupo de Lie nilpotente y K es un subgrupo de automorfismos de N. En una primera parte trabajamos con una familia de pares de Gelfand (K,N) definida previamente por Jorge Lauret. Descomponemos la acción del producto semidirecto de K y N, sobre el espacio de funciones definidas sobre N de cuadrado integrable. Para estas familias, encontramos además la medida de Plancherel y la proyección sobre cada componente mediante las funciones esféricas asociadas al par. En el caso del grupo de Heisenberg se obtienen estos resultados para los pares de Gelfand asociados a cualquier K subgrupo de automorfismos del grupo de Heisenberg. Finalmente, nos avocamos al estudio de pares de Gelfand generalizados, es decir, a pares de Gelfand donde el subgrupo K no es necesariamente compacto. Un resultado clásico garantiza que si (K,N) es un par de Gelfand donde N es un grupo de Lie nilpotente y K subgrupo compacto de automorfismos de N, entonces N es a lo sumo 2-pasos nilpotente. En esta tesis, damos un ejemplo concreto de un par de Gelfand generalizado (K,N) donde N es un grupo de Lie 3-pasos nilpotente.
This thesis is part of the study of harmonic analysis in Gelfand pairs (K,N), where N is a nilpotent Lie group and K a subgroup of automorphisms of N. In the first part, we work with a family of Gelfand pairs (K,N) defined by Jorge Lauret. We decompose the action of the semidirect product of K and N in the space of square integrable functions defined on N. We also find the Plancherel measure and the projection over each component by using spherical functions associated to the pair. In the Heisenberg case we obtain similar results with every Gelfand pair associated with each automorphism subgroup of the Heisenberg group. Finally, we deal with the study of generalized Gelfand pairs, i.e when K is non-compact. A classic result assures that, if (K,N) is a Gelfand pair with N nilpotent and K compact then N is necessarily 2-step nilpotent. In this thesis, we give an explicit example of a generalized Gelfand pair (K,N) where N is a 3-step nilpotent Lie group.
Fil: Gallo, Andrea Lilén. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina.
Origlia, Marcos Miguel. "Estructuras localmente conformes Kähler y localmente conformes simplécticas en solvariedades compacta." Doctoral thesis, 2017. http://hdl.handle.net/11086/5837.
Full textEn esta tesis estudiamos las estructuras localmente conformes Kähler (LCK) y localmente conformes simplécticas (LCS) invariantes a izquierda en grupos de Lie, o equivalentemente tales estructuras en álgebras de Lie. Luego se buscan retículos (subgrupos discretos co-compactos) en dichos grupos. De esta manera obtenemos estructuras LCK o LCS en las solvariedades compactas (cociente de un grupo de Lie por un retículo). Específicamente estudiamos las estructuras LCK en solvariedades con estructuras complejas abelianas. Luego describimos explícitamente la estructura de las álgebras de Lie que admiten estructuras de Vaisman. También determinamos los grupos de Lie casi abelianos que admiten estructuras LCK o LCS y además analizamos la existencia de retículos en ellos. Finalmente desarrollamos un método para construir de manera sistemática ejemplos de álgebras de Lie equipadas con estructuras LCK o LCS a partir de un álgebra de Lie que ya admite tales estructuras y una representación compatible.
In this thesis we study left invariant locally conformal Kähler (LCK) structures and locally conformal symplectic structures (LCS) on Lie groups, or equivalently such structures on Lie algebras. Then we analize the existence of lattices (co-compact discrete subgroups) on these Lie groups. Therefore, we obtain LCK or LCS structures on compact solvmanifolds (quotients of a Lie group by a lattice). Specifically we study LCK structures on solvmanifold where the complex structure is abelian. Then we describe the structure of a Lie algebra admitting a Vaisman structure. On the other hand we determine the almost abelian Lie groups equipped with a LCK or LCS structures, and we also analize the existence of lattices on these groups. Finally we construct a method to produce examples of Lie algebras admitting LCK or LCS structures beginning with a Lie algebra with these structures and a compatible representation.
"The (n)-Solvable Filtration of the Link Concordance Group and Milnor's mu-Invariaants." Thesis, 2011. http://hdl.handle.net/1911/70379.
Full textSchneider, Jakob. "On the length of group laws." 2016. https://tud.qucosa.de/id/qucosa%3A36487.
Full textSei C die Klasse der endlichen nilpotenten, auflösbaren, symmetrischen oder halbeinfachen Gruppen und n eine positive ganze Zahl. We diskutieren die folgende Frage über Gruppengesetze: Was ist die Länge des kürzesten nicht-trivialen Gesetzes, das für alle endlichen Gruppen der Klasse C gilt, welche die Ordnung höchstens n haben?:Introduction 0 Essentials from group theory 1 The two main tools 1.1 The commutator lemma 1.2 The extension lemma 2 Nilpotent and solvable groups 2.1 Definitions and basic properties 2.2 Short non-trivial words in the derived series of F_2 2.3 Short non-trivial words in the lower central series of F_2 2.4 Laws for finite nilpotent groups 2.5 Laws for finite solvable groups 3 Semi-simple groups 3.1 Definitions and basic facts 3.2 Laws for the symmetric group S_n 3.3 Laws for simple groups 3.4 Laws for finite linear groups 3.5 Returning to semi-simple groups 4 The final conclusion Index Bibliography