Academic literature on the topic 'Soluble groups][Automorphisms'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Soluble groups][Automorphisms.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Soluble groups][Automorphisms"

1

Flavell, Paul. "Automorphisms of soluble groups." Proceedings of the London Mathematical Society 112, no. 4 (April 2016): 623–50. http://dx.doi.org/10.1112/plms/pdw005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gromadzki, Grzegorz. "On Soluble Groups of Automorphism of Riemann Surfaces." Canadian Mathematical Bulletin 34, no. 1 (March 1, 1991): 67–73. http://dx.doi.org/10.4153/cmb-1991-011-x.

Full text
Abstract:
AbstractLet G be a soluble group of derived length 3. We show in this paper that if G acts as an automorphism group on a compact Riemann surface of genus g ≠ 3,5,6,10 then it has at most 24(g — 1) elements. Moreover, given a positive integer n we show the existence of a Riemann surface of genus g = n4 + 1 that admits such a group of automorphisms of order 24(g — 1), whilst a surface of specified genus can admit such a group of automorphisms of order 48(g — 1), 40(g — 1), 30(g — 1) and 36(g — 1) respectively.
APA, Harvard, Vancouver, ISO, and other styles
3

Endimioni, Gérard. "Polynomial Automorphisms of Soluble Groups." Communications in Algebra 37, no. 10 (October 9, 2009): 3388–400. http://dx.doi.org/10.1080/00927870802502837.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Smith, Michael J. "Computing automorphisms of finite soluble groups." Bulletin of the Australian Mathematical Society 53, no. 1 (February 1996): 169–71. http://dx.doi.org/10.1017/s0004972700016841.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

ENDIMIONI, GÉRARD. "NORMAL AUTOMORPHISMS OF A FREE METABELIAN NILPOTENT GROUP." Glasgow Mathematical Journal 52, no. 1 (December 4, 2009): 169–77. http://dx.doi.org/10.1017/s0017089509990267.

Full text
Abstract:
AbstractAn automorphism φ of a group G is said to be normal if φ(H) = H for each normal subgroup H of G. These automorphisms form a group containing the group of inner automorphisms. When G is a non-abelian free (or free soluble) group, it is known that these groups of automorphisms coincide, but this is not always true when G is a free metabelian nilpotent group. The aim of this paper is to determine the group of normal automorphisms in this last case.
APA, Harvard, Vancouver, ISO, and other styles
6

Shumyatsky, P. "Involutory Automorphisms of Locally Soluble Periodic Groups." Journal of Algebra 155, no. 1 (February 1993): 36–43. http://dx.doi.org/10.1006/jabr.1993.1030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bastos, Raimundo, Alex C. Dantas, and Emerson de Melo. "Soluble groups with few orbits under automorphisms." Geometriae Dedicata 209, no. 1 (March 17, 2020): 119–23. http://dx.doi.org/10.1007/s10711-020-00525-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wehrfritz, B. A. F. "Almost fixed-point-free automorphisms of soluble groups." Journal of Pure and Applied Algebra 215, no. 5 (May 2011): 1112–15. http://dx.doi.org/10.1016/j.jpaa.2010.07.017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gromadzki, G. "On soluble groups of automorphisms of nonorientable Klein surfaces." Fundamenta Mathematicae 141, no. 3 (1992): 215–27. http://dx.doi.org/10.4064/fm-141-3-215-227.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Wehrfritz, Bertram A. F. "On soluble groups of module automorphisms of finite rank." Czechoslovak Mathematical Journal 67, no. 3 (August 9, 2017): 809–18. http://dx.doi.org/10.21136/cmj.2017.0193-16.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Soluble groups][Automorphisms"

1

McIver, A. "Finitely generated non-Hopf models." Thesis, University of Oxford, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.235060.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Soluble groups][Automorphisms"

1

Heineken, Hermann. "Soluble irreducible groups of automorphisms of certain groups of class two." In Lecture Notes in Mathematics, 65–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/bfb0078691.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

"Nilpotent and soluble groups." In p-Automorphisms of Finite p-Groups, 36–50. Cambridge University Press, 1998. http://dx.doi.org/10.1017/cbo9780511526008.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography