Dissertations / Theses on the topic 'Solitons'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Solitons.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Prabhu, Nagabhushana 1966. "Aspects of solition physics : existence of static solitons in an expanding universe and quantum soliton-antisoliton annihilation." Thesis, Massachusetts Institute of Technology, 1998. http://hdl.handle.net/1721.1/47461.
Full textZamaklar, Marija. "Solitons on branes and brane solitons in supergravity theories." Thesis, University of Cambridge, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.620358.
Full textBahri, Yakine. "Stability of solitons and multi-solitons for Landau-Lifschitz equation." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLX028/document.
Full textIn this thesis, we study the one-dimensional Landau-Lifshitz equation with an easy-plane aniso-tropy. This equation describes the dynamics of the magnetization in a ferromagnetic material. It owns travelling-wave solutions called solitons.We begin by proving the asymptotic stability in the energy space of non-zero speed solitons More precisely, we show that any solution corresponding to an initial datum close to a soliton with non-zero speed, is weakly convergent in the energy space as time goes to infinity, to a soliton with a possible different non-zero speed, up to the geometric invariances of the equation. Our analysis relies on the ideas developed by Martel and Merle for the generalized Korteweg-de Vries equations. We use the Madelung transform to study the problem in the hydrodynamical framework. In this framework, we rely on the orbital stability of the solitons and the weak continuity of the flow in order to construct a limit profile. We next derive a monotonicity formula for the momentum, which gives the localization of the limit profile. Its smoothness and exponential decay then follow from a smoothing result for the localized solutions of the Schrödinger equations. Finally, we prove a Liouville type theorem, which shows that only the solitons enjoy these properties in their neighbourhoods.We also establish the asymptotic stability of multi-solitons. The solitons have non-zero speed, are ordered according to their speeds and have sufficiently separated initial positions. We provide the asymptotic stability around solitons and between solitons. More precisely, we show that for an initial datum close to a sum of $N$ dark solitons, the corresponding solution converges weakly to one of the solitons in the sum, when it is translated to the centre of this soliton, and converges weakly to zero when it is translated between solitons
Harland, Derek. "Chains of solitons." Thesis, Durham University, 2008. http://etheses.dur.ac.uk/2303/.
Full textSuntsov, Sergiy. "DISCRETE SURFACE SOLITONS." Doctoral diss., University of Central Florida, 2007. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/2901.
Full textPh.D.
Optics and Photonics
Optics and Photonics
Optics PhD
Morandotti, Roberto. "Discrete optical solitons." Thesis, University of Glasgow, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.300979.
Full textZárate, Devia Yair Daniel. "Phase shielding solitons." Tesis, Universidad de Chile, 2013. http://www.repositorio.uchile.cl/handle/2250/115388.
Full textLos solitones son el fen omeno universal m as profundamente estudiado, debido a los innumerables sistemas físicos en los cuales se observa. Estas soluciones corresponden a estados localizados y coherentes que surgen naturalmente en sistemas extendidos, siendo una de sus propiedades m as fascinantes el hecho de que pueden ser tratados como partículas macroscópicas a pesar de estar formados por numerosos componentes microscópicos. Desde su primera descripci on, realizada por J. S. Russell en 1884, el estudio de solitones se centró en sistemas conservativos por más de cien años. Sin embargo, los pioneros trabajos de Alan Turing e Ilya Prigogine demostraron que los sistemas fuera del equilibrio se auto{ organizan por medio de la generación de estructuras disipativas. Hoy en día, sabemos que es justamente este mecanismo el que permite la formación de solitones disipativos en sistemas con inyección y disipación de energía. Nuestro principal interés ha sido caracterizar de forma analítica y numérica a los solitones que emergen en sistemas forzados paramétricamente{sistemas forzados por medio de un parámetro efectivo que var a en el espacio y/o tiempo. Los sistemas forzados param etricamente pueden experimentar una resonancia paramétrica, la cual se caracteriza por una respuesta subarm onica (subm ultiplos de la frecuencia natural del sistema). Dada la complejidad que presentan los sistemas paramétricos, focalizamos