Academic literature on the topic 'Solitons'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Solitons.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Solitons"

1

Aycock, Lauren M., Hilary M. Hurst, Dmitry K. Efimkin, Dina Genkina, Hsin-I. Lu, Victor M. Galitski, and I. B. Spielman. "Brownian motion of solitons in a Bose–Einstein condensate." Proceedings of the National Academy of Sciences 114, no. 10 (February 14, 2017): 2503–8. http://dx.doi.org/10.1073/pnas.1615004114.

Full text
Abstract:
We observed and controlled the Brownian motion of solitons. We launched solitonic excitations in highly elongatedRb87Bose–Einstein condensates (BECs) and showed that a dilute background of impurity atoms in a different internal state dramatically affects the soliton. With no impurities and in one dimension (1D), these solitons would have an infinite lifetime, a consequence of integrability. In our experiment, the added impurities scatter off the much larger soliton, contributing to its Brownian motion and decreasing its lifetime. We describe the soliton’s diffusive behavior using a quasi-1D scattering theory of impurity atoms interacting with a soliton, giving diffusion coefficients consistent with experiment.
APA, Harvard, Vancouver, ISO, and other styles
2

Segovia, Francis Armando, and Emilse Cabrera. "SOLUCIÓN DE LA ECUACIÓN NO LINEAL DE SCHRODINGER (1+1) EN UN MEDIO KERR." Redes de Ingeniería 6, no. 2 (December 26, 2015): 26. http://dx.doi.org/10.14483/udistrital.jour.redes.2015.2.a03.

Full text
Abstract:
Se presenta un marco teórico y se muestra una simulación numérica de la propagación de solitones. Con especial atención a los solitones ópticos espaciales, se calcula analíticamente el perfil de solitón correspondiente a la ecuación Schrodinger no-lineal para un medio Kerr. Los resultados muestran que los solitones ópticos son pulsos estables cuya forma y espectro son preservados en grandes distancias.Solution of the nonlinear Schrodinger equation (1+1) in a Kerr mediumABSTRACTThis document presents a theoretical framework and shows a numerical simulation for the propagation of solitons. With special attention to the spatial optical solitons, we calculates analytically the profile of solitón corresponding to the non-linear Schrodinger equation for a Kerr medium. The results show that the optical solitons are stable pulses whose shape and spectrum are preserved at great distances.Keywords: nonlinear optics, nonlinear Schrodinger equation, solitons.
APA, Harvard, Vancouver, ISO, and other styles
3

Zhao, Xue-Hui, Bo Tian, Yong-Jiang Guo, and Hui-Min Li. "Solitons interaction and integrability for a (2+1)-dimensional variable-coefficient Broer–Kaup system in water waves." Modern Physics Letters B 32, no. 08 (March 12, 2018): 1750268. http://dx.doi.org/10.1142/s0217984917502682.

Full text
Abstract:
Under investigation in this paper is a (2+1)-dimensional variable-coefficient Broer–Kaup system in water waves. Via the symbolic computation, Bell polynomials and Hirota method, the Bäcklund transformation, Lax pair, bilinear forms, one- and two-soliton solutions are derived. Propagation and interaction for the solitons are illustrated: Amplitudes and shapes of the one soliton keep invariant during the propagation, which implies that the transport of the energy is stable for the (2+1)-dimensional water waves; and inelastic interactions between the two solitons are discussed. Elastic interactions between the two parabolic-, cubic- and periodic-type solitons are displayed, where the solitonic amplitudes and shapes remain unchanged except for certain phase shifts. However, inelastically, amplitudes of the two solitons have a linear superposition after each interaction which is called as a soliton resonance phenomenon.
APA, Harvard, Vancouver, ISO, and other styles
4

GONZÁLEZ, JORGE A., and JOSE R. CARBÓ. "STATIONARITY-BREAKING BIFURCATIONS OF SOLITONS UNDER NONLINEAR DAMPING." Modern Physics Letters B 08, no. 12 (May 20, 1994): 739–48. http://dx.doi.org/10.1142/s0217984994000741.

Full text
Abstract:
The existence and dynamics of solitons in general systems with nonlinear damping are investigated. The mechanism of a new bifurcation after which the soliton can no longer be in a stationary state is discussed. Some particular cases are studied in detail and exact solutions are presented. The possibility and importance of self-sustained solitons, solitonic limit cycles, and chaotic solitons in these systems are analyzed.
APA, Harvard, Vancouver, ISO, and other styles
5

Peng, Yangyang, Guangyu Xu, Keyun Zhang, Meisong Liao, Yongzheng Fang, and Yan Zhou. "Modulating anti-dark vector solitons." Laser Physics 33, no. 9 (July 12, 2023): 095101. http://dx.doi.org/10.1088/1555-6611/ace251.

