Dissertations / Theses on the topic 'Solitary waves'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Solitary waves.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
King, Gregory B. (Gregory Blaine). "Explicit Multidimensional Solitary Waves." Thesis, University of North Texas, 1990. https://digital.library.unt.edu/ark:/67531/metadc504381/.
Full textChen, Hongqiu. "Solitary waves and other long-wave phenomena /." Digital version accessible at:, 1998. http://wwwlib.umi.com/cr/utexas/main.
Full textOrszaghova, Jana. "Solitary waves and wave groups at the shore." Thesis, University of Oxford, 2011. http://ora.ox.ac.uk/objects/uuid:5b168bdc-4956-4152-a303-b23a6067bf42.
Full textKim, Boguk Ph D. Massachusetts Institute of Technology. "Three-dimensional solitary waves in dispersive wave systems." Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/34543.
Full textIncludes bibliographical references (p. 119-122).
Fully localized three-dimensional solitary waves, commonly referred to as 'lumps', have received far less attention than two-dimensional solitary waves in dispersive wave systems. Prior studies have focused in the long-wave limit, where lumps exist if the long-wave speed is a minimum of the phase speed and are described by the Kadomtsev-Petviashvili (KP) equation. In the water-wave problem, in particular, lumps of the KP type are possible only in the strong-surface-tension regime (Bond number, B > 1/3), a condition that limits the water depth to a few mm. In the present thesis, a new class of lumps is found that is possible under less restrictive physical conditions. Rather than long waves, these lumps bifurcate from infinitesimal sinusoidal waves of finite wavenumber at an extremum of the phase speed. As the group and phase velocities are equal there, small-amplitude lumps resemble fully localized wavepackets with envelope and crests moving at the same speed, and the wave envelope along with the induced mean-flow component are governed by a coupled Davey-Stewartson equation system of elliptic-elliptic type. The lump profiles feature algebraically decaying tails at infinity owing to this mean flow. In the case of water waves, lumps of the wavepacket type are possible when both gravity and surface tension are present on water of finite or infinite depth for B < 1/3.
(cont.) The asymptotic analysis of these lumps in the vicinity of their bifurcation point at the minimum gravity-capillary phase speed, is in agreement with recent fully numerical computations by Parau, Cooker & Vanden-Broeck (2005) as well as a formal existence proof by Groves & Sun (2005). A linear stability analysis of the gravity-capillary solitary waves that also bifurcate at the minimum gravity-capillary phase speed, reveals that they are always unstable to transverse perturbations, suggesting a mechanism for the generation of lumps. This generation mechanism is explored in the context of the two-dimensional Benjamin (2-DB) equation, a generalization to two horizontal spatial dimensions of the model equation derived by Benjamin (1992) for uni-directional, small-amplitude, long interfacial waves in a two-fluid system with strong interfacial tension. The 2-DB equation admits solitary waves and lumps of the wavepacket type analogous to those bifurcating at the minimum gravity-capillary phase speed in the water-wave problem. Based on unsteady numerical simulations, it is demonstrated that the transverse instability of solitary waves of the 2-DB equation results in the formation of lumps, which propagate stably and are thus expected to be the asymptotic states of the initial-value problem for fully localized initial conditions.
by Boguk Kim.
Ph.D.
Hoseini, Sayed Mohammad. "Solitary wave interaction and evolution." Access electronically, 2007. http://www.library.uow.edu.au/adt-NWU/public/adt-NWU20080221.110619/index.html.
Full textMak, William Chi Keung Electrical Engineering & Telecommunications Faculty of Engineering UNSW. "Coupled Solitary Waves in Optical Waveguides." Awarded by:University of New South Wales. Electrical Engineering and Telecommunications, 1998. http://handle.unsw.edu.au/1959.4/17494.
Full textMelvin, Thomas R. O. "Travelling solitary waves in lattice equations." Thesis, University of Bristol, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.503947.
Full textSkryabin, Dmitry Vladimirovich. "Modulational instability of optical solitary waves." Thesis, University of Strathclyde, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.366995.
Full textMoores, John Demeritt. "Collisions of orthogonally polarized solitary waves." Thesis, Massachusetts Institute of Technology, 1989. http://hdl.handle.net/1721.1/14420.
Full textIncludes bibliographical references.
Support from the Office of Naval Research in the form of a 1986-1989 ONR Fellowship.
by John Demeritt Moores.
M.S.
Marchant, Anna Louise. "Formation of bright solitary matter-waves." Thesis, Durham University, 2012. http://etheses.dur.ac.uk/7279/.
Full textWiles, Timothy Peter. "Dynamics of bright solitary matter-waves." Thesis, Durham University, 2013. http://etheses.dur.ac.uk/7382/.
Full textMiyake, Taketoshi. "Computer Simulations of Electrostatic Solitary Waves." 京都大学 (Kyoto University), 2000. http://hdl.handle.net/2433/157008.
Full textKyoto University (京都大学)
0048
新制・課程博士
博士(情報学)
甲第8488号
情博第14号
新制||情||2(附属図書館)
UT51-2000-F392
京都大学大学院情報学研究科通信情報システム専攻
(主査)教授 松本 紘, 教授 橋本 弘蔵, 教授 大村 善治
学位規則第4条第1項該当
Stastna, Marek. "Large fully nonlinear solitary and solitary-like internal waves in the ocean." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp05/NQ65262.pdf.
Full textJohnston, Clifton Reed. "Solitary waves in fluid-filled elastic tubes." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/nq64866.pdf.
Full textWattis, Jonathan A. D. "Analytic approximations to solitary waves on lattices." Thesis, Heriot-Watt University, 1993. http://hdl.handle.net/10399/1447.
Full textCho, Yeunwoo 1973. "Nonlinear dynamics of three-dimensional solitary waves." Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/61595.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 105-108).
In problems of dispersive wave propagation governed by two distinct restoring-force mechanisms, the phase speed of linear sinusoidal wavetrains may feature a minimum, cmin, at non-zero wavenumber, kmin. Examples include waves on the surface of a liquid in the presence of both gravity and surface tension, flexural waves on a floating ice sheet, in which case capillarity is replaced by the flexural rigidity of the ice, and internal gravity waves in layered flows in the presence of interfacial tension. The focus here is on deep-water gravity-capillary waves, where cmin = 23 cm/s with corresponding wavelength Amin = 27r/kmin = 1.71 cm. In this instance, ignoring viscous dissipation, cmin is known to be the bifurcation point of two-dimensional (plane) and three-dimensional (fully localized) solitary waves, often referred to as "lumps"; these are nonlinear disturbances that propagate at speeds below cmin without change of shape owing to a perfect balance between the opposing effects of wave dispersion and nonlinear steepening. Moreover, Cmin is a critical forcing speed, as the linear inviscid response to external forcing moving at Cmin grows unbounded in time, and nonlinear effects as well as viscous dissipation are expected to play important parts near this resonance. In the present thesis, various aspects of the dynamics of gravity-capillary lumps are investigated theoretically. Specifically, it is shown that steep gravity-capillary lumps of depression can propagate stably and they are prominent nonlinear features of the forced response near resonant conditions, in agreement with companion experiment for the generation of gravity-capillary lumps on deep water. These findings are relevant to the generation of ripples by wind and to the wave drag associated with the motion of small bodies on a free surface.
by Yeunwoo Cho.
Ph.D.
Franklin, James. "Laboratory modelling of breaking internal solitary waves." Thesis, University of Dundee, 2014. https://discovery.dundee.ac.uk/en/studentTheses/bf2741dd-7183-4aa5-817e-f5d533269c95.
Full textMamun, A. A. "Study of solitary waves in space plasmas." Thesis, University of St Andrews, 1997. http://hdl.handle.net/10023/13987.
Full textThomas, Alexandra Elizabeth. "The interaction of an internal solitary wave with surface gravity waves." Thesis, University of Edinburgh, 2002. http://hdl.handle.net/1842/13106.
Full textYamazoe, Shotaro. "Bifurcations and Spectral Stability of Solitary Waves in Nonlinear Wave Equations." Kyoto University, 2020. http://hdl.handle.net/2433/259759.
Full textEkeberg, Jonas. "Solitary waves and enhanced incoherent scatter ion lines." Doctoral thesis, Umeå universitet, Institutionen för fysik, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-42955.
Full textDenna avhandling handlar om solitära vågor och deras roll i norrskensacceleration och koronaupphettning, samt deras signatur i spektra uppmätta med inkoherent spridningsradar. Solitära vågor bildas genom en balans mellan ickelinjära och dispersiva effekter. Ickelinjäriteter finns det gott om i ideal magnetohydrodynamik (MHD) och dispersion kan införas genom att inkludera Halltermen i den generaliserade Ohms lag. Det resulterande ekvationssystemet omfattar de klassiska vågorna inom ideal MHD, visslare, driftvågor och solitära vågor. De sistnämnda återfinns i väldefinierade områden i fasrummet som spänns upp av farten och vinkeln (mot magnetfältet) för den propagerande vågen. Inom varje sådant område återfinns kvalitativt lika solitära våglösningar. Om man försummar elektronernas tröghet begränsas de solitära våglösningarna till två områden med långsamma respektive snabba vågor. De långsamma (snabba) strukturerna är associerade med täthets-kompressioner (förtunningar) och positiva (negativa) elektriska potentialer. De negativa potentialerna visas kunna accelerera elektroner i norrskensområdet (solens korona) till tiotals (hundratals) keV medan de positiva potentialerna accelererar solvindsjoner till hastigheter på 300–800 km/s. Strukturbredderna vinkelrät mot magnetfältet är i jordens magnetosfär (solens korona) av storleksordningen 1–100 km (m). Denna avhandling tar även upp en typ av inkoherent spridningsradarspektra, där jonlinjen uppvisar en spektralt uniform förstärkning. Detta innebär att den upp- och nedskiftade skuldran och spektralbandet däremellan förstärks simultant och i lika hög grad. Effektförstärkningen är en storleksordning över den termiska nivån och är ofta lokaliserad till ett höjd-intervall av mindre än 20 km nära jonosfärens F-skiktstopp. Observationerna beskrivs väl av en modell med solitära vågor som propagerar transversellt genom radarstrålen. Två fall av lokaliserade jonlinjeförstärkningar visas sammanfalla med att norrskensbågar driver genom radarstrålen. I samband med bågarnas passage uppmäts stora gradienter i jontemperatur, vilket visas skapa tillräckligt kraftiga hastighetsskjuvningar för att Kelvin-Helmholtz-instabiliteter ska tillåtas växa. De observerade jonlinjeförstärkningarna tolkas i skenet av den lågfrekventa turbulensen som är kopplad till dessa instabiliteter.
Aigner, Andreas 1972. "Numerical simulations of internal and inertial solitary waves." Monash University, Dept. of Mathematics and Statistics, 2001. http://arrow.monash.edu.au/hdl/1959.1/8880.
Full textCalvo, David C. (David Christopher). "Dynamics and stability of gravity-capillary solitary waves." Thesis, Massachusetts Institute of Technology, 2001. http://hdl.handle.net/1721.1/88871.
Full textIncludes bibliographical references (leaves 137-143).
Over the past several years, it has been recognized that a new class of solitary waves can propagate in nonlinear dispersive wave systems if the phase speed of linear waves attains a local extremum at some finite wavenumber. Near such a point, solitary waves in the form of small-amplitude wavepackets can be obtained for which the phase speed of the carrier oscillations matches the group speed of their envelope. Such an extremum is found in the analysis of water waves when the restoring forces of both gravity and surface tension are taken into account, and certain kinds of these gravity-capillary solitary waves have been observed in experiments. While past theoretical studies have focussed mainly on determining steady solitary wave profiles, very little work has been done on examining their stability properties which is the thrust of this thesis. Beginning in the weakly nonlinear regime, an asymptotic analysis of linear stability is presented and comparison is made with numerical computations. Contrary to predictions of the nonlinear Schrbdinger (NLS) equation, some free solitary wave types are found to be unstable owing to exponentially effects terms that lie beyond standard two-scale perturba- tion theory. Moreover, numerical simulations show that unstable gravity-capillary solitary waves may decompose into stable solitary waves that have soliton properties. Stability results are then extended to the fully nonlinear regime to treat both free and forced situa- tions using numerical techniques to solve the full hydrodynamic equations in steady form. A dramatic difference is found between the linear stability of free and forced waves in both weakly and fully nonlinear cases, and results obtained here are compared with laboratory experiments.
(cont.) The analysis followed in the free-surface problem is then generalized to examine the dynamics of gravity-capillary interfacial solitary waves in a layered two-fluid system. Here, the linear stability and limiting wave forms of free solitary waves are determined over a range of system parameters using the full hydrodynamic equations. Finally, a related problem of gravity-capillary envelope solitons is considered under the general situation of unequal phase and group speeds. By asymptotic and numerical techniques it is found that envelope solitons are generally nonlocal-tails are radiated owing to a resonance mechanism that is beyond the NLS equation.
by David C. Calvo.
Ph.D.
Pirilla, Patrick Brian. "On the Trajectories of Particles in Solitary Waves." Youngstown State University / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=ysu1311100628.
Full textShen, Yifen. "The modulation of short waves riding on non-uniform velocity fields (solitary waves and long waves)." Thesis, University of Edinburgh, 1994. http://hdl.handle.net/1842/14405.
Full textAközbek, Neset. "Optical solitary waves in a photonic band gap material." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape15/PQDD_0007/NQ35096.pdf.
Full textBennett, Christopher James. "Solitary and transitional waves in two-layer microchannel flows." Thesis, University of Birmingham, 2015. http://etheses.bham.ac.uk//id/eprint/5922/.
Full textYin, Chen Yun. "Solitary waves in immiscible two-component Bose-Einstein condensates." Thesis, University of Cambridge, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.608650.
Full textYu, Manfred Man Hoi. "Towards interferometry with bright solitary waves in a ring." Thesis, Durham University, 2016. http://etheses.dur.ac.uk/11441/.
Full textChen, Li-Jen. "Bernstein-Greene-Kruskal electron solitary waves in collisionless plasmas /." Thesis, Connect to this title online; UW restricted, 2002. http://hdl.handle.net/1773/9644.
Full textFarnum, Edward D. "Stability and dynamics of solitary waves in nonlinear optical materials /." Thesis, Connect to this title online; UW restricted, 2005. http://hdl.handle.net/1773/6766.
Full textHöwing, Johannes [Verfasser]. "Spectral Stability of Solitary Waves and Undercompressive Shocks / Johannes Höwing." Konstanz : Bibliothek der Universität Konstanz, 2013. http://d-nb.info/1037917707/34.
Full textTiong, Wei K. "Propagation of solitary waves and undular bores over variable topography." Thesis, Loughborough University, 2012. https://dspace.lboro.ac.uk/2134/10531.
Full textSchmidt, Nathan Philip. "Generation, propagation and dissipation of second mode internal solitary waves." Thesis, University of Canterbury. Civil Engineering, 1998. http://hdl.handle.net/10092/7811.
Full textIlecki, Wojciech. "Theoretical study of spatial solitary waves in non-Kerr media." Thesis, University of Salford, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.395747.
Full textMacNeil, John Michael Larratt. "Solitary waves in focussing and defocussing nonlinear, nonlocal optical media." Thesis, University of Edinburgh, 2016. http://hdl.handle.net/1842/20951.
Full textMcSloy, John Michael. "Computationally determined existence and stability regimes of solitonic phenomena in nonlinear optics." Thesis, University of Strathclyde, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.269899.
Full textHusrin, Semeidi [Verfasser], and Hocine [Akademischer Betreuer] Oumeraci. "Attenuation of Solitary Waves and Wave Trains by Coastal Forests / Semeidi Husrin ; Betreuer: Hocine Oumeraci." Braunschweig : Technische Universität Braunschweig, 2013. http://d-nb.info/1175821764/34.
Full textPreuße, Martina [Verfasser]. "Properties of Internal Solitary Waves in Deep Temperate Lakes / Martina Preuße." Konstanz : Bibliothek der Universität Konstanz, 2012. http://d-nb.info/1025637321/34.
Full textMarini, Andrea. "Theory of nonlinear and amplified surface plasmon polaritons." Thesis, University of Bath, 2011. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.547873.
Full textKim, Sungphil. "Internal Tides and Internal Solitary Waves in the Northern South China Sea." NCSU, 2009. http://www.lib.ncsu.edu/theses/available/etd-05152009-141246/.
Full textBillam, Thomas Paul. "Bright solitary waves and non-equilibrium dynamics in atomic Bose-Einstein condensates." Thesis, Durham University, 2012. http://etheses.dur.ac.uk/3561/.
Full textLi, Yile 1973. "Nonlinear shallow water three-dimensional solitary waves generated by high speed vessels." Thesis, Massachusetts Institute of Technology, 2001. http://hdl.handle.net/1721.1/91907.
Full textHoq, Qazi Enamul. "Quantization Of Spin Direction For Solitary Waves in a Uniform Magnetic Field." Thesis, University of North Texas, 2003. https://digital.library.unt.edu/ark:/67531/metadc4210/.
Full textChoi, Wooyoung Wu Theodore Y. T. Wu Theodore Y. T. "Forced generation of solitary waves in a rotating fluid and their stability /." Diss., Pasadena, Calif. : California Institute of Technology, 1993. http://resolver.caltech.edu/CaltechETD:etd-08242007-075146.
Full textWan, Bangjun. "A numerical study of conjugate flows and flat-centred internal solitary waves in a continuously stratified fluid." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp05/mq25896.pdf.
Full textWang, Caixia. "Geophysical observations of nonlinear internal solitary-like waves in the Strait of Georgia." Thesis, University of British Columbia, 2009. http://hdl.handle.net/2429/17468.
Full textMohammadi, Siamak Malek. "Laboratory generation and physics of propagation of solitary waves and water surface depressions." Connect to this title online, 2009. http://etd.lib.clemson.edu/documents/1263400525/.
Full textBisgard, Charlie. "Breaking and non-breaking solitary wave impact pressures on a cylinder over a 3-D bathymetry." Thesis, (4 MB), 2005. http://edocs.nps.edu/AR/topic/theses/2005/Jan/05Jan_Bisgard.pdf.
Full text"January 2005." Description based on title screen as viewed on June 1, 2010 DTIC Descriptor(s): Three Dimensional, Bathymetry, Tsunamis, Earthquakes, Coastal Regions, Ocean Waves, Inertia, Landslides, Gravitational Fields, Seafloor Spreading, Long Wavelengths, Models, Energy, Theses, Time Includes bibliographical references (p. 84-85). Also available in print.
El-Solh, Safinaz. "SPH Modeling of Solitary Waves and Resulting Hydrodynamic Forces on Vertical and Sloping Walls." Thèse, Université d'Ottawa / University of Ottawa, 2013. http://hdl.handle.net/10393/23778.
Full text