nuestro estudio en la ecuación de Schrödinger no lineal disipativa forzada paramétricamente (PDNLS). Este modelo caracteriza bien la din amica de sistemas forzados param etricamente, en torno al punto de aparición de la resonancia paramétrica, en el límite de baja disipación e inyección de energía. Los solitones disipativos, presentes en PDNLS, típicamente muestran una estructura de fase uniforme. Dichas estructuras han sido ampliamente utilizadas para describir a los solitones hidrodinámicos que aparecen en el experimento de Faraday, estados localizados de la magnetización en un hilo magnético, o los clásicos solitones presentes en una cadena de péndulos con soporte verticalmente vibrado, entre otros. Por medio de simulaciones numéricas interactivas de solitones disipativos en la ecuaciónPDNLS, hemos logrado observar una interesante din amica de frentes de fase hasta ahora desconocida. Estos frentes de fase se propagan hasta alcanzar un punto de equilibrio estacionarioarbitrario. A este tipo de solitones los hemos llamado solitones escudados por la fase (phase shielding solitons), dado que la estructura nal de fase pareciera proteger al módulodel solit on. Hemos logrado caracterizar anal ticamente estas soluciones localizadas, determinando ocho posibles con guraciones. Los solitones estudiados poseen una talla característica dada por el tamaño de la estructura de fase estacionaria. Adem ás, extendimos nuestro estudio al caso bidimensional, mostrando los resultados, dos tipos de phase shilding solitons bidimensionales; axialmente simétricos y asimétricos. Los primeros pueden ser entendidos como una rotación en 2 de las soluciones simétricas encontradas en el caso unidimensional. Por su parte, las soluciones asimétricas bidimensionales presentan propiedades mucho más interesantes, ya que su estructura nal de fáse contiene todas las con guraciones halladas en el caso unidimensional. Con el n de corroborar la existencia de solitones disipativos con estructura de fase no uniforme en sistemas físicos, realizamos simulaciones numéricas de diversos sistemas paramétricos reales. Satisfactoriamente, concluimos que el fenómeno phase shielding soliton es universal, y esperamos que pueda ser prontamente observado experimentalmente.
Hivet, Romain. "Solitons, demi-solitons et réseaux de vortex dans un fluide de polaritons." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2013. http://tel.archives-ouvertes.fr/tel-00911207.
Full textIrwin, P. "Classical and quantized solitons." Thesis, University of Cambridge, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.604958.
Full textShiiki, Noriko. "Solitons and black holes." Thesis, University of Newcastle Upon Tyne, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.313504.
Full textRuback, Peter Julian. "Solitons and moduli spaces." Thesis, University of Cambridge, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.238701.
Full textWong, Kenny. "Applications of topological solitons." Thesis, University of Cambridge, 2014. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.708436.
Full textRussell, Katherine. "Field theory and solitons." Thesis, Heriot-Watt University, 2009. http://hdl.handle.net/10399/2205.
Full textBatista, Rondinelle Marcolino. "Rigidez de solitons gradiente." Universidade Federal do CearÃ, 2010. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=11142.
Full textNosso objetivo nesse trabalho à apresentar um teorema que caracteriza os solitons gradiente rÃgidos para caso nÃo compacto. Como aplicaÃÃo provaremos que os solitons gradiente homogÃneos sÃo rÃgidos e apresentaremos um exemplar de soliton de Ricci que nÃo pode ser gradiente.
Our goal in this work is to present a theorem which characterizes the gradient solitons rigid for non-compact case. As an application we prove that the homogeneous gradient solitons are rigid and provide an example of the Ricci soliton can not be gradient.
Betancourt, de la Parra Alejandro. "Cohomogeneity one Ricci solitons." Thesis, University of Oxford, 2016. https://ora.ox.ac.uk/objects/uuid:8f924daf-d6e6-4150-96c2-d156a6a7815a.
Full textWoodford, S. R. "Parametrically driven dark solitons." Master's thesis, University of Cape Town, 2004. http://hdl.handle.net/11427/4946.
Full textThis is a study of the dynamics of the dark solitons described by the parametrically driven nonlinear Schrödinger equation. We prove that both types of dark solitons (the Bloch and Néel walls) are stable throughout their existence regions, and that in the region of their coexistence, a family of Bloch-Néel bound states exists, which is parametrised by the inter-soliton separation. Using the Hirota method, we explicitly construct the family.