Full text
Abstract:
Abstract Theoretical analysis of the modulation of anti-dark vector solitons is conducted in this work. The simulation depends on a single-mode optical fiber out-cavity modulation system model that works at 1 μm. The anti-dark vector soliton’s initial state is assumed to be polarization-/group-velocity-locked, with same/different central wavelengths in orthogonally polarized directions. After soliton parameter modulation, modulated anti-dark vector solitons at the output port will demonstrate different properties in orthogonal directions. For example, two symmetrically located frequency peaks always exist for output orthogonal modes when the input state is polarization-locked. And a dual-wavelength anti-dark vector soliton with temporal pulse oscillation can be generated by changing the projection angle with the help of a polarization beam splitter, when the input vector soliton’s group-velocity is locked. These modulation results are instructive for the study of out-cavity modulating optical fiber vector soltions with different pulsed properties.
APA, Harvard, Vancouver, ISO, and other styles
6

Xiao, Zi-Jian, Bo Tian, and Yan Sun. "Soliton interactions and Bäcklund transformation for a (2+1)-dimensional variable-coefficient modified Kadomtsev-Petviashvili equation in fluid dynamics." Modern Physics Letters B 32, no. 02 (January 20, 2018): 1750170. http://dx.doi.org/10.1142/s0217984917501706.

Full text
Abstract:
In this paper, we investigate a (2[Formula: see text]+[Formula: see text]1)-dimensional variable-coefficient modified Kadomtsev-Petviashvili (mKP) equation in fluid dynamics. With the binary Bell-polynomial and an auxiliary function, bilinear forms for the equation are constructed. Based on the bilinear forms, multi-soliton solutions and Bell-polynomial-type Bäcklund transformation for such an equation are obtained through the symbolic computation. Soliton interactions are presented. Based on the graphic analysis, Parametric conditions for the existence of the shock waves, elevation solitons and depression solitons are given, and it is shown that under the condition of keeping the wave vectors invariable, the change of [Formula: see text] and [Formula: see text] can lead to the change of the solitonic velocities, but the shape of each soliton remains unchanged, where [Formula: see text] and [Formula: see text] are the variable coefficients in the equation. Oblique elastic interactions can exist between the (i) two shock waves, (ii) two elevation solitons, and (iii) elevation and depression solitons. However, oblique interactions between (i) shock waves and elevation solitons, (ii) shock waves and depression solitons are inelastic.
APA, Harvard, Vancouver, ISO, and other styles
7

Zhang, Ling-Ling, and Xiao-Min Wang. "Bright–dark soliton dynamics and interaction for the variable coefficient three-coupled nonlinear Schrödinger equations." Modern Physics Letters B 34, no. 05 (December 20, 2019): 2050064. http://dx.doi.org/10.1142/s0217984920500645.

Full text
Abstract:
Under investigation in this paper is the variable coefficient three-coupled nonlinear Schrödinger (CNLS) equations, which govern the dynamics of solitonic excitations along three-spine [Formula: see text]-helical protein with inhomogeneous effect. Via the Hirota method and symbolic computation, the exact two-bright-one-dark (TBD) and one-bright-two-dark (BTD) soliton solutions are constructed analytically. The propagation properties are discussed for TBD and BTD solitons when the variable coefficient is a hyperbolic secant function. Figures are plotted to reveal the following interactions of TBD and BTD two solitons: (1) Evolution without interactions of double-parabola-shaped solitons, of double-[Formula: see text]-shaped solitons and of parabola-[Formula: see text]-shaped solitons; (2) Evolution with periodic interaction of double-parabola-shaped solitons and of parabola-[Formula: see text]-shaped solitons; (3) Collision of double-[Formula: see text]-shaped solitons and of parabola-[Formula: see text]-shaped solitons.
APA, Harvard, Vancouver, ISO, and other styles
8

PENG, GANG-DING, and ADRIAN ANKIEWICZ. "FUNDAMENTAL AND SECOND-ORDER SOLITION TRANSMISSION IN NONLINEAR DIRECTIONAL FIBER COUPLERS." Journal of Nonlinear Optical Physics & Materials 01, no. 01 (January 1992): 135–50. http://dx.doi.org/10.1142/s021819919200008x.

Full text
Abstract:
Transmission characteristics of first-order and second-order solitons propagating through a nonlinear optical fiber coupler are investigated by analysing the coupled nonlinear Schrödinger equations (NLSEs). We show that it is most advantageous to use fundamental solitions to make an ideal optical switch which can be used in multiplexing and/or demultiplexing soliton signals from different sources, and that such a switch can have a high switching efficiency and intact soliton output. Also, we have analyzed the relation between critical power of a soliton switch and that of a cw switch, and have given the soliton “critical energy” in an explicit form in terms of the physical parameters. Further, we give evidence to show that soliton bound-states and different solitons can be generated through soliton conversion in a nonlinear coupler.
APA, Harvard, Vancouver, ISO, and other styles
9

Ivanov, S. K., and A. M. Kamchatnov. "Motion of dark solitons in a non-uniform flow of Bose–Einstein condensate." Chaos: An Interdisciplinary Journal of Nonlinear Science 32, no. 11 (November 2022): 113142. http://dx.doi.org/10.1063/5.0123514.

Full text
Abstract:
We study motion of dark solitons in a non-uniform one-dimensional flow of a Bose–Einstein condensate. Our approach is based on Hamiltonian mechanics applied to the particle-like behavior of dark solitons in a slightly non-uniform and slowly changing surrounding. In one-dimensional geometry, the condensate’s wave function undergoes the jump-like behavior across the soliton, and this leads to generation of the counterflow in the background condensate. For a correct description of soliton’s dynamics, the contributions of this counterflow to the momentum and energy of the soliton are taken into account. The resulting Hamilton equations are reduced to the Newton-like equation for the soliton’s path, and this Newton equation is solved in several typical situations. The analytical results are confirmed by numerical calculations.
APA, Harvard, Vancouver, ISO, and other styles
10

Singh, Abhishek, and Shyam Kishor. "SOME TYPES OF η-RICCI SOLITONS ON LORENTZIAN PARA-SASAKIAN MANIFOLDS." Facta Universitatis, Series: Mathematics and Informatics 33, no. 2 (September 7, 2018): 217. http://dx.doi.org/10.22190/fumi1802217s.

Full text
Abstract:
In this paper we study some types of η-Ricci solitons on Lorentzianpara-Sasakian manifolds and we give an example of η-Ricci solitons on 3-dimensional Lorentzian para-Sasakian manifold. We obtain the conditions of η-Ricci soliton on ϕ-conformally flat, ϕ-conharmonically flat and ϕ-projectivelyflat Lorentzian para-Sasakian manifolds, the existence of η-Ricci solitons implies that (M,g) is η-Einstein manifold. In these cases there is no Ricci solitonon M with the potential vector field
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Solitons"

1

Prabhu, Nagabhushana 1966. "Aspects of solition physics : existence of static solitons in an expanding universe and quantum soliton-antisoliton annihilation." Thesis, Massachusetts Institute of Technology, 1998. http://hdl.handle.net/1721.1/47461.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zamaklar, Marija. "Solitons on branes and brane solitons in supergravity theories." Thesis, University of Cambridge, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.620358.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bahri, Yakine. "Stability of solitons and multi-solitons for Landau-Lifschitz equation." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLX028/document.

Full text
Abstract:
Dans cette thèse, nous étudions l'équation de Landau-Lifshitz avec une anisotropie planaire en dimension un. Cette équation décrit la dynamique de l'aimantation dans des matériaux ferromagnétiques. Elle admet des solutions particulières de type onde progressive appelées solitons.D'abord, nous montrons la stabilité asymptotique des solitons de vitesse non nulle appelés solitons sombres dans l'espace d'énergie. Plus précisément, nous prouvons que toute solution correspondant à une donnée initiale proche du soliton de vitesse non nulle, converge faiblement dans l'espace d'énergie en temps long, vers un soliton de vitesse non nulle, sous les invariances géométriques de l'équation. Notre analyse repose sur les idées développées par Martel et Merle pour les équations de Korteweg-de Vries généralisées. Nous utilisons la transformée de Madelung pour étudier le problème dans le cadre hydrodynamique. Nous invoquons ensuite la stabilité orbitale des solitons et la continuité faible du flot afin de construire le profil limite. Nous établissons de plus une formule de monotonie pour le moment, ce qui nous permet d'avoir la localisation du profil limite. Sa régularité et sa décroissance exponentielle découlent d'un résultat de régularité pour les solutions localisées des équations de Schrödinger. Nous finissons la preuve par un théorème de type Liouville, qui nous indique que seuls les solitons vérifient ces propriétés dans leurs voisinages.Nous nous intéressons également à la stabilité asymptotique d'une superposition de plusieurs solitons appelées multi-solitons. Les solitons de vitesse non nulle sont ordonnés selon leurs vitesses et sont initialement bien séparés. Nous démontrons la stabilité asymptotique autour et entre les solitons. Plus précisément, nous montrons que pour une donnée initiale proche de la somme de $N$ solitons sombres, la solution correspondante converge faiblement vers un des solitons de la somme, quand elle est translatée au niveau du centre de ce soliton, et converge faiblement vers zéro quand elle est translatée entre les solitons
In this thesis, we study the one-dimensional Landau-Lifshitz equation with an easy-plane aniso-tropy. This equation describes the dynamics of the magnetization in a ferromagnetic material. It owns travelling-wave solutions called solitons.We begin by proving the asymptotic stability in the energy space of non-zero speed solitons More precisely, we show that any solution corresponding to an initial datum close to a soliton with non-zero speed, is weakly convergent in the energy space as time goes to infinity, to a soliton with a possible different non-zero speed, up to the geometric invariances of the equation. Our analysis relies on the ideas developed by Martel and Merle for the generalized Korteweg-de Vries equations. We use the Madelung transform to study the problem in the hydrodynamical framework. In this framework, we rely on the orbital stability of the solitons and the weak continuity of the flow in order to construct a limit profile. We next derive a monotonicity formula for the momentum, which gives the localization of the limit profile. Its smoothness and exponential decay then follow from a smoothing result for the localized solutions of the Schrödinger equations. Finally, we prove a Liouville type theorem, which shows that only the solitons enjoy these properties in their neighbourhoods.We also establish the asymptotic stability of multi-solitons. The solitons have non-zero speed, are ordered according to their speeds and have sufficiently separated initial positions. We provide the asymptotic stability around solitons and between solitons. More precisely, we show that for an initial datum close to a sum of $N$ dark solitons, the corresponding solution converges weakly to one of the solitons in the sum, when it is translated to the centre of this soliton, and converges weakly to zero when it is translated between solitons
APA, Harvard, Vancouver, ISO, and other styles
4

