Academic literature on the topic 'Solitons'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Solitons.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Solitons"
Aycock, Lauren M., Hilary M. Hurst, Dmitry K. Efimkin, Dina Genkina, Hsin-I. Lu, Victor M. Galitski, and I. B. Spielman. "Brownian motion of solitons in a Bose–Einstein condensate." Proceedings of the National Academy of Sciences 114, no. 10 (February 14, 2017): 2503–8. http://dx.doi.org/10.1073/pnas.1615004114.
Full textSegovia, Francis Armando, and Emilse Cabrera. "SOLUCIÓN DE LA ECUACIÓN NO LINEAL DE SCHRODINGER (1+1) EN UN MEDIO KERR." Redes de Ingeniería 6, no. 2 (December 26, 2015): 26. http://dx.doi.org/10.14483/udistrital.jour.redes.2015.2.a03.
Full textZhao, Xue-Hui, Bo Tian, Yong-Jiang Guo, and Hui-Min Li. "Solitons interaction and integrability for a (2+1)-dimensional variable-coefficient Broer–Kaup system in water waves." Modern Physics Letters B 32, no. 08 (March 12, 2018): 1750268. http://dx.doi.org/10.1142/s0217984917502682.
Full textGONZÁLEZ, JORGE A., and JOSE R. CARBÓ. "STATIONARITY-BREAKING BIFURCATIONS OF SOLITONS UNDER NONLINEAR DAMPING." Modern Physics Letters B 08, no. 12 (May 20, 1994): 739–48. http://dx.doi.org/10.1142/s0217984994000741.
Full textPeng, Yangyang, Guangyu Xu, Keyun Zhang, Meisong Liao, Yongzheng Fang, and Yan Zhou. "Modulating anti-dark vector solitons." Laser Physics 33, no. 9 (July 12, 2023): 095101. http://dx.doi.org/10.1088/1555-6611/ace251.
Full textXiao, Zi-Jian, Bo Tian, and Yan Sun. "Soliton interactions and Bäcklund transformation for a (2+1)-dimensional variable-coefficient modified Kadomtsev-Petviashvili equation in fluid dynamics." Modern Physics Letters B 32, no. 02 (January 20, 2018): 1750170. http://dx.doi.org/10.1142/s0217984917501706.
Full textZhang, Ling-Ling, and Xiao-Min Wang. "Bright–dark soliton dynamics and interaction for the variable coefficient three-coupled nonlinear Schrödinger equations." Modern Physics Letters B 34, no. 05 (December 20, 2019): 2050064. http://dx.doi.org/10.1142/s0217984920500645.
Full textPENG, GANG-DING, and ADRIAN ANKIEWICZ. "FUNDAMENTAL AND SECOND-ORDER SOLITION TRANSMISSION IN NONLINEAR DIRECTIONAL FIBER COUPLERS." Journal of Nonlinear Optical Physics & Materials 01, no. 01 (January 1992): 135–50. http://dx.doi.org/10.1142/s021819919200008x.
Full textIvanov, S. K., and A. M. Kamchatnov. "Motion of dark solitons in a non-uniform flow of Bose–Einstein condensate." Chaos: An Interdisciplinary Journal of Nonlinear Science 32, no. 11 (November 2022): 113142. http://dx.doi.org/10.1063/5.0123514.
Full textSingh, Abhishek, and Shyam Kishor. "SOME TYPES OF η-RICCI SOLITONS ON LORENTZIAN PARA-SASAKIAN MANIFOLDS." Facta Universitatis, Series: Mathematics and Informatics 33, no. 2 (September 7, 2018): 217. http://dx.doi.org/10.22190/fumi1802217s.
Full textDissertations / Theses on the topic "Solitons"
Prabhu, Nagabhushana 1966. "Aspects of solition physics : existence of static solitons in an expanding universe and quantum soliton-antisoliton annihilation." Thesis, Massachusetts Institute of Technology, 1998. http://hdl.handle.net/1721.1/47461.
Full textZamaklar, Marija. "Solitons on branes and brane solitons in supergravity theories." Thesis, University of Cambridge, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.620358.
Full textBahri, Yakine. "Stability of solitons and multi-solitons for Landau-Lifschitz equation." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLX028/document.
Full textIn this thesis, we study the one-dimensional Landau-Lifshitz equation with an easy-plane aniso-tropy. This equation describes the dynamics of the magnetization in a ferromagnetic material. It owns travelling-wave solutions called solitons.We begin by proving the asymptotic stability in the energy space of non-zero speed solitons More precisely, we show that any solution corresponding to an initial datum close to a soliton with non-zero speed, is weakly convergent in the energy space as time goes to infinity, to a soliton with a possible different non-zero speed, up to the geometric invariances of the equation. Our analysis relies on the ideas developed by Martel and Merle for the generalized Korteweg-de Vries equations. We use the Madelung transform to study the problem in the hydrodynamical framework. In this framework, we rely on the orbital stability of the solitons and the weak continuity of the flow in order to construct a limit profile. We next derive a monotonicity formula for the momentum, which gives the localization of the limit profile. Its smoothness and exponential decay then follow from a smoothing result for the localized solutions of the Schrödinger equations. Finally, we prove a Liouville type theorem, which shows that only the solitons enjoy these properties in their neighbourhoods.We also establish the asymptotic stability of multi-solitons. The solitons have non-zero speed, are ordered according to their speeds and have sufficiently separated initial positions. We provide the asymptotic stability around solitons and between solitons. More precisely, we show that for an initial datum close to a sum of $N$ dark solitons, the corresponding solution converges weakly to one of the solitons in the sum, when it is translated to the centre of this soliton, and converges weakly to zero when it is translated between solitons
Harland, Derek. "Chains of solitons." Thesis, Durham University, 2008. http://etheses.dur.ac.uk/2303/.
Full textSuntsov, Sergiy. "DISCRETE SURFACE SOLITONS." Doctoral diss., University of Central Florida, 2007. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/2901.
Full textPh.D.
Optics and Photonics
Optics and Photonics
Optics PhD
Morandotti, Roberto. "Discrete optical solitons." Thesis, University of Glasgow, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.300979.
Full textZárate, Devia Yair Daniel. "Phase shielding solitons." Tesis, Universidad de Chile, 2013. http://www.repositorio.uchile.cl/handle/2250/115388.
Full textLos solitones son el fen omeno universal m as profundamente estudiado, debido a los innumerables sistemas físicos en los cuales se observa. Estas soluciones corresponden a estados localizados y coherentes que surgen naturalmente en sistemas extendidos, siendo una de sus propiedades m as fascinantes el hecho de que pueden ser tratados como partículas macroscópicas a pesar de estar formados por numerosos componentes microscópicos. Desde su primera descripci on, realizada por J. S. Russell en 1884, el estudio de solitones se centró en sistemas conservativos por más de cien años. Sin embargo, los pioneros trabajos de Alan Turing e Ilya Prigogine demostraron que los sistemas fuera del equilibrio se auto{ organizan por medio de la generación de estructuras disipativas. Hoy en día, sabemos que es justamente este mecanismo el que permite la formación de solitones disipativos en sistemas con inyección y disipación de energía. Nuestro principal interés ha sido caracterizar de forma analítica y numérica a los solitones que emergen en sistemas forzados paramétricamente{sistemas forzados por medio de un parámetro efectivo que var a en el espacio y/o tiempo. Los sistemas forzados param etricamente pueden experimentar una resonancia paramétrica, la cual se caracteriza por una respuesta subarm onica (subm ultiplos de la frecuencia natural del sistema). Dada la complejidad que presentan los sistemas paramétricos, focalizamos nuestro estudio en la ecuación de Schrödinger no lineal disipativa forzada paramétricamente (PDNLS). Este modelo caracteriza bien la din amica de sistemas forzados param etricamente, en torno al punto de aparición de la resonancia paramétrica, en el límite de baja disipación e inyección de energía. Los solitones disipativos, presentes en PDNLS, típicamente muestran una estructura de fase uniforme. Dichas estructuras han sido ampliamente utilizadas para describir a los solitones hidrodinámicos que aparecen en el experimento de Faraday, estados localizados de la magnetización en un hilo magnético, o los clásicos solitones presentes en una cadena de péndulos con soporte verticalmente vibrado, entre otros. Por medio de simulaciones numéricas interactivas de solitones disipativos en la ecuaciónPDNLS, hemos logrado observar una interesante din amica de frentes de fase hasta ahora desconocida. Estos frentes de fase se propagan hasta alcanzar un punto de equilibrio estacionarioarbitrario. A este tipo de solitones los hemos llamado solitones escudados por la fase (phase shielding solitons), dado que la estructura nal de fase pareciera proteger al módulodel solit on. Hemos logrado caracterizar anal ticamente estas soluciones localizadas, determinando ocho posibles con guraciones. Los solitones estudiados poseen una talla característica dada por el tamaño de la estructura de fase estacionaria. Adem ás, extendimos nuestro estudio al caso bidimensional, mostrando los resultados, dos tipos de phase shilding solitons bidimensionales; axialmente simétricos y asimétricos. Los primeros pueden ser entendidos como una rotación en 2 de las soluciones simétricas encontradas en el caso unidimensional. Por su parte, las soluciones asimétricas bidimensionales presentan propiedades mucho más interesantes, ya que su estructura nal de fáse contiene todas las con guraciones halladas en el caso unidimensional. Con el n de corroborar la existencia de solitones disipativos con estructura de fase no uniforme en sistemas físicos, realizamos simulaciones numéricas de diversos sistemas paramétricos reales. Satisfactoriamente, concluimos que el fenómeno phase shielding soliton es universal, y esperamos que pueda ser prontamente observado experimentalmente.
