Journal articles on the topic 'Soluble lead redox flow battery'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Soluble lead redox flow battery.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Shittu, Emmanuel, Rathod Suman, Musuwathi Krishnamoorthy Ravikumar, Ashok Kumar Shukla, Guangling Zhao, Satish Patil, and Jenny Baker. "Life cycle assessment of soluble lead redox flow battery." Journal of Cleaner Production 337 (February 2022): 130503. http://dx.doi.org/10.1016/j.jclepro.2022.130503.
Full textAn, Sang-Yong, and Eung-Jin Kim. "Characteristics of Redox Flow Battery Using the Soluble Lead Electrolyte." Journal of the Korean Electrochemical Society 14, no. 4 (November 30, 2011): 214–18. http://dx.doi.org/10.5229/jkes.2011.14.4.214.
Full textNandanwar, Mahendra, and Sanjeev Kumar. "Charge coup de fouet phenomenon in soluble lead redox flow battery." Chemical Engineering Science 154 (November 2016): 61–71. http://dx.doi.org/10.1016/j.ces.2016.07.001.
Full textJaiswal, Nandini, Harun Khan, and R. Kothandaraman. "Review—Recent Developments and Challenges in Membrane-Less Soluble Lead Redox Flow Batteries." Journal of The Electrochemical Society 169, no. 4 (April 1, 2022): 040543. http://dx.doi.org/10.1149/1945-7111/ac662a.
Full textRathod, Suman, Nandini Jaiswal, M. K. Ravikumar, Satish Patil, and Ashok Shukla. "Effect of binary additives on performance of the undivided soluble-lead-redox-flow battery." Electrochimica Acta 365 (January 2021): 137361. http://dx.doi.org/10.1016/j.electacta.2020.137361.
Full textNandanwar, Mahendra N., Kottu Santosh Kumar, S. S. Srinivas, and D. M. Dinesh. "Pump-less, free-convection-driven redox flow batteries: Modelling, simulation, and experimental demonstration for the soluble lead redox flow battery." Journal of Power Sources 454 (April 2020): 227918. http://dx.doi.org/10.1016/j.jpowsour.2020.227918.
Full textNandanwar, Mahendra, and Sanjeev Kumar. "A modelling and simulation study of soluble lead redox flow battery: Effect of presence of free convection on the battery characteristics." Journal of Power Sources 412 (February 2019): 536–44. http://dx.doi.org/10.1016/j.jpowsour.2018.11.070.
Full textSarigamala, Karthik Kiran, Yu-Hsiu Lin, Kai Rui Pan, and Hsun-Yi Chen. "Life span enhancement of low cost soluble-lead-redox-flow battery using high performance meso-graphite spherules/AC anode." Journal of Energy Storage 70 (October 2023): 107957. http://dx.doi.org/10.1016/j.est.2023.107957.
Full textBANERJEE, A., D. SAHA, T. N. GURU Row, and A. K. SHUKLA. "A soluble-lead redox flow battery with corrugated graphite sheet and reticulated vitreous carbon as positive and negative current collectors." Bulletin of Materials Science 36, no. 1 (February 2013): 163–70. http://dx.doi.org/10.1007/s12034-013-0426-7.
Full textNandanwar, Mahendra N. "Effect of porous nature of anode on the performance of the soluble lead redox flow battery: A modeling and simulation study." Journal of Power Sources 571 (July 2023): 233029. http://dx.doi.org/10.1016/j.jpowsour.2023.233029.
Full textRomadina, Elena, and Keith J. Stevenson. "(Digital Presentation) Novel Organic Materials for Non-Aqueous Redox Flow Batteries: Implementation of Triarylamine and Phenazine Core Structures." ECS Meeting Abstracts MA2022-01, no. 48 (July 7, 2022): 2039. http://dx.doi.org/10.1149/ma2022-01482039mtgabs.
Full textClaus, Ana, Alexandra Berkova, Osama Awadallah, and Bilal El-Zahab. "Seawater Battery: Strategies to Enable High Performance." ECS Meeting Abstracts MA2022-02, no. 64 (October 9, 2022): 2330. http://dx.doi.org/10.1149/ma2022-02642330mtgabs.
Full textGong, Ke, Fei Xu, Jonathan B. Grunewald, Xiaoya Ma, Yun Zhao, Shuang Gu, and Yushan Yan. "All-Soluble All-Iron Aqueous Redox-Flow Battery." ACS Energy Letters 1, no. 1 (May 9, 2016): 89–93. http://dx.doi.org/10.1021/acsenergylett.6b00049.
Full textKrishna, M., R. G. A. Wills, A. A. Shah, D. Hall, and J. Collins. "The separator-divided soluble lead flow battery." Journal of Applied Electrochemistry 48, no. 9 (July 7, 2018): 1031–41. http://dx.doi.org/10.1007/s10800-018-1230-2.
Full textKoenig, Gary, Devanshi Gupta, Jing Wang, and Yuxuan Zhang. "Assessing Mediated Redox Flow Battery Reaction Progression." ECS Meeting Abstracts MA2022-02, no. 4 (October 9, 2022): 549. http://dx.doi.org/10.1149/ma2022-024549mtgabs.
Full textWills, R. G. A., J. Collins, D. Stratton-Campbell, C. T. J. Low, D. Pletcher, and Frank C. Walsh. "Developments in the soluble lead-acid flow battery." Journal of Applied Electrochemistry 40, no. 5 (March 1, 2009): 955–65. http://dx.doi.org/10.1007/s10800-009-9815-4.
Full textWang, Hao, Sayed Youssef Sayed, Yuqiao Zhou, Brian C. Olsen, Erik J. Luber, and Jillian M. Buriak. "Water-soluble pH-switchable cobalt complexes for aqueous symmetric redox flow batteries." Chemical Communications 56, no. 25 (2020): 3605–8. http://dx.doi.org/10.1039/d0cc00383b.
Full textZiegler, Christopher J. "(Keynote) Zwitterionic Ferrocenes As Redox Flow Battery Components." ECS Meeting Abstracts MA2022-01, no. 48 (July 7, 2022): 2021. http://dx.doi.org/10.1149/ma2022-01482021mtgabs.
Full textSuman, Rathod, Satya Prakash Yadav, M. K. Ravikumar, Satish Patil, and A. K. Shukla. "Developing Shunt-Current Minimized Soluble-Lead-Redox-Flow-Batteries." Journal of The Electrochemical Society 168, no. 12 (December 1, 2021): 120552. http://dx.doi.org/10.1149/1945-7111/ac436c.
Full textWang, Wei. "(Invited) Accelerating Material Design for Aqueous Organic Redox Flow Batteries." ECS Meeting Abstracts MA2022-02, no. 46 (October 9, 2022): 1701. http://dx.doi.org/10.1149/ma2022-02461701mtgabs.
Full textWang, Wei. "(Invited) Accelerating Material Design for Aqueous Organic Redox Flow Batteries." ECS Meeting Abstracts MA2022-01, no. 3 (July 7, 2022): 487. http://dx.doi.org/10.1149/ma2022-013487mtgabs.
Full textStracensky, Thomas, Sandip Maurya, Rangachary Mukundan, and Sanjeev Mukerjee. "Novel Anolyte Redox Active Organic Molecules for Redox Flow Battery Applications." ECS Meeting Abstracts MA2022-02, no. 1 (October 9, 2022): 47. http://dx.doi.org/10.1149/ma2022-02147mtgabs.
Full textFreeman, Matthew B., Le Wang, Daniel S. Jones, and Christopher M. Bejger. "A cobalt sulfide cluster-based catholyte for aqueous flow battery applications." Journal of Materials Chemistry A 6, no. 44 (2018): 21927–32. http://dx.doi.org/10.1039/c8ta05788e.
Full textDong-Yang, LIU, CHENG Jie, PAN Jun-Qing, WEN Yue-Hua, CAO Gao-Ping, and YANG Yu-Sheng. "All-Lead Redox Flow Battery in a Fluoroboric Acid Electrolyte." Acta Physico-Chimica Sinica 27, no. 11 (2011): 2571–76. http://dx.doi.org/10.3866/pku.whxb20111105.
Full textHazza, Ahmed, Derek Pletcher, and Richard Wills. "A novel flow battery: A lead acid battery based on an electrolyte with soluble lead(ii)." Physical Chemistry Chemical Physics 6, no. 8 (2004): 1773. http://dx.doi.org/10.1039/b401115e.
Full textPletcher, Derek, and Richard Wills. "A novel flow battery: A lead acid battery based on an electrolyte with soluble lead(ii)." Physical Chemistry Chemical Physics 6, no. 8 (2004): 1779. http://dx.doi.org/10.1039/b401116c.
Full textPletcher, Derek, Hantao Zhou, Gareth Kear, C. T. John Low, Frank C. Walsh, and Richard G. A. Wills. "A novel flow battery—A lead-acid battery based on an electrolyte with soluble lead(II)." Journal of Power Sources 180, no. 1 (May 2008): 621–29. http://dx.doi.org/10.1016/j.jpowsour.2008.02.024.
Full textPletcher, Derek, Hantao Zhou, Gareth Kear, C. T. John Low, Frank C. Walsh, and Richard G. A. Wills. "A novel flow battery—A lead-acid battery based on an electrolyte with soluble lead(II)." Journal of Power Sources 180, no. 1 (May 2008): 630–34. http://dx.doi.org/10.1016/j.jpowsour.2008.02.025.
Full textPletcher, Derek, and Richard Wills. "A novel flow battery—A lead acid battery based on an electrolyte with soluble lead(II)." Journal of Power Sources 149 (September 2005): 96–102. http://dx.doi.org/10.1016/j.jpowsour.2005.01.048.
Full textHazza, Ahmed, Derek Pletcher, and Richard Wills. "A novel flow battery—A lead acid battery based on an electrolyte with soluble lead(II)." Journal of Power Sources 149 (September 2005): 103–11. http://dx.doi.org/10.1016/j.jpowsour.2005.01.049.
Full textLi, Xiaohong, Derek Pletcher, and Frank C. Walsh. "A novel flow battery: A lead acid battery based on an electrolyte with soluble lead(II)." Electrochimica Acta 54, no. 20 (August 2009): 4688–95. http://dx.doi.org/10.1016/j.electacta.2009.03.075.
Full textShah, A. A., X. Li, R. G. A. Wills, and F. C. Walsh. "A Mathematical Model for the Soluble Lead-Acid Flow Battery." Journal of The Electrochemical Society 157, no. 5 (2010): A589. http://dx.doi.org/10.1149/1.3328520.
Full textSchrage, Briana R., Baosen Zhang, Stephen C. Petrochko, Zhiling Zhao, Ariana Frkonja-Kuczin, Aliaksei Boika, and Christopher J. Ziegler. "Highly Soluble Imidazolium Ferrocene Bis(sulfonate) Salts for Redox Flow Battery Applications." Inorganic Chemistry 60, no. 14 (July 2, 2021): 10764–71. http://dx.doi.org/10.1021/acs.inorgchem.1c01473.
Full textLi, Yun, Jeroen Sniekers, João Malaquias, Xianfeng Li, Stijn Schaltin, Linda Stappers, Koen Binnemans, Jan Fransaer, and Ivo F. J. Vankelecom. "A non-aqueous all-copper redox flow battery with highly soluble active species." Electrochimica Acta 236 (May 2017): 116–21. http://dx.doi.org/10.1016/j.electacta.2017.03.039.
Full textLiu, Ping, Yu-liang Cao, Guo-Ran Li, Xue-Ping Gao, Xin-Ping Ai, and Han-Xi Yang. "A Solar Rechargeable Flow Battery Based on Photoregeneration of Two Soluble Redox Couples." ChemSusChem 6, no. 5 (April 4, 2013): 802–6. http://dx.doi.org/10.1002/cssc.201200962.
Full textHengesbach, Charley, Jessica Scott, Sharmila Samaroo, Chase Bruggeman, David Hickey, and Thomas F. Guarr. "Nonaqueous Redox Flow Batteries Incorporating Novel Pyridinium Anolytes." ECS Meeting Abstracts MA2022-01, no. 3 (July 7, 2022): 480. http://dx.doi.org/10.1149/ma2022-013480mtgabs.
Full textZhang, C. P., S. M. Sharkh, X. Li, F. C. Walsh, C. N. Zhang, and J. C. Jiang. "The performance of a soluble lead-acid flow battery and its comparison to a static lead-acid battery." Energy Conversion and Management 52, no. 12 (November 2011): 3391–98. http://dx.doi.org/10.1016/j.enconman.2011.07.006.
Full textZeng, Y. K., T. S. Zhao, X. L. Zhou, L. Wei, and Y. X. Ren. "A novel iron-lead redox flow battery for large-scale energy storage." Journal of Power Sources 346 (April 2017): 97–102. http://dx.doi.org/10.1016/j.jpowsour.2017.02.018.