Harland, Derek. "Chains of solitons." Thesis, Durham University, 2008. http://etheses.dur.ac.uk/2303/.

Full text
Abstract:
We construct and analyse chains of solitons in various field theories. Particular emphasis is placed on the constituent structure, which appears to be be a generic feature of chains. In Yang-Mills theory, we construct axially symmetric chains of instantons (calorons) with instanton charge 2, making essential use of the Nahm transform. We show that there are two distinct families of caloron, which can be distinguished using representation theory. We also construct calorons on hyperbolic space with instanton charge 1 and monopole charge 0. This generalises earlier work of Garland and Murray, in the same way that non-integer-mass hyperbolic monopoles generalise the integer-mass hyperbolic monopoles of Atiyah. We study chains of skyrmions with charge 1 in both the Skyrme and planar Skyrme models, using various approximate analytic Ansätze. In the Skyrme model chains are argued to exist and to have an energy per baryon number lower than the charge 2 skyrmion. In the planar Skyrme model, we show that the stability of chains depends on the choice of potential function. We study chains and kinks in the CP(^n) sigma models analytically, in particular, we show that chains are kinks in a sigma model whose target is a homogeneous space for a loop group. This is the Sigma model analog of the statement that a caloron is a monopole whose gauge group is a loop group.
APA, Harvard, Vancouver, ISO, and other styles
5

Suntsov, Sergiy. "DISCRETE SURFACE SOLITONS." Doctoral diss., University of Central Florida, 2007. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/2901.

Full text
Abstract:
Surface waves exist along the interfaces between two different media and are known to display properties that have no analogue in continuous systems. In years past, they have been the subject of many studies in a diverse collection of scientific disciplines. In optics, one of the mechanisms through which optical surface waves can exist is material nonlinearity. Until recently, most of the activity in this area was focused on interfaces between continuous media but no successful experiments have been reported. However, the growing interest that nonlinear discrete optics has attracted in the last two decades has raised the question of whether nonlinear surface waves can exist in discrete optical systems. In this work, a detailed experimental study of linear and nonlinear optical wave propagation at the interface between a discrete one-dimensional Kerr-nonlinear system and a continuous medium (slab waveguide) as well as at the interface between two dissimilar waveguide lattices is presented. The major part of this dissertation is devoted to the first experimental observation of discrete surface solitons in AlGaAs Kerr-nonlinear arrays of weakly coupled waveguides. These nonlinear surface waves are found to localize in the channels at and near the boundary of the waveguide array. The key unique property of discrete surface solitons, namely the existence of a power threshold, is investigated in detail. The second part of this work deals with the linear light propagation properties at the interface between two dissimilar waveguide arrays (so-called waveguide array hetero-junction). The possibility of three different types of linear interface modes is theoretically predicted and the existence of one of them, namely the staggered/staggered mode, is confirmed experimentally. The last part of the dissertation is dedicated to the investigation of the nonlinear properties of AlGaAs waveguide array hetero-junctions. The predicted three different types of discrete hybrid surface solitons are analyzed theoretically. The experimental results on observation of in-phase/in-phase hybrid surface solitons localized at channels on either side of the interface are presented and different nature of their formation is discussed.
Ph.D.
Optics and Photonics
Optics and Photonics
Optics PhD
APA, Harvard, Vancouver, ISO, and other styles
6

Morandotti, Roberto. "Discrete optical solitons." Thesis, University of Glasgow, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.300979.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zárate, Devia Yair Daniel. "Phase shielding solitons." Tesis, Universidad de Chile, 2013. http://www.repositorio.uchile.cl/handle/2250/115388.

Full text
Abstract:
Magíster en Ciencias, Mención Física
Los solitones son el fen omeno universal m as profundamente estudiado, debido a los innumerables sistemas físicos en los cuales se observa. Estas soluciones corresponden a estados localizados y coherentes que surgen naturalmente en sistemas extendidos, siendo una de sus propiedades m as fascinantes el hecho de que pueden ser tratados como partículas macroscópicas a pesar de estar formados por numerosos componentes microscópicos. Desde su primera descripci on, realizada por J. S. Russell en 1884, el estudio de solitones se centró en sistemas conservativos por más de cien años. Sin embargo, los pioneros trabajos de Alan Turing e Ilya Prigogine demostraron que los sistemas fuera del equilibrio se auto{ organizan por medio de la generación de estructuras disipativas. Hoy en día, sabemos que es justamente este mecanismo el que permite la formación de solitones disipativos en sistemas con inyección y disipación de energía. Nuestro principal interés ha sido caracterizar de forma analítica y numérica a los solitones que emergen en sistemas forzados paramétricamente{sistemas forzados por medio de un parámetro efectivo que var a en el espacio y/o tiempo. Los sistemas forzados param etricamente pueden experimentar una resonancia paramétrica, la cual se caracteriza por una respuesta subarm onica (subm ultiplos de la frecuencia natural del sistema). Dada la complejidad que presentan los sistemas paramétricos, focalizamos nuestro estudio en la ecuación de Schrödinger no lineal disipativa forzada paramétricamente (PDNLS). Este modelo caracteriza bien la din amica de sistemas forzados param etricamente, en torno al punto de aparición de la resonancia paramétrica, en el límite de baja disipación e inyección de energía. Los solitones disipativos, presentes en PDNLS, típicamente muestran una estructura de fase uniforme. Dichas estructuras han sido ampliamente utilizadas para describir a los solitones hidrodinámicos que aparecen en el experimento de Faraday, estados localizados de la magnetización en un hilo magnético, o los clásicos solitones presentes en una cadena de péndulos con soporte verticalmente vibrado, entre otros. Por medio de simulaciones numéricas interactivas de solitones disipativos en la ecuaciónPDNLS, hemos logrado observar una interesante din amica de frentes de fase hasta ahora desconocida. Estos frentes de fase se propagan hasta alcanzar un punto de equilibrio estacionarioarbitrario. A este tipo de solitones los hemos llamado solitones escudados por la fase (phase shielding solitons), dado que la estructura nal de fase pareciera proteger al módulodel solit on. Hemos logrado caracterizar anal ticamente estas soluciones localizadas, determinando ocho posibles con guraciones. Los solitones estudiados poseen una talla característica dada por el tamaño de la estructura de fase estacionaria. Adem ás, extendimos nuestro estudio al caso bidimensional, mostrando los resultados, dos tipos de phase shilding solitons bidimensionales; axialmente simétricos y asimétricos. Los primeros pueden ser entendidos como una rotación en 2 de las soluciones simétricas encontradas en el caso unidimensional. Por su parte, las soluciones asimétricas bidimensionales presentan propiedades mucho más interesantes, ya que su estructura nal de fáse contiene todas las con guraciones halladas en el caso unidimensional. Con el n de corroborar la existencia de solitones disipativos con estructura de fase no uniforme en sistemas físicos, realizamos simulaciones numéricas de diversos sistemas paramétricos reales. Satisfactoriamente, concluimos que el fenómeno phase shielding soliton es universal, y esperamos que pueda ser prontamente observado experimentalmente.
APA, Harvard, Vancouver, ISO, and other styles
8

Hivet, Romain. "Solitons, demi-solitons et réseaux de vortex dans un fluide de polaritons." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2013. http://tel.archives-ouvertes.fr/tel-00911207.

Full text
Abstract:
Ce travail est consacré à l'étude des fluides quantiques de polaritons de microcavités semi-conductrices et en particulier à la génération de solitons, de demi-solitons et de réseaux de vortex. Nous avons développé un dispositif expérimental permettant la génération et l'observation de solitons sombres dans un fluide de polaritons. Nous observons les profils de densité et de phase caractéristiques des solitons, et étudions leurs propriétés de stabilité. Nous montrons expérimentalement que l'utilisation d'une pompe polarisée linéairement mène à la formation de demi-solitons, grâce au champ magnétique effectif existant en présence des deux populations de spin. Après avoir caractérisé les demi-solitons en densité et en phase, une tomographie complète du système est effectuée pour extraire l'information stockée dans le pseudospin. Ces études nous permettent de formuler une analogie formelle entre les demi-solitons et les monopoles magnétiques. Enfin, nous nous intéressons à des techniques de piégeage de vortex. Nous mettons à profit l'utilisation de masques métalliques pour créer des puits de potentiels piégeant les vortex générés hydrodynamiquement lors de l'écoulement du fluide sur un défaut à basse densité de polaritons. Nous utilisons ces masques pour réaliser des réseaux géométriques de vortex et d'antivortex à basse densité de polaritons dont la forme et la taille sont contrôlables. L'étude des effets d'interaction polariton-polariton à haute densité menée grâce à un dispositif expérimental à plusieurs faisceaux d'excitations nous permet d'observer la déformation et la destruction du réseau dues à l'annihilation des paires vortex-antivortex.
APA, Harvard, Vancouver, ISO, and other styles
9

Irwin, P. "Classical and quantized solitons." Thesis, University of Cambridge, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.604958.