Hivet, Romain. "Solitons, demi-solitons et réseaux de vortex dans un fluide de polaritons." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2013. http://tel.archives-ouvertes.fr/tel-00911207.
Full textIrwin, P. "Classical and quantized solitons." Thesis, University of Cambridge, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.604958.
Full textShiiki, Noriko. "Solitons and black holes." Thesis, University of Newcastle Upon Tyne, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.313504.
Full textBooks on the topic "Solitons"
MacKenzie, R., M. B. Paranjape, and W. J. Zakrzewski, eds. Solitons. New York, NY: Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4612-1254-6.
Full textLakshmanan, Muthusamy, ed. Solitons. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-73193-8.
Full textE, Trullinger S., Zakharov Vladimir Evgen'evich, and Pokrovskií V. L, eds. Solitons. Amsterdam: North-Holland, 1986.
Find full textTrillo, Stefano, and William Torruellas, eds. Spatial Solitons. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-540-44582-1.
Full textPorsezian, K., and V. C. Kuriakose, eds. Optical Solitons. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-36141-3.
Full textAbdullaev, Fatkhulla, Sergei Darmanyan, and Pulat Khabibullaev. Optical Solitons. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-87716-2.
Full textAkhmediev, Nail, and Adrian Ankiewicz, eds. Dissipative Solitons. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/b11728.
Full textA, Yung, ed. Supersymmetric solitons. New York: Cambridge University Press, 2009.
Find full textAbdullaev, F. Kh. Optical solitons. Berlin: Springer, 1993.
Find full textN, Akhmediev Nail, and Ankiewicz Adrian, eds. Dissipative solitons. Berlin: Springer, 2005.
Find full textBook chapters on the topic "Solitons"
Scharf, Rainer. "Dressed Solitons and Soliton Chaos." In Nonlinear Coherent Structures in Physics and Biology, 369–72. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4899-1343-2_56.
Full textAo, Ping, and Xiao-Mei Zhu. "Berry Phase and Dissipation of Topological Singularities." In Solitons, 1–9. New York, NY: Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4612-1254-6_1.
Full textHosotani, Yutaka. "Gauge Theory Description of Spin Chains and Ladders." In Solitons, 69–73. New York, NY: Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4612-1254-6_10.
Full textIoannidou, Theodora. "Soliton Solutions of the Integrable Chiral Model in (2+1) Dimensions." In Solitons, 75–79. New York, NY: Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4612-1254-6_11.
Full textKogan, Ian I. "String Winding Modes From Charge Nonconservation in Compact Chern-Simons Theory." In Solitons, 81–92. New York, NY: Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4612-1254-6_12.
Full textKugler, M. "Holes in the Charge Density of Topological Solitons." In Solitons, 93–97. New York, NY: Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4612-1254-6_13.
Full textGegenberg, J., and G. Kunstatter. "From Two-dimensional Black Holes to sine-Gordon Solitons." In Solitons, 99–106. New York, NY: Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4612-1254-6_14.
Full textLoutsenko, I., and D. Roubtsov. "Solitons and Exciton Superfluidity." In Solitons, 107–13. New York, NY: Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4612-1254-6_15.
Full textLue, Arthur. "Quantum Effects on Higgs Winding Configurations." In Solitons, 115–18. New York, NY: Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4612-1254-6_16.
Full textManton, N. S. "Solitons and Their Moduli Spaces." In Solitons, 119–30. New York, NY: Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4612-1254-6_17.
Full textConference papers on the topic "Solitons"
Leo, François. "Temporal Solitons in Ring Resonators." In CLEO: Science and Innovations, SF1Q.4. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_si.2024.sf1q.4.
Full textKwasny, Michal, Urszula A. Laudyn, Miroslaw Karpierz, Marek Trippenbach, David Hagan, Demetrios Christodoulides, Wieslaw Krolikowski, and Pawel S. Jung. "Observation of New Class of Bright Solitons: Tower and Volcano Solitons." In CLEO: Fundamental Science, FTh4F.6. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_fs.2024.fth4f.6.
Full textYu, Yan, Jinhao Ge, Maodong Gao, Zhiquan Yuan, Warren Jin, Joel Guo, Hao-Jing Chen, et al. "Counter-propagating solitons in coupled ring microresonators." In CLEO: Fundamental Science, FTh4F.4. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_fs.2024.fth4f.4.
Full textSimon, Corentin, Nicolas Englebert, François Leo, and Simon-Pierre Gorza. "High brightness coherently driven active fiber cavity soliton crystals by optical gain clamping." In CLEO: Fundamental Science, FTh4F.3. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_fs.2024.fth4f.3.
Full textGao, Maodong, Jinhao Ge, Zhiquan Yuan, Yan Yu, Joel Guo, Warren Jin, Jin-Yu Liu, et al. "Multi-Color Solitons in Coupled-Ring Microresonators." In CLEO: Science and Innovations, SM3G.1. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_si.2024.sm3g.1.
Full textGrigoryan, V. S., A. Hasegawa, and A. Maruta. "Parametric Trapping and Self-Ordering of Solitons." In International Conference on Ultrafast Phenomena. Washington, D.C.: Optica Publishing Group, 1996. http://dx.doi.org/10.1364/up.1996.tue.53.
Full textZhao, W., and E. Bourkoff. "Compression of optical dark solitons." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/oam.1990.wv2.
Full textRothenberg, Joshua E. "Generation of dark solitons by nonlinear fiber propagation." In Integrated Photonics Research. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/ipr.1991.tua1.
Full textSerkin, V. N., Akira Hasegawa, and T. L. Belyaeva. "Soliton management: from optical solitons to matter-wave solitons." In SPIE Proceedings, edited by Peter A. Atanasov, Tanja N. Dreischuh, Sanka V. Gateva, and Lubomir M. Kovachev. SPIE, 2007. http://dx.doi.org/10.1117/12.727102.
Full textSnyder, A. W., S. J. Hewlett, and D. J. Mitchell. "Dynamic spatial solitons." In Nonlinear Guided-Wave Phenomena. Washington, D.C.: Optica Publishing Group, 1993. http://dx.doi.org/10.1364/nlgwp.1993.pd.1.
Full textReports on the topic "Solitons"
Apel, John R., Lev A. Ostrovsky, Yury A. Stepanyants, and James F. Lynch. Internal Solitons in the Oceans. Fort Belvoir, VA: Defense Technical Information Center, January 2006. http://dx.doi.org/10.21236/ada450369.
Full textVahala, George. Type-II Quantum Algorithms for Solitons. Fort Belvoir, VA: Defense Technical Information Center, February 2004. http://dx.doi.org/10.21236/ada420618.
Full textSegev, Mordechay. Photorefractive Spatial Solitons: Fundamentals and Applications. Fort Belvoir, VA: Defense Technical Information Center, December 1999. http://dx.doi.org/10.21236/ada379085.
Full textSun, Xin, Dingwei Lu, Rouli Fu, D. L. Lin, and Thomas F. George. Gap States of Charged Solitons in Polyacetylene. Fort Belvoir, VA: Defense Technical Information Center, August 1989. http://dx.doi.org/10.21236/ada212105.
Full textChen, P. Brane Inflation, Solitons and Cosmological Solutions: I. Office of Scientific and Technical Information (OSTI), January 2005. http://dx.doi.org/10.2172/839660.
Full textBahcall, S., and B. W. Lynn. Potential motion for Thomas-Fermi non-topological solitons. Office of Scientific and Technical Information (OSTI), April 1992. http://dx.doi.org/10.2172/79126.
Full textSzabo, Richard J. Matrix Models, Large N Limits and Noncommutative Solitons. Journal of Geometry and Symmetry in Physics, 2012. http://dx.doi.org/10.7546/jgsp-7-2006-85-106.
Full textFork, Richard L. Exploring Coupled Solitons in Multi-Core Optical Fiber. Fort Belvoir, VA: Defense Technical Information Center, October 1995. http://dx.doi.org/10.21236/ada299184.
Full textSauer, Jon R., and Mark J. Ablowitz. Multi-Gb/s Computer Interconnect Using Optical Solitons. Fort Belvoir, VA: Defense Technical Information Center, August 1995. http://dx.doi.org/10.21236/ada301163.
Full textAmin, Mustafa. Final Report -- Wires, Solitons and the Big Bang. Office of Scientific and Technical Information (OSTI), August 2020. http://dx.doi.org/10.2172/1647549.
Full text