Batista, Rondinelle Marcolino. "Rigidez de solitons gradiente." reponame:Repositório Institucional da UFC, 2013. http://www.repositorio.ufc.br/handle/riufc/7218.
Full textSubmitted by Erivan Almeida (eneiro@bol.com.br) on 2014-02-06T15:52:29Z No. of bitstreams: 1 2013_dis_rmbatista.pdf: 475768 bytes, checksum: 03728fa2f3ef21149ad9c1b4e45c720b (MD5)
Approved for entry into archive by Rocilda Sales(rocilda@ufc.br) on 2014-02-07T13:11:43Z (GMT) No. of bitstreams: 1 2013_dis_rmbatista.pdf: 475768 bytes, checksum: 03728fa2f3ef21149ad9c1b4e45c720b (MD5)
Made available in DSpace on 2014-02-07T13:11:43Z (GMT). No. of bitstreams: 1 2013_dis_rmbatista.pdf: 475768 bytes, checksum: 03728fa2f3ef21149ad9c1b4e45c720b (MD5) Previous issue date: 2013
Our goal in this work is to present a theorem which characterizes the gradient solitons rigid for non-compact case. As an application we prove that the homogeneous gradient solitons are rigid and provide an example of the Ricci soliton can not be gradient.
Nosso objetivo nesse trabalho é apresentar um teorema que caracteriza os solitons gradiente rígidos para caso não compacto. Como aplicação provaremos que os solitons gradiente homogêneos são rígidos e apresentaremos um exemplar de soliton de Ricci que não pode ser gradiente.
Grün, Marc. "Analyse de la dynamique de solitons photoréfractifs." Metz, 2007. http://docnum.univ-lorraine.fr/public/UPV-M/Theses/2007/Grun.Marc.SMZ0703.pdf.
Full textLaser beams propagating in a photorefractive crystal create spatial solitons called photorefractive solitons, in a phenomenon labelled filamentation. Their dynamics, complex and sensitive to initial conditions, make us assume the presence of spatial chaos, as would suggest beam propagation simulations. In order to characterize this assumed chaos, we first used a Modelling Program based upon a system interpretation of solitons ; Event Conformation Method then quantized the divergence between two dynamics from near but different solitons populations. Most results showed fast decorrelations ; but the dynamics we thus characterized cannot be labelled chaotic, because of their tendency to decay. Coming back to simulations, we built statistical estimators called ‘divergence strengths’ quantizing the divergence between two simulations ; these estimators show to be proportional to nonlinear coefficient, a parameter of the modelled crystal. Because of an identical decay, these dynamics cannot be qualified as chaotic ; nevertheless, the high initial condition sensitiveness is on par with a chaotic system. This method was then adapted to experimental data, where time and space decorrelation has been successfully characterized thanks to an innovative concept of multicorrelation. Then, using concepts based on fractal dimensions and estimators from econometrics, we characterized the organizing of solitons dynamics, node-wise and energy redistribution-wise. Thus we concluded that despite the absence of validation of a few chaos criteria, dynamics there show strong decorrelations whose numerical characterizations display empirical resemblance to a standard chaotic system
Pickartz, Sabrina. "All-optical control of fiber solitons." Doctoral thesis, Humboldt-Universität zu Berlin, 2018. http://dx.doi.org/10.18452/19468.
Full textThis work discusses the problem how to control an optical soliton propagating along a non- linear fiber. The approach chosen here is to change soliton delay, duration and intensity in a simple, predictable manner by applying low-intensity velocity-matched dispersive light waves. A new analytic theory of cross-phase modulation interactions of solitons with dispersive control waves is presented which combines quantum mechanical scattering theory, a modified soliton perturbation theory and a multi-scale approach. This led to the following new results: (1) The evolution of all soliton parameters is correctly predicted. In particular the possible amplitude enhancement of solitons is successfully quantified, which could not be obtained by the standard formulation of the soliton perturbation theory. (2) General ranges for control parameters are quantitatively determined, which ensure an effective interaction. (3) The Raman effect is incorporated into the theory. The classical estimation of the Raman self-frequency shift is refined and expanded by a new relation for the amplitude loss arising with the Raman self-frequency shift. Furthermore, control pulses are identified which cancel soliton degradation due to Raman effect. In contrast to previously reported attempts with the interaction scheme under consideration, even parameter ranges are found which lead to a stable cancellation of the Raman effect. (4) New qualitative insights into the underlying process emerged. The prominent role of the self-steepening effect could be isolated. Though the pulse interaction is mediated by cross-phase modulation, the self-steepening effect causes an essential enhancement leading to much stronger changes in soliton parameters.
Hashimoto, Koji. "New Solitons from Brane Configurations." 京都大学 (Kyoto University), 2000. http://hdl.handle.net/2433/181110.
Full textElias, Ricardo. "Solitons magnétiques et transitions topologiques." Thesis, Aix-Marseille, 2013. http://www.theses.fr/2013AIXM4712/document.
Full textIn this thesis we study the magnetic solitons and its topological transitions, both theoretically and numerically. In the first part, we find a particular configuration of what is denominated the Bloch Point, a three-dimensional solution of the Free Energy minimization with exchange, Landau and dipolar terms. Oscillations around the Bloch point are found and quantized in order to understand the role of quantum fluctuations over its stability.In the second part, we look at the evolution of a system coupling ferromagnetic textures with nontrivial topology, with itinerant electrons. The interaction between the magnetic texture and the electrons is understood by means of spin-torque phenomena. This physical system is modeled with the equation Landau-Lifshitz-Gilbert equation coupled with Schrödinger equation for quantum electrons. Topological transitions are observed and understood in a general framework that unifies older works done in a more classical context. Among the large amount of topological transitions observed, we can distinguish the different roles played by electrons depending on parameters. The orders of magnitude of time and space in the topological transition events show the importance of quantum effects as well as the fundamental role of discretization
Gillard, Mike. "Solitons and volume preserving flow." Thesis, Durham University, 2010. http://etheses.dur.ac.uk/533/.
Full textMakris, Konstantinos. "OPTICAL SOLITONS IN PERIODIC STRUCTURES." Doctoral diss., University of Central Florida, 2008. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/4118.
Full textPh.D.
Optics and Photonics
Optics and Photonics
Optics PhD
Lai, Yinchieh. "Quantum theory of optical solitons." Thesis, Massachusetts Institute of Technology, 1991. http://hdl.handle.net/1721.1/42512.
Full textIncludes bibliographical references (leaves 93-98).
v by Yinchieh Lai.
Ph.D.
Long, Eamonn. "On charged solitons and electromagnetism." Thesis, University of Cambridge, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.614274.
Full textPlansangkate, Prim. "Anti-self-duality and solitons." Thesis, University of Cambridge, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.611695.
Full textGutowski, Jan Bernard. "Black holes and brane solitons." Thesis, University of Cambridge, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.620991.
Full textCollie, Benjamin Paul. "Dynamics and structure of solitons." Thesis, University of Cambridge, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.608391.
Full textWestmoreland, Shawn Michael. "Optical black holes and solitons." Diss., Kansas State University, 2010. http://hdl.handle.net/2097/6910.
Full textDepartment of Mathematics
Louis Crane
We exhibit a static, cylindrically symmetric, exact solution to the Euler-Heisenberg field equations (EHFE) and prove that its effective geometry contains (optical) black holes. It is conjectured that there are also soliton solutions to the EHFE which contain black hole geometries.
Veras, Diego Frankin de Souza. "Solitons em macromolÃculas polimÃricas helicoidais." Universidade Federal do CearÃ, 2012. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=8887.
Full textUm dos desafios da FÃsica TeÃrica à a tentativa de explorar como seus conceitos e tÃcnicas podem ser aplicados à Biologia para descrever a dinÃmica da matÃria viva. A complexidade da estrutura e organizaÃÃo dos sistemas biolÃgicos conduz a efeitos nÃo-lineares onde à possÃvel a manifestaÃÃo de mecanismos solitÃnicos. Uma forma atrativa de se estudar a propagaÃÃo de energia vibracional em biopolÃmeros, tais como proteÃnas, à baseada em modelos de redes nÃo-lineares. Na dÃcada de 1970, Davidov sugeriu que os modos de vibraÃÃes intramoleculares de uma proteÃna estÃo relacionados Ãs interaÃÃes presentes nas deformaÃÃes de sua estrutura e propagam ao longo da cadeia polipeptÃdica com velocidade constante. Este à um comportamento de ondas solitÃrias (soluÃÃes de certas classes de equaÃÃes de onda nÃo-lineares). Os modelos bÃsicos utilizados para se estudar a dinÃmica nÃo linear de macromolÃculas polimÃricas trabalham com redes anarmÃnicas unidimensionais. No entanto, tais molÃculas sÃo tridimensionais e à necessÃrio levar em conta nÃo apenas deslocamentos longitudinais mas tambÃm deslocamentos transversais à cadeia. Com base no fato de que, no estado fundamental, uma macromolÃcula polimÃrica assume a forma de uma hÃlice, estudamos um modelo fÃsico que descreve a dinÃmica nÃo linear de polÃmeros, em particular, para uma proteÃna alfa-hÃlice, tratando com interaÃÃes entre monÃmeros de diferentes ciclos da hÃlice, responsÃveis por estabilizar a geometria espiral da molÃcula. As soluÃÃes numÃricas das equaÃÃes dinÃmicas obtidas para esta cadeia mostram que o modelo suporta soluÃÃes do tipo sÃliton. Analizamos ainda quais os valores aceitÃveis dos parÃmetros livres para que estas soluÃÃes existam. Mostramos de que forma os sÃlitons representam uma torÃÃo na molÃcula e como suas dinÃmicas descrevem a propagaÃÃo desta torÃÃo ao longo da cadeia protÃica.
Fogaça, David Augaitis. "Solitons em colisões núcleon-núcleo." Universidade de São Paulo, 2005. http://www.teses.usp.br/teses/disponiveis/43/43134/tde-24032009-003904/.
Full textAssuming that the nucleus can be treated as a perfect fluid we study the conditions for the formation and propagation of Korteweg-de Vries (KdV) solitons in nuclear matter. The existence of these solitons depends on the nuclear equation of state, which, in its turn, depends on the underlying microscopic theory of the nucleon-nucleon interaction and also on the approximations used in the calculations. In this work we reexamine early works on nuclear solitons, replacing the old equations of state by others, more modern and more realistic, base on QHD and on its variants. Our analysis shows that KdV solitons may indeed be formed in the nucleus with a width around one and two fermis.
Micciche, Salvatore. "Physical properties of gravitational solitons." Thesis, Loughborough University, 1999. https://dspace.lboro.ac.uk/2134/33196.
Full textAllen, Michael A. "The evolution of plane solitons." Thesis, University of Warwick, 1994. http://wrap.warwick.ac.uk/107575/.
Full textWeir, David J. "Quantum mechanics of topological solitons." Thesis, Imperial College London, 2011. http://hdl.handle.net/10044/1/9146.
Full textSöhn, Matthias. "Solitons in Bose-Einstein Condensates." [S.l. : s.n.], 2002. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB10047894.
Full textCarr, Lincoln D. "Solitons in Bose-Einstein condensates /." Thesis, Connect to this title online; UW restricted, 2001. http://hdl.handle.net/1773/9702.
Full textWatanabe, Kimitaka. "Quantum effects in optical solitons /." Electronic version of summary, 1993. http://www.wul.waseda.ac.jp/gakui/gaiyo/1942.pdf.
Full textMuhamed, Abera Ayalew. "Moduli spaces of topological solitons." Thesis, University of Kent, 2015. https://kar.kent.ac.uk/47961/.
Full textAshcroft, Jennifer. "Topological solitons and their dynamics." Thesis, University of Kent, 2017. https://kar.kent.ac.uk/64633/.
Full textWink, Matthias. "Ricci solitons and geometric analysis." Thesis, University of Oxford, 2018. http://ora.ox.ac.uk/objects/uuid:3aae2c5e-58aa-42da-9a1b-ec15cacafdad.
Full textVeras, Diego Frankin de Souza. "Solitons em macromoléculas poliméricas helicoidais." reponame:Repositório Institucional da UFC, 2012. http://www.repositorio.ufc.br/handle/riufc/13678.
Full textSubmitted by Edvander Pires (edvanderpires@gmail.com) on 2015-10-20T20:11:29Z No. of bitstreams: 1 2012_dis_dfsveras.pdf: 1461424 bytes, checksum: e03cd018aa0d13ccd561b6569912d54e (MD5)
Approved for entry into archive by Edvander Pires(edvanderpires@gmail.com) on 2015-10-21T20:39:53Z (GMT) No. of bitstreams: 1 2012_dis_dfsveras.pdf: 1461424 bytes, checksum: e03cd018aa0d13ccd561b6569912d54e (MD5)
Made available in DSpace on 2015-10-21T20:39:53Z (GMT). No. of bitstreams: 1 2012_dis_dfsveras.pdf: 1461424 bytes, checksum: e03cd018aa0d13ccd561b6569912d54e (MD5) Previous issue date: 2012
Um dos desafios da Física Teórica é a tentativa de explorar como seus conceitos e técnicas podem ser aplicados à Biologia para descrever a dinâmica da matéria viva. A complexidade da estrutura e organização dos sistemas biológicos conduz a efeitos não-lineares onde é possível a manifestação de mecanismos solitônicos. Uma forma atrativa de se estudar a propagação de energia vibracional em biopolímeros, tais como proteínas, é baseada em modelos de redes não-lineares. Na década de 1970, Davidov sugeriu que os modos de vibrações intramoleculares de uma proteína estão relacionados às interações presentes nas deformações de sua estrutura e propagam ao longo da cadeia polipeptídica com velocidade constante. Este é um comportamento de ondas solitárias (soluções de certas classes de equações de onda não-lineares). Os modelos básicos utilizados para se estudar a dinâmica não linear de macromoléculas poliméricas trabalham com redes anarmônicas unidimensionais. No entanto, tais moléculas são tridimensionais e é necessário levar em conta não apenas deslocamentos longitudinais mas também deslocamentos transversais à cadeia. Com base no fato de que, no estado fundamental, uma macromolécula polimérica assume a forma de uma hélice, estudamos um modelo físico que descreve a dinâmica não linear de polímeros, em particular, para uma proteína alfa-hélice, tratando com interações entre monômeros de diferentes ciclos da hélice, responsáveis por estabilizar a geometria espiral da molécula. As soluções numéricas das equações dinâmicas obtidas para esta cadeia mostram que o modelo suporta soluções do tipo sóliton. Analizamos ainda quais os valores aceitáveis dos parâmetros livres para que estas soluções existam. Mostramos de que forma os sólitons representam uma torção na molécula e como suas dinâmicas descrevem a propagação desta torção ao longo da cadeia protéica.
Junior, Ernani de Sousa Ribeiro. "A geometria das mÃtricas tipo-Einstein." Universidade Federal do CearÃ, 2011. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=6655.
Full textConselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico
O objetivo deste trabalho à estudar a geometria das mÃtricas tipo-Einstein (solitons de Ricci, quase solitons de Ricci e mÃtricas quasi-Einstein). Mais especificamente, vamos obter equaÃÃes de estrutura, exemplos, fÃrmulas integrais e estimativas que permitirÃo caracterizar estas classes de mÃtricas.
The purpose of this work is study the geometric of the like-Einstein metrics (Ricci soliton, almost Ricci solitons and quasi-Einstein metrics). More specifically, we obtain structure equations, examples, integral formulae and estimates that will enable characterize these classes of metrics.
Mak, William Chi Keung Electrical Engineering & Telecommunications Faculty of Engineering UNSW. "Coupled Solitary Waves in Optical Waveguides." Awarded by:University of New South Wales. Electrical Engineering and Telecommunications, 1998. http://handle.unsw.edu.au/1959.4/17494.
Full textSantos, Blanco María Concepción. "Optical solitons in quadratic nonlinear media and applications to all-optical switching and routing devices." Doctoral thesis, Universitat Politècnica de Catalunya, 1998. http://hdl.handle.net/10803/6913.
Full textUn medio no-lineal cuadrático tiene por fuerza que ser no-centrosimétrico, lo cual es una variedad de anisotropía. Una gran parte de los materiales no-lineales cuadráticos (los que tienen mayor interés para la industria) son uniaxiales lo que significa que presentan un eje de simetría que suele llamarse eje óptico. De la dirección de un haz relativa a ese eje óptico dependen las características de la propagación del haz en el medio cuadrático no-lineal. Una consecuencia de eso en configuraciones de interés es un desvío ('walk-off') sufrido por el haz respecto a su dirección de propagación inicial al entrar en el material no-lineal.
Las propiedades de los solitones cuadráticos 'caminantes' son también estudiadas en la tesis, estableciendo que existe una relación entre la potencia inyectada en el medio y el ángulo de desvío (walking angle).
Una parte importante de la tesis está dedicada al estudio a través de exhaustivos experimentos numéricos del potencial de estas ondas solitarias para constituir la base de dispositivos de conmutación y encaminamiento totalmente ópticos que puedan hacer realidad la promesa de la red transparente totalmente óptica. Los experimentos han permitido identificar varias configuraciones de interés con niveles de potencia y dimensiones que permiten plantearse el diseño y construcción de dispositivos comerciales de conmutación y encaminamiento totalmente ópticos basados en solitones ópticos cuadráticos.
This thesis is a comprehensive study of the fundamental properties of a specific kind of optical spatial solitary waves. First observed experimentally in 1995, these solitary waves are formed by an optical beam at a fundamental frequency and its second harmonic which propagate together and are mutually entangled; and are due to a balanced interplay between the beams' linear diffraction and a second-order nonlinear susceptibility of the medium. They are thereby referred as 'Optical Solitons in Quadratic Nonlinear Media' or simply 'Quadratic Solitons', They are also known as 'Multicolor Solitons' recalling that they are formed by beams at different frequencies.
A quadratic nonlinear media needs to be non centrosymmetric which is a special kind of anisotropy. A great deal of quadratic nonlinear materials (the most used by industry such as lithim niobate, KTP, etc.) are uniaxial meaning that they feature a symmetry axis known as 'optical axis'. The direction of propagation of an optical beam relative to that axis determines the characteristics of the beam's propagation through the quadratic nonlinear material. A main result of that in some configurations of interest is a walk-off suffered by the beam as it enters the quadratic material.
The properties of the families of quadratic solitons in the presence of a linear walk-off (quadratic walking solitons) are studied as well in the thesis stating that there is a relationship between the power injected into the medium and the walking angle, suitable to applications of all-optical switching and routing.
An important last part of the thesis is devoted to the study from a practical viewpoint and through extensive numerical experiments of the potential of these solitary waves as the basis of practical all-optical switches and routers which could take the all-optical transparent network to a reality. The experiments have allowed to identify several configurations of interest with power level and dimensions suited to practical applications which could allow the production of commercial all-optical switching and routing devices based on quadratic solitons.
Xiong, Xiaozhen. "Noncommutative field theories, solitons and superalgebra." [Gainesville, Fla.]: University of Florida, 2002. http://purl.fcla.edu/fcla/etd/UFE0000620.
Full textGenevet, Patrice. "Laser à solitons et vortex localisés." Phd thesis, Université de Nice Sophia-Antipolis, 2009. http://tel.archives-ouvertes.fr/tel-00435984.
Full textKikuchi, Toru. "Relativistic zero-mode dynamics of solitons." 京都大学 (Kyoto University), 2012. http://hdl.handle.net/2433/157758.
Full textChristian, James Michael. "On the theory of Helmholtz solitons." Thesis, University of Salford, 2006. http://usir.salford.ac.uk/26616/.
Full textKolossovski, Kazimir Mathematics & Statistics Australian Defence Force Academy UNSW. "Parametric solitons due to cubic nonlinearities." Awarded by:University of New South Wales - Australian Defence Force Academy. School of Mathematics and Statistics, 2001. http://handle.unsw.edu.au/1959.4/38711.
Full textAtieh, Ahmad K. "Exploiting solitons in all-optical networks." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp02/NQ28325.pdf.
Full text