Full textFischer, Peter, Petr Mazúr, and Joanna Krakowiak. "Family Tree for Aqueous Organic Redox Couples for Redox Flow Battery Electrolytes: A Conceptual Review." Molecules 27, no. 2 (January 16, 2022): 560. http://dx.doi.org/10.3390/molecules27020560.
Full textFraser, E. J., J. P. Le Houx, L. F. Arenas, K. K. J. Ranga Dinesh, and R. G. A. Wills. "The soluble lead flow battery: Image-based modelling of porous carbon electrodes." Journal of Energy Storage 52 (August 2022): 104791. http://dx.doi.org/10.1016/j.est.2022.104791.
Full textWang, Caixing, Zhen Yang, Bo Yu, Huaizhu Wang, Kaiqiang Zhang, Guigen Li, Zuoxiu Tie, and Zhong Jin. "Alkaline soluble 1,3,5,7-tetrahydroxyanthraquinone with high reversibility as anolyte for aqueous redox flow battery." Journal of Power Sources 524 (March 2022): 231001. http://dx.doi.org/10.1016/j.jpowsour.2022.231001.
Full textSun, Hong, Feiyang Hu, Zirui Jiang, Zhiwen Cui, Mahalingam Ravivarma, Hao Fan, Jiangxuan Song, and Duanyang Kong. "Advancements of non-viologen-based anolytes for pH-neutral aqueous organic redox flow batteries." Chemical Synthesis 3, no. 4 (2023): 33. http://dx.doi.org/10.20517/cs.2023.07.
Full textLi, Bin, and Jun Liu. "Progress and directions in low-cost redox-flow batteries for large-scale energy storage." National Science Review 4, no. 1 (January 1, 2017): 91–105. http://dx.doi.org/10.1093/nsr/nww098.
Full textGhufron, Muhammad, Pranata Budi Kurriawan, Istiroyah Istiroyah, and Perwita Anik Cholisina. "ANALISIS EFISIENSI ENERGI FLOW BATERAI LEAD ACID KEADAAN STATIS DAN DINAMIS." ROTOR 10, no. 2 (November 1, 2017): 42. http://dx.doi.org/10.19184/rotor.v10i2.5912.
Full textNa, Zhaolin, Shengnan Xu, Dongming Yin, and Limin Wang. "A cerium–lead redox flow battery system employing supporting electrolyte of methanesulfonic acid." Journal of Power Sources 295 (November 2015): 28–32. http://dx.doi.org/10.1016/j.jpowsour.2015.06.115.
Full textStonawski, Julian, Simon Thiele, and Jochen Alfred Kerres. "Novel Anion-Exchange Blend Membranes Comprised of a Commercially Available & Water-Soluble Ionomer for All-Vanadium Redox Flow Batteries." ECS Meeting Abstracts MA2022-01, no. 35 (July 7, 2022): 1408. http://dx.doi.org/10.1149/ma2022-01351408mtgabs.
Full textNguyen, Trung Van, and Yuanchao Li. "New Developments in the High-Energy-Density Solid-Liquid Storage Technology for Redox Flow Batteries." ECS Meeting Abstracts MA2022-02, no. 1 (October 9, 2022): 43. http://dx.doi.org/10.1149/ma2022-02143mtgabs.
Full textFraser, E. J., K. K. J. Ranga Dinesh, and R. G. A. Wills. "A two dimensional numerical model of the membrane-divided soluble lead flow battery." Energy Reports 7 (May 2021): 49–55. http://dx.doi.org/10.1016/j.egyr.2021.02.056.
Full textLI, Liyu, and Qingtao Luo. "Near Neutral Aqueous Fe-Cr Complex Flow Battery." ECS Meeting Abstracts MA2022-01, no. 3 (July 7, 2022): 476. http://dx.doi.org/10.1149/ma2022-013476mtgabs.
Full textHendriana, Dena, Mochamad Hamdan Aziz, Yohanes Acep Nanang Kardana, Muhamad Lutfi Rachmat, Gembong Baskoro, and Henry Nasution. "Self-Discharging and Corrosion Problems in Vanadium Redox Flow Battery." Reaktor 22, no. 3 (January 24, 2023): 77–85. http://dx.doi.org/10.14710/reaktor.22.3.77-85.
Full text