Academic literature on the topic 'Solubility of Liquids'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Solubility of Liquids.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Solubility of Liquids"
Zafarani-Moattar, Mohammad Taghi, Hemayat Shekaari, and Elnaz Mazaher Haji Agha. "Measurement and Modeling of Solubility of Galactose in Aqueous Ionic Liquids, 1-Butyl-3-Methyl Imidazolium Bromide, 1-Hexyl-3-Methyl Imidazolium Bromide and 1-Butyl-3-Methylimidazolium Chloride at T = (298.15 And 308.15) K." Pharmaceutical Sciences 25, no. 4 (December 20, 2019): 319–30. http://dx.doi.org/10.15171/ps.2019.32.
Full textBiń, Andrzej K. "Ozone Solubility in Liquids." Ozone: Science & Engineering 28, no. 2 (May 2006): 67–75. http://dx.doi.org/10.1080/01919510600558635.
Full textMonder, Hila, Leo Bielenki, Hanna Dodiuk, Anna Dotan, and Samuel Kenig. "Poly (Dimethylsiloxane) Coating for Repellency of Polar and Non-Polar Liquids." Polymers 12, no. 10 (October 21, 2020): 2423. http://dx.doi.org/10.3390/polym12102423.
Full textMatuszek, Karolina, Ewa Pankalla, Aleksander Grymel, Piotr Latos, and Anna Chrobok. "Studies on the Solubility of Terephthalic Acid in Ionic Liquids." Molecules 25, no. 1 (December 24, 2019): 80. http://dx.doi.org/10.3390/molecules25010080.
Full textWu, Tian, Qing Huang, Wei Li, Gongxuan Chen, Xiaoling Ma, and Guoping Zeng. "Electroreduction of Copper Dichloride Powder to Copper Nanoparticles in an Ionic Liquid." Journal of Nanomaterials 2014 (2014): 1–6. http://dx.doi.org/10.1155/2014/751424.
Full textBuchowski, H., and A. Khiat. "Solubility of solids in liquids: one-parameter solubility equation." Fluid Phase Equilibria 25, no. 3 (January 1986): 273–78. http://dx.doi.org/10.1016/0378-3812(86)80003-6.
Full textLei, Zhigang, Chengna Dai, and Biaohua Chen. "Gas Solubility in Ionic Liquids." Chemical Reviews 114, no. 2 (November 6, 2013): 1289–326. http://dx.doi.org/10.1021/cr300497a.
Full textTurner, J. C. R. "Solubility of Gases in Liquids." Chemical Engineering Science 46, no. 9 (1991): 2385. http://dx.doi.org/10.1016/0009-2509(91)85142-k.
Full textManic, Marina S., and Vesna Najdanovic-Visak. "Solubility of Mixtures Containing Soybean Oil, Ionic Liquid and Methanol." Open Chemical Engineering Journal 10, no. 1 (April 8, 2016): 41–49. http://dx.doi.org/10.2174/1874123101610010041.
Full textGamsjäger, Heinz, John W. Lorimer, Mark Salomon, David G. Shaw, and Reginald P. T. Tomkins. "The IUPAC-NIST Solubility Data Series: A guide to preparation and use of compilations and evaluations (IUPAC Technical Report)." Pure and Applied Chemistry 82, no. 5 (March 22, 2010): 1137–59. http://dx.doi.org/10.1351/pac-rep-09-10-33.
Full textDissertations / Theses on the topic "Solubility of Liquids"
Campanell, Frank Christopher. "The Modeling of Solubility." Wright State University / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=wright1169068854.
Full textAsatani, Haruki. "Solubility of gases in liquids." Thesis, University of Ottawa (Canada), 1986. http://hdl.handle.net/10393/4643.
Full textBernardo, Carlos Gabriel Pires Morgado. "Solubility of organic liquids in polystyrene matrices." Thesis, University of Oxford, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.419261.
Full textWu, M. F. "The solubility of solutes in cryogenic liquids." Thesis, University of Southampton, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.373935.
Full textOchsner, Allison Becker. "Solubility prediction in nonideal liquid mixtures /." The Ohio State University, 1985. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487260859494571.
Full textSantos, Ana Rute Duarte dos. "Study on solubility of pharmaceutical compounds in ionic liquids." Master's thesis, Faculdade de Ciências e Tecnologia, 2013. http://hdl.handle.net/10362/9660.
Full textThe sufficient solubility of N-acetyl-L-cysteine (NAC), coumarin (COU) and 4-hydroxycoumarin (4HC) in alternative solvents obtained in this work can open new perspectives in pharmaceutical processing. Solid–liquid equilibrium (SLE) measurements have been made using a dynamic (synthetic) method. The melting point and the enthalpy of fusion of the pharmaceutical compounds were acquired using differential scanning calorimetry (DSC). The solubility of N-acetyl-L-cysteine and 4-hydroxycoumarin in trifluoromethanesulfonate ionic liquids was found to be significantly higher than in the studied bis(trifluoromethylsulfonyl)imide ionic liquids, and when compared, coumarin have the opposite behaviour. The best solvent amongst studied for this antioxidant (NAC) and anticoagulants (COU and 4HC) was discovered. The solid–liquid phase equilibrium were described using six different correlation equations which revealed relatively good description with the acceptable standard deviation temperature range. Moreover, the solubility data was used to calculate the 1-octanol/water partition coefficients and experimental partition coefficients (logP) was found to be negative in N-acetyl-L-cysteine and positive in the case of coumarin, at five temperatures with N-acetyl-L-cysteine being more hydrophilic and coumarin more hydrophobic; These results are also proof of the possibility of using these compounds as pharmaceutical products.
Batista, Marta Luísa Salsas. "Development of a solubility parameters scale for ionic liquids." Master's thesis, Universidade de Aveiro, 2010. http://hdl.handle.net/10773/3140.
Full textOs biocombustíveis, como bioetanol e butanol, têm se tornado numa área de grande relevância e objecto de investigação, dadas as suas propriedades que possibilitam a substituição dos combustíveis fósseis mais comuns. No entanto, a sua produção tem um problema associado que é a formação de azeotropos sempre que o álcool se encontra na presença de água. Este problema é usualmente ultrapassado pela utilização de Distilação Extractiva, onde os Líquidos Iónicos (ILs) são usados como agentes de separação, com o intuito de quebrarem o azeotropo. Na última década, os líquidos iónicos, dadas as suas propriedades únicas, têm sido alvo de muita investigação. Entre as mais diversas características, a possibilidade de refinar as suas propriedades para uma tarefa específica, permitiu identificar a necessidade de estudar e perceber qual a relação estrutura-propriedade dos líquidos iónicos, o que levou ao recurso de modelos predictivos. Neste trabalho, o parâmetro de solubilidade de Hildebrand baseado na Teoria das Soluções Regulares, foi utilizado para estimar o parâmetro de solubilidade usando dados experimentais disponíveis para coeficientes de actividade a diluição infinita e também para viscosidade, com o objectivo de obter de uma escala de parâmetros de solubilidade para líquidos iónicos. Dos resultados obtidos, para os coeficientes de actividade a diluição infinita, foi possível observar que os líquidos iónicos possuem um carácter anfifílico (efeito camaleónico), e utilizando a viscosidade na estimação dos parâmetros de solubilidade verificou-se que, no entanto, os líquidos iónicos comportam-se predominantemente como moléculas polares. Neste trabalho, também foram medidas solubilidades para o líquido iónico hexafluorofosfato de 1-butil-3-metil-imidazólio em misturas de água e 1- propanol e ainda 1-propanol e tolueno. Este procedimento permitiu a confirmação do comportamento (efeito camaleónico) descrito anteriormente pela utilização de coeficientes de actividade a diluição infinita. Na estimação dos parâmetros de solubilidade, algumas não conformidades foram observadas. A sua causa poderá estar no facto de que o parâmetro de solubilidade de Hildebrand não detalha a polaridade da molecula ou interacções específicas que, os líquidos iónicos sendo moléculas complexas, poderá ser insuficiente para descrever o seu comportamento. Desta forma, extensões ao parâmetro de solubilidade de Hildebrand são sugeridas neste trabalho. ABSTRACT: Bioethanol and biobutanol are biofuels that nowadays are gaining significance due to their physical and chemical properties that enables the replacement of fossil fuels. Nevertheless, their production brings an inherent problem which is the formation of an azeotrope when the alcohol is in the presence of water. Extractive distillation is the process most widely used, where Ionic liquids may act as separation agent, in order to break or shift the azeotrope. For the past decade, ionic liquids, due to their unique properties, have received an increasing attention by the academic community and industry. Within their characteristics, the possibility of tune their properties allowed identifying the need to understand the relation structure-property which leaded the use of predictive models. In this work, Hildebrand solubility parameter based on Regular Solution Theory, was used to estimate solubility parameters using experimental data available for activity coefficients at infinite dilution and viscosity, aiming the establishment of a solubility parameters scale for ionic liquids. The use of activity coefficients at infinite dilution allowed observing that ionic liquids have amphiphilic (chameleonic) behaviour, and with viscosity it was observed that they act predominantly as polar molecules. In this work, it was also measured solubilities for 1-butyl-3-methylimidazolium hexafluorophosphate in mixtures of water and 1-propanol and in mixture of 1- propanol and toluene. This procedure allowed to confirm the behaviour (chameleonic effect) described by solubility parameters estimated by activity coefficients at infinite dilution. In the estimation of solubility parameters, some non-conformities were observed and which can be explained by the fact that the Hildebrand solubility parameter does not detail molecule polarity or specific interactions, and the structure of ionic liquids is clearly more complex than it is taken account. In this matter, other extensions for Hildebrand solubility parameter are suggested.
Rebiai, R. "The solubility of water in cryogenic liquids and the related effects." Thesis, University of Southampton, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.356094.
Full textTick, Geoffrey Ray. "Dissolution and enhanced solubilization of immiscible phase organic liquids in porous media : Theoretical, laboratory, and field investigations." Diss., The University of Arizona, 2003. http://etd.library.arizona.edu/etd/GetFileServlet?file=file:///data1/pdf/etd/azu_e9791_2003_398_sip1_w.pdf&type=application/pdf.
Full textTomlinson, Sean R. "The solubility and secondary structure of zein in imidazolium-based ionic liquids." Diss., Kansas State University, 2013. http://hdl.handle.net/2097/15511.
Full textDepartment of Chemical Engineering
Jennifer L. Anthony
Ionic liquids are low melting salts composed of an organic cation and an inorganic or organic anion. Ionic liquids are of interest for their wide range of applications and unique properties, such as the negligible vapor pressure of some types of ionic liquids, and the ability to modify ionic liquid properties by selection of the cation or anion. It has been hypothesized that over one million binary ionic liquids (meaning a single cation/anion pair) are possible. Due to the vast number of potential combinations, it should be possible to design ionic liquids specifically for an application of interest. One potential application is their use as protein solvents. However there is little understanding of how ionic liquids affect proteins. This research examined the solubility and secondary structure of the hydrophobic corn protein zein in seven ionic liquids and three conventional solvents as a function of temperature and solvent properties. Zein’s solubility in the solvents was measured gravimetrically from 30 to 60 degrees Celsius. Solubility was then related to solvent properties to gain an understanding of what solvent properties are important, and how to design an ionic liquid to dissolve zein. It was found that a good solvent for zein has a small molecular volume, a low polarity, and is a weak hydrogen bond acceptor. Infrared spectroscopy with curve fitting was used to examine the secondary structure of zein as a function of both solvent and temperature from 25 to 95 degrees Celsius. It was found that most of the ionic liquids change zein’s secondary structure, but those secondary structure changes were not affected by temperature. Aprotic ionic liquids increase the amount of β-turn secondary structure through non-polar interactions between the mixed aromatic-alkyl imidazolium cations and the non-polar portions of the zein. Strong hydrogen bond accepting molecules were found to increase the amount of β-turn secondary structure. It is hypothesized from this research that suitable solvents for zein will have a small molar volume, low polarity, and be poor hydrogen bond acceptors. This combination of properties will enhance zein’s solubility and limit secondary structure changes that can harm protein properties.
Books on the topic "Solubility of Liquids"
Fogg, Peter G. T. Solubility of gases in liquids: A critical evaluation of gas/liquid systems in theory and practice. Chichester: J. Wiley, 1991.
Find full textMeeting, American Chemical Society, and American Chemical Society. Division of Industrial and Engineering Chemistry, eds. Gas-expanded liquids and near-critical media: Green chemistry and engineering. Washington, D.C: American Chemical Society, 2009.
Find full textCRC handbook of polymer-liquid interaction parameters and solubility parameters. Boca Raton: CRC Press, 1990.
Find full textJae-Jin, Shim, ed. Solubility in supercritical carbon dioxide. Boca Raton: CRC Press, 2007.
Find full textMaria Celeste de Carvalho Serra. Solubilidade de gases em água e em meios de fermentação. Lisboa: Edic̨ões Colibri, 2007.
Find full textPalacios, Jose Manuel. The solubility of copper in lime-saturated and calcium ferrite-saturated liquid iron oxide. Ann Arbor, MI: UMI Dissertation Services, 1991.
Find full textSiwka, Jerzy. Azot w ciekłych stopach żelaza. Częstochowa: Wydawn. Politechniki Częstochowskiej, 2006.
Find full textQiu, Guang-Ming. Modification and preparation of membrane in supercritical carbon dioxide. New York: Nova Science Publishers, 2010.
Find full textMulrooney, John Leonard. An investigation of a sorption apparatus to measure the solubility and diffusivity of a liquid blowing agent in a polymer at an elevated pressure. Ottawa: National Library of Canada, 1995.
Find full text1955-, Qiu Guang-Ming, ed. Modification and preparation of membrane in supercritical carbon dioxide. Hauppauge, N.Y: Nova Science Publishers, 2009.
Find full textBook chapters on the topic "Solubility of Liquids"
Krause, Sonja. "Solubility of Polymers in Liquids." In The Experimental Determination of Solubilities, 595–616. Chichester, UK: John Wiley & Sons, Ltd, 2004. http://dx.doi.org/10.1002/0470867833.ch15.
Full textClever, H. Lawrence, and Rubin Battino. "Solubility of Gases in Liquids." In The Experimental Determination of Solubilities, 99–150. Chichester, UK: John Wiley & Sons, Ltd, 2004. http://dx.doi.org/10.1002/0470867833.ch3.
Full textCohen-Adad, Roger, and Marie-Thérèse Cohen-Adad. "Solubility of Solids in Liquids." In The Experimental Determination of Solubilities, 257–314. Chichester, UK: John Wiley & Sons, Ltd, 2004. http://dx.doi.org/10.1002/0470867833.ch8.
Full textSzczepaniec-Cieciak, Elzbieta. "Solubility of Solids and Liquids in Cryogenic Liquids." In The Experimental Determination of Solubilities, 557–93. Chichester, UK: John Wiley & Sons, Ltd, 2004. http://dx.doi.org/10.1002/0470867833.ch14.
Full textZhang, Jinming, Chenyang Liu, and Jun Zhang. "Solubility of Polymers in Ionic Liquids." In Encyclopedia of Ionic Liquids, 1–8. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-10-6739-6_149-1.
Full textZhang, Jinming, Chenyang Liu, and Jun Zhang. "Solubility of Polymers in Ionic Liquids." In Encyclopedia of Ionic Liquids, 1202–9. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-33-4221-7_149.
Full textAim, Karel, and Maurizio Fermeglia. "Solubility of Solids and Liquids in Supercritical Fluids." In The Experimental Determination of Solubilities, 491–555. Chichester, UK: John Wiley & Sons, Ltd, 2004. http://dx.doi.org/10.1002/0470867833.ch13.
Full textGamsjäger, Heinz, and Erich Königsberger. "Solubility of Sparingly Soluble Ionic Solids in Liquids." In The Experimental Determination of Solubilities, 315–58. Chichester, UK: John Wiley & Sons, Ltd, 2004. http://dx.doi.org/10.1002/0470867833.ch9.
Full textShiflett, Mark B., and A. Yokozeki. "Solubility of Fluorocarbons in Room Temperature Ionic Liquids." In ACS Symposium Series, 21–42. Washington DC: American Chemical Society, 2009. http://dx.doi.org/10.1021/bk-2009-1030.ch002.
Full textXiao, Y., C. R. Mambote, G. A. Wierink, and A. van Sandwijk. "Solubility of A12O3 in NaCl-KCl Based Molten Salt System." In Molten Salts and Ionic Liquids, 389–95. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9780470947777.ch24.
Full textConference papers on the topic "Solubility of Liquids"
Imani, M. T., M. Farahani, M. Kuhnke, K. Homeier, and P. Werle. "Measuring methods for solubility of gases in insulation liquids." In 2017 IEEE 19th International Conference on Dielectric Liquids (ICDL). IEEE, 2017. http://dx.doi.org/10.1109/icdl.2017.8124654.
Full textAsensio Delgado, Salvador, Fernando Pardo, Gabriel Zarca, and Ane Urtiaga. "Solubility differences of refrigerant gases in ionic liquids." In 14th Mediterranean Congress of Chemical Engineering (MeCCE14). Grupo Pacífico, 2020. http://dx.doi.org/10.48158/mecce-14.dg.07.06.
Full textGreaves, Brad, Thomas Prevost, Ed Casserly, Griffin Burk, and Ashmita Niroula. "Water Solubility of Aged Mineral Oil and Natural Ester Liquids." In 2023 IEEE 22nd International Conference on Dielectric Liquids (ICDL). IEEE, 2023. http://dx.doi.org/10.1109/icdl59152.2023.10209323.
Full textPerez, Daniel, Belen Garcia, Victor A. Primo, and Juan Carlo Burgos. "Analysis of Water Solubility in natural-ester based nanodielectric fluids." In 2019 IEEE 20th International Conference on Dielectric Liquids (ICDL). IEEE, 2019. http://dx.doi.org/10.1109/icdl.2019.8796556.
Full textDeshpande, Anirudh, Prashanta Dutta, and Soumik Banerjee. "Solubility of Oxygen in Lithium-Air Battery Electrolytes: A Molecular Dynamics Study." In ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-40215.
Full textYunus, Normawati M., Maizatul S. Shaharun, M. I. Abdul Mutalib, and T. Murugesan. "Modeling of CO2 solubility in pyridinium-based ionic liquids using UNIQUAC." In 4TH INTERNATIONAL CONFERENCE ON FUNDAMENTAL AND APPLIED SCIENCES (ICFAS2016). Author(s), 2016. http://dx.doi.org/10.1063/1.4968093.
Full textSulaimon, Aliyu Adebayo, Luqman Adam Azman, Syed Ali Qasim Zohair, Bamikole Joshua Adeyemi, Azmi B. Shariff, and Wan Zaireen Nisa Yahya. "Predicting the Hydrogen Storage Potential of Ionic Liquids Using the Data Analytics Techniques." In SPE Nigeria Annual International Conference and Exhibition. SPE, 2023. http://dx.doi.org/10.2118/217176-ms.
Full textPetrin, Lívia, Mariana da Costa, and Rafael Dias. "An investigation of lignocellulosic biopolymers solubility in Protic Ionic Liquids aqueous solutions." In Congresso de Iniciação Científica UNICAMP. Universidade Estadual de Campinas, 2019. http://dx.doi.org/10.20396/revpibic2720192152.
Full textYunus, Normawati M., M. Asif Abdul Ghani, and Ruzaimah Nik Mohamad Kamil. "Synthesis, characterization and CO2 solubility of [hmim][Tf2N] and [hmim][Ac] ionic liquids." In 3RD INTERNATIONAL CONFERENCE ON FUNDAMENTAL AND APPLIED SCIENCES (ICFAS 2014): Innovative Research in Applied Sciences for a Sustainable Future. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4898480.
Full textSen, Mihir, and Samuel Paolucci. "The Use of Ionic Liquids in Refrigeration." In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-14712.
Full textReports on the topic "Solubility of Liquids"
Mountain, R. D. Molecular dynamics study of the solubility of oxygen in liquid pyridine. Gaithersburg, MD: National Institute of Standards and Technology, 2003. http://dx.doi.org/10.6028/nist.ir.7075.
Full textHOHL, T., D. PLACE, and R. WITTMAN. STRONTIUM-90 LIQUID CONCENTRATION SOLUBILITY CORRELATION IN THE HANFORD TANK WASTE OPERATIONS SIMULATOR. Office of Scientific and Technical Information (OSTI), August 2004. http://dx.doi.org/10.2172/828017.
Full textPark, J. H., R. Erck, and E. T. Park. Measurement of hydrogen solubility and desorption rate in V-4Cr-4Ti and liquid lithium-calcium alloys. Office of Scientific and Technical Information (OSTI), April 1997. http://dx.doi.org/10.2172/543272.
Full textLooney, Brian, Holly Vermeulen, J. Dickson, Thomas White, Andrew Boggess, Thomas Peters, and Emily Fabricatore. Vapor-Liquid Partitioning of Methylmercury Compounds: Fundamental Data to Support the Savannah River Site Liquid Waste System: Henry's Law, Solubility and Vapor Pressure Determination for Representative Methylmercury Compounds. Office of Scientific and Technical Information (OSTI), June 2021. http://dx.doi.org/10.2172/1804664.
Full textLiaw, Shuh-Jeng. Automation of a hydrogen meter for use in coal liquefaction plant and for determination of the effect of aliphatic hydrocarbons on hydrogen solubility and mass transfer rate in coal liquid solvents. Office of Scientific and Technical Information (OSTI), January 1989. http://dx.doi.org/10.2172/5341646.
Full text