Full text
Abstract:
This thesis is concerned with the classical and semi-classical behaviour of solitons in three dimensions. In Chapter 2 we consider the zero mode quantization of the minimal energy Skyrmions for nucleon numbers between four and nine and also the conjectured solution with nucleon number of seventeen. The method relies on determining the contractibility of the loops in the configuration space corresponding to the discrete symmetry of the minimal energy solution. We find that for nucleon numbers four, six and eight the ground states obtained agree with the observed quantum numbers of the ground states of Helium, Lithium and Beryllium. But for nucleon numbers five, seven, nine and seventeen the spins obtained conflict with the observed isodoublet nuclear states. In Chapter 3 we discuss the gradient flow curves for two well-separated Skyrmions. The form of the equations are quite simple and lead to an unambiguous interpretation of how the solution curves behave. There exists a large number of symmetries which enable us to find the solutions in closed form in the case of massless pions. An algorithm is described that estimates the positions and relative orientation of two-separated Skyrmions, given the numerically generated Skyrme field. Chapters 4 and 5 are concerned with monopoles in SU(3) gauge theory. In Chapter 4 we consider charge two monopoles in the minimally broken case. A certain class of solutions looks like SU(2) monopoles embedded in SU(3) with a transition region or "cloud" surrounding the monopoles. We solve for the long-range fields in this region, confirming the existence of the cloud. The moduli space metric found by Dancer, is expressed in an explicit form. Chapter 5 discusses the case of maximal symmetry breaking for SU(3) monopoles for magnetic charge (2,1). Some properties of this space are discussed, we also find the axially symmetric geodesic submanifold of the moduli space and study the case of monopole scattering there. We analyse the limit where minimal symmetry breaking occurs, comparing to the results in Chapter 4.
APA, Harvard, Vancouver, ISO, and other styles
10

Shiiki, Noriko. "Solitons and black holes." Thesis, University of Newcastle Upon Tyne, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.313504.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Solitons"

1

MacKenzie, R., M. B. Paranjape, and W. J. Zakrzewski, eds. Solitons. New York, NY: Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4612-1254-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lakshmanan, Muthusamy, ed. Solitons. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-73193-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

E, Trullinger S., Zakharov Vladimir Evgen'evich, and Pokrovskií V. L, eds. Solitons. Amsterdam: North-Holland, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Trillo, Stefano, and William Torruellas, eds. Spatial Solitons. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-540-44582-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Porsezian, K., and V. C. Kuriakose, eds. Optical Solitons. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-36141-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Abdullaev, Fatkhulla, Sergei Darmanyan, and Pulat Khabibullaev. Optical Solitons. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-87716-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Akhmediev, Nail, and Adrian Ankiewicz, eds. Dissipative Solitons. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/b11728.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

A, Yung, ed. Supersymmetric solitons. New York: Cambridge University Press, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Abdullaev, F. Kh. Optical solitons. Berlin: Springer, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

N, Akhmediev Nail, and Ankiewicz Adrian, eds. Dissipative solitons. Berlin: Springer, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Solitons"

1

Scharf, Rainer. "Dressed Solitons and Soliton Chaos." In Nonlinear Coherent Structures in Physics and Biology, 369–72. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4899-1343-2_56.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ao, Ping, and Xiao-Mei Zhu. "Berry Phase and Dissipation of Topological Singularities." In Solitons, 1–9. New York, NY: Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4612-1254-6_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hosotani, Yutaka. "Gauge Theory Description of Spin Chains and Ladders." In Solitons, 69–73. New York, NY: Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4612-1254-6_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ioannidou, Theodora. "Soliton Solutions of the Integrable Chiral Model in (2+1) Dimensions." In Solitons, 75–79. New York, NY: Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4612-1254-6_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kogan, Ian I. "String Winding Modes From Charge Nonconservation in Compact Chern-Simons Theory." In Solitons, 81–92. New York, NY: Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4612-1254-6_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kugler, M. "Holes in the Charge Density of Topological Solitons." In Solitons, 93–97. New York, NY: Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4612-1254-6_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Gegenberg, J., and G. Kunstatter. "From Two-dimensional Black Holes to sine-Gordon Solitons." In Solitons, 99–106. New York, NY: Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4612-1254-6_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Loutsenko, I., and D. Roubtsov. "Solitons and Exciton Superfluidity." In Solitons, 107–13. New York, NY: Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4612-1254-6_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lue, Arthur. "Quantum Effects on Higgs Winding Configurations." In Solitons, 115–18. New York, NY: Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4612-1254-6_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Manton, N. S. "Solitons and Their Moduli Spaces." In Solitons, 119–30. New York, NY: Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4612-1254-6_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Solitons"

1

Leo, François. "Temporal Solitons in Ring Resonators." In CLEO: Science and Innovations, SF1Q.4. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_si.2024.sf1q.4.

Full text
Abstract:
In this talk I will present our recent results about soliton generation in fiber and integrated resonators. I will discuss active solitons, parametrically driven solitons as well as electro-optic solitons.
APA, Harvard, Vancouver, ISO, and other styles
2

Kwasny, Michal, Urszula A. Laudyn, Miroslaw Karpierz, Marek Trippenbach, David Hagan, Demetrios Christodoulides, Wieslaw Krolikowski, and Pawel S. Jung. "Observation of New Class of Bright Solitons: Tower and Volcano Solitons." In CLEO: Fundamental Science, FTh4F.6. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_fs.2024.fth4f.6.

Full text
Abstract:
We report the first experimental observation of a novel fundamental soliton class, termed Tower and Volcano solitons, in soft-matter systems characterized by nonlinear responses driven by competing nonlocal interactions.
APA, Harvard, Vancouver, ISO, and other styles
3

Yu, Yan, Jinhao Ge, Maodong Gao, Zhiquan Yuan, Warren Jin, Joel Guo, Hao-Jing Chen, et al. "Counter-propagating solitons in coupled ring microresonators." In CLEO: Fundamental Science, FTh4F.4. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_fs.2024.fth4f.4.

Full text
Abstract:
Counter-propagating solitons are generated in CMOS-ready coupled microresonators featuring normal dispersion. In each direction, the soliton mode locks and compensates the dispersion through the formation of a pulse pair. Both the spectra and the radiofrequency beatnotes of counter-propagating solitons are observed.
APA, Harvard, Vancouver, ISO, and other styles
4

Simon, Corentin, Nicolas Englebert, François Leo, and Simon-Pierre Gorza. "High brightness coherently driven active fiber cavity soliton crystals by optical gain clamping." In CLEO: Fundamental Science, FTh4F.3. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_fs.2024.fth4f.3.

Full text
Abstract:
Active cavity solitons suffer from gain saturation preventing high average cavity power. We overcome this limitation by optical gain clamping and demonstrate the generation of numerous solitons, opening the way to high power soliton crystals.
APA, Harvard, Vancouver, ISO, and other styles
5

Gao, Maodong, Jinhao Ge, Zhiquan Yuan, Yan Yu, Joel Guo, Warren Jin, Jin-Yu Liu, et al. "Multi-Color Solitons in Coupled-Ring Microresonators." In CLEO: Science and Innovations, SM3G.1. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_si.2024.sm3g.1.

Full text
Abstract:
Multi-color co-propagating and counter-propagating solitons are generated using a coupled-ring microresonator in the ultra-low-loss Si3N4 platform. Soliton spectra and beatnotes are measured and potential applications are discussed.
APA, Harvard, Vancouver, ISO, and other styles
6

Grigoryan, V. S., A. Hasegawa, and A. Maruta. "Parametric Trapping and Self-Ordering of Solitons." In International Conference on Ultrafast Phenomena. Washington, D.C.: Optica Publishing Group, 1996. http://dx.doi.org/10.1364/up.1996.tue.53.

Full text
Abstract:
One basic problem in high bit rate soliton communication and storage systems is the soliton’s time position jittering. This jittering is caused by the soliton frequency diffusion which originates either from amplified spontaneous emission in repeaters [1] or from soliton-soliton interactions. Use of filtering along with amplification in repeaters permits only partially suppress the time position jittering [2,3]. Without filtering mean-square time position increases as distance cubed, whereas with filtering it increases linearly in distance. Recently big progress was achieved in experiment of M.Nakazawa with the help of active modulation of losses along with filtering and amplification of solitons [4]. Modulator provides a clocking mechanism by which an ordering of solitons occurs, whereby each of solitons tends to occupy a time interval when the modulator has a maximum transmission. However, in practical use of this method for a communication line, when a number of modulators is needed, a serious problem of mutual synchronization of all those modulators arises. In addition, the bit rate is limited by the modulator electronics. The way-out is a passive mechanism of ordering or a mechanism of self-ordering of solitons which does not require electronics.
APA, Harvard, Vancouver, ISO, and other styles
7

Zhao, W., and E. Bourkoff. "Compression of optical dark solitons." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/oam.1990.wv2.

Full text
Abstract:
Optical dark solitons are shown to undergo amplification and compression under the influence of a constant gain in the nonlinear Schrödinger equation. When the gain is small, the pulse follows a simple adiabatic, perturbative expression. For a fundamental dark soliton input, the pulse remains a single hyperbolic tangent shape and its duration decreases exponentially as a result of the gain. When the gain is large, secondary dark solitons1 are generated and the pulse duration fails to follow the exponential rule during the initial stage of propagation. The duration does, however, decrease exponentially at sufficiently long traveling distances. This property of dark solitons can be utilized to amplify and to compress an initially broad dark pulse into a dark soliton of short duration. Stimulated Raman scattering can be used as a gain mechanism.2 The optical power and time duration requirement in generating dark solitons can thus be relaxed as a consequence of this property.
APA, Harvard, Vancouver, ISO, and other styles
8

Rothenberg, Joshua E. "Generation of dark solitons by nonlinear fiber propagation." In Integrated Photonics Research. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/ipr.1991.tua1.

Full text
Abstract:
Dark solitons1 are characterized by an intensity dip on a continuous background, which propagates unaltered. Although a true continuous background wave may be impractical, it has been shown that dark pulses on a background pulse of finite width can propagate adiabatically as solitons.2 Dark solitons have been observed in optical fibers by a few different experimental techniques3; however, the generation of the dark soliton trains from the interference and nonlinear copropagation of two delayed visible pulses in an optical fiber is numerically investigated.
APA, Harvard, Vancouver, ISO, and other styles
9

Serkin, V. N., Akira Hasegawa, and T. L. Belyaeva. "Soliton management: from optical solitons to matter-wave solitons." In SPIE Proceedings, edited by Peter A. Atanasov, Tanja N. Dreischuh, Sanka V. Gateva, and Lubomir M. Kovachev. SPIE, 2007. http://dx.doi.org/10.1117/12.727102.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Snyder, A. W., S. J. Hewlett, and D. J. Mitchell. "Dynamic spatial solitons." In Nonlinear Guided-Wave Phenomena. Washington, D.C.: Optica Publishing Group, 1993. http://dx.doi.org/10.1364/nlgwp.1993.pd.1.

Full text
Abstract:
We consider the expanded class of one- and two-dimensional spatial solitons that exist when the soliton is a compound entity composed of two orthogonal beams [1-3]. These solitons propagate in a homogeneous isotropic medium whose refractive index has an arbitrary dependence on intensity. As with classical solitons, their intensity profile remains axially uniform but, in addition, their polarization state now changes continuously with propagation. We refer to this new class of self-guided waves as ‘dynamic solitons’ because of their internal field dynamics. Dynamic solitons can have an arbitrary number of intensity peaks and thus exhibit novel intensity profiles. Their common salient property is that they are composed of two orthogonal beams, neither of which is, in general, a soliton on its own. Each beam is, however, a mode of the (axially uniform) linear optical waveguide induced by the dynamic soliton.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Solitons"

1

Apel, John R., Lev A. Ostrovsky, Yury A. Stepanyants, and James F. Lynch. Internal Solitons in the Oceans. Fort Belvoir, VA: Defense Technical Information Center, January 2006. http://dx.doi.org/10.21236/ada450369.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Vahala, George. Type-II Quantum Algorithms for Solitons. Fort Belvoir, VA: Defense Technical Information Center, February 2004. http://dx.doi.org/10.21236/ada420618.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Segev, Mordechay. Photorefractive Spatial Solitons: Fundamentals and Applications. Fort Belvoir, VA: Defense Technical Information Center, December 1999. http://dx.doi.org/10.21236/ada379085.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sun, Xin, Dingwei Lu, Rouli Fu, D. L. Lin, and Thomas F. George. Gap States of Charged Solitons in Polyacetylene. Fort Belvoir, VA: Defense Technical Information Center, August 1989. http://dx.doi.org/10.21236/ada212105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Chen, P. Brane Inflation, Solitons and Cosmological Solutions: I. Office of Scientific and Technical Information (OSTI), January 2005. http://dx.doi.org/10.2172/839660.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bahcall, S., and B. W. Lynn. Potential motion for Thomas-Fermi non-topological solitons. Office of Scientific and Technical Information (OSTI), April 1992. http://dx.doi.org/10.2172/79126.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Szabo, Richard J. Matrix Models, Large N Limits and Noncommutative Solitons. Journal of Geometry and Symmetry in Physics, 2012. http://dx.doi.org/10.7546/jgsp-7-2006-85-106.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Fork, Richard L. Exploring Coupled Solitons in Multi-Core Optical Fiber. Fort Belvoir, VA: Defense Technical Information Center, October 1995. http://dx.doi.org/10.21236/ada299184.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sauer, Jon R., and Mark J. Ablowitz. Multi-Gb/s Computer Interconnect Using Optical Solitons. Fort Belvoir, VA: Defense Technical Information Center, August 1995. http://dx.doi.org/10.21236/ada301163.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Amin, Mustafa. Final Report -- Wires, Solitons and the Big Bang. Office of Scientific and Technical Information (OSTI), August 2020. http://dx.doi.org/10.2172/1647549.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography