Academic literature on the topic 'Solidification structure'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Solidification structure.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Solidification structure"

1

KOSEKI, Toshihiko. "Solidification and Solidification Structure Control of Weld Metals." Journal of the Japan Welding Society 70, no. 5 (2001): 579–95. http://dx.doi.org/10.2207/qjjws1943.70.5_579.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Koseki, T. "Solidification and solidification structure control of weld metals." Welding International 16, no. 5 (January 2002): 347–65. http://dx.doi.org/10.1080/09507110209549544.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Holesinger, T. G., D. J. Miller, H. K. Viswanathan, and L. S. Chumbley. "Solidification of Bi2Sr2CaCu2Oy and Bi2Sr1.75Ca0.25CuOy." Journal of Materials Research 8, no. 9 (September 1993): 2149–61. http://dx.doi.org/10.1557/jmr.1993.2149.

Full text
Abstract:
The solidification processes for the compositions Bi2Sr2CaCu2Oy (2212) and Bi2Sr1.75Ca0.25CuOy (2201) were determined as a function of oxygen partial pressure. During solidification in argon, the superconducting phases were generally not observed to form for either composition. In both cases, the solidus is lowered to approximately 750 °C. Solidification of Bi2Sr1.75Ca0.25CuOy in Ar resulted in a divorced eutectic structure of Bi2Sr2−xCaxOy (22x) and Cu2O while solidification of Bi2Sr2CaCu2Oy in Ar resulted in a divorced eutectic structure of Bi2Sr3−xCaxOy (23x) and Cu2O. Solidification of Bi2Sr1.75Ca0.25CuOy in O2 resulted in large grains of 2201 interspersed with small regions containing the eutectic structure of 22x and CuO/Cu2O. Solidification of Bi2Sr2CaCu2Oy in partial pressures of 1%, 20%, and 100% oxygen resulted in multiphase samples consisting of 2212, 2201, some alkaline-earth cuprates, and both divorced eutectic structures found during solidification in Ar. For both compositions, these latter structures can be attributed to oxygen deficiencies present in the melt regardless of the overpressure of oxygen. These eutectic structures are unstable and convert into the superconducting phases during subsequent anneals in oxygen. The formation process of the 2212 phase during solidification from the melt was determined to proceed through an intermediate state involving the 2201 phase.
APA, Harvard, Vancouver, ISO, and other styles
4

Shapovalv, V. A., and G. M. Grigorenko. "Metal Structure Control During Solidification." Современная электрометаллургия 2015, no. 2 (February 28, 2015): 51–54. http://dx.doi.org/10.15407/sem2015.02.08.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kamio, Akihiko, Shinji Kumai, and Hiroyasu Tezuka. "Solidification structure of monotectic alloys." Materials Science and Engineering: A 146, no. 1-2 (October 1991): 105–21. http://dx.doi.org/10.1016/0921-5093(91)90271-n.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mao, Yong, Jin Xin Guo, and Si Yong Xu. "Refinement Mechanism of Solidification Structure of Au-20Sn Eutectic Alloy by Different Solidification Techniques." Key Engineering Materials 759 (January 2018): 24–28. http://dx.doi.org/10.4028/www.scientific.net/kem.759.24.

Full text
Abstract:
Au-20Sn (mass fraction) eutectic alloy is a key lead-free solder material for high reliability microelectronics and optoelectronics packaging. The refinement of initial solidification structure can improved the processing performance of Au-20Sn alloy. This paper reported the research progresses on refining solidification structure of Au-20Sn alloy in our research group. The results indicated that the solidification structure of alloy can be effectively refined by rapid solidification with the increasing of cooling rate. The solidification structure can also be refined by incubated nucleation treatment with Au or Sn or by proper melt temperature treatment. The refinement mechanisms of solidification structure by the three types of solidification methods were thoroughly discussed.
APA, Harvard, Vancouver, ISO, and other styles
7

Zhu, Zhen Yong, Kai Xiong, Jun Jie He, Shun Meng Zhang, Si Yong Xu, and Yong Mao. "Correlation between Solidified Microstructure Evolution and Undercooling of Au-12 Wt.%Ge Eutectic Alloy." Materials Science Forum 993 (May 2020): 53–59. http://dx.doi.org/10.4028/www.scientific.net/msf.993.53.

Full text
Abstract:
Highly undercooled solidification experiments were carried out by melt purification combined with cyclic superheating method on Au-12 wt.%Ge eutectic alloy. The solidification structures of Au-12 wt.%Ge eutectic alloy under different undercoolings were also analyzed by using the scanning electron microscope (SEM). The experimental results revealed that the maximum undercooling could reach up to 102 K. The microstructure analysis showed that the coarse bulk eutectic existed in the solidification structure when the undercooling was less than 34 K. When the undercooling was larger than 34 K and less than 56 K, the solidification structure transformed into cellular eutectic. The coarse primary (α-Au) phase precipitated from the undercooled alloy melt when the undercooling was larger than 56 K. The volume fraction of the primary (α-Au) phase gradually increased with the increase of undercooling. In this paper, a method to regulate the solidification structure of Au-12 wt.%Ge eutectic alloy is proposed, which provides a new way to improve the solidification structure and has important guiding significance for the processing and forming process of Au-12 wt.%Ge eutectic alloy.
APA, Harvard, Vancouver, ISO, and other styles
8

Gnapowski, S., Y. Tsunekawa, M. Okumiya, and K. Lenik. "Change of Aluminum Alloys Structure by Sono-Solidification." Archives of Foundry Engineering 13, no. 4 (December 1, 2013): 39–42. http://dx.doi.org/10.2478/afe-2013-0078.

Full text
Abstract:
Abstract This experiment utilized five Aluminum alloys with silicon content percentages of 7, 10, 12.6, 14.5 and 17(wt)%. Ultrasonic vibration was applied to improve the quality of aluminum alloys. Sono-solidification, in which ultrasound vibrations are applied to molten metal during its solidification, is expected to cause improved mechanical properties due to grain refinement. Observed by microstructure photographs was that grains became smaller and their shapes more regular. Using ultra sound solidification α Al appeared during ultrasound treatment the eutectic solidification time was longest around 10% compared with same condition experiment without ultrasound treatment.
APA, Harvard, Vancouver, ISO, and other styles
9

Peng, Hong-bing, Wei-qing Chen, Yan-chong Yu, and Hong-guang Zheng. "Effect of Ultrasonic Melt Treatment on Solidification Structure of Fe-36Ni Invar Alloy." High Temperature Materials and Processes 32, no. 5 (October 25, 2013): 459–65. http://dx.doi.org/10.1515/htmp-2012-0159.

Full text
Abstract:
AbstractThe effect of ultrasonic treatment on the solidification structure of Fe-36Ni invar alloy was investigated. The experiment results showed that the ultrasonic treatment before its solidification had no significant effect on the solidification structure. However, when ultrasonic was inputted into the molten alloy during its solidification process, the primary dendrites were broken up into lots of fragments and solidification structure was refined significantly. When ultrasonic treatment was applied in the melt doped with yttrium before its solidification, ultrasonic cavitation could break up precipitates into many small ones, which could refine its solidification structure as nucleation cores. In samples containing yttrium treated by ultrasonic at 1753 K, the number of the precipitates was 623/mm2 and its average size was 2.18 µm; while at 1803 K, they were 604/mm2 and 2.34 µm respectively. The ultrasonic cavitation had a similar effect at two different temperatures. The solidification structure refined greatly at 1753 K was due to its low pouring temperature.
APA, Harvard, Vancouver, ISO, and other styles
10

Bendjeddou, L., and M. Y. Debili. "Structure and Hardness of Al-Fe-Ti Alloys." Defect and Diffusion Forum 305-306 (October 2010): 23–32. http://dx.doi.org/10.4028/www.scientific.net/ddf.305-306.23.

Full text
Abstract:
It is the intention of this paper to present the results of a study of Al-Fe-Ti (26-50Fe-2wt%Ti) cast alloys. We have examined the solidification structure over a wide range of iron contents. Using X-ray diffraction and quantitative microstructural analysis, we have characterized the alloy microstructure and identified second-phase crystallographic structures. The hardness of the alloys was also determined. The solidification structure was modified by the addition of Ti to Al1-xFex alloys.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Solidification structure"

1

Flood, S. C. "Factors affecting the grain structure during solidification." Thesis, University of Oxford, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.355749.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Walters, Morgan C. "Solidification and structure formation in soft-core fluids." Thesis, Loughborough University, 2017. https://dspace.lboro.ac.uk/2134/27342.

Full text
Abstract:
This thesis analyses the structure, phase behaviour and dynamics of two dimensional (2D) systems of interacting soft-core particles, focussing in particular on how these can solidify and the properties of the resulting crystalline structures. Classical density functional theory (DFT) and dynamical density functional theory (DDFT) is used in the analysis, and an introduction to these is given. The first systems studied are particles interacting via the generalised exponential model of index n (GEM-n) pair potential, including binary mixtures of different types of GEM-n particles. We confirm that a simple mean-field approximate DFT (the RPA-DFT) provides a good approximation for the structure and thermodynamics. We study how solidification fronts advance into the unstable liquid after a temperature quench. We find that the length scale of the density modulations chosen by the front is not necessarily the length scale corresponding the equilibrium crystal structure. This results in the presence of defects and disorder in the structures formed. We analyse how these evolve over time, after the front has passed. We also find that for the binary mixtures, the defects and disorder persists for much longer and in-fact can remain indefinitely. In the final part of this thesis we analyse the Barkan-Engel-Lifshitz (BEL) model, which consists of particles interacting via a soft core potential that is more complicated than the GEM-n potential and can include a minimum in the potential and soft repulsion over several competing length scales. The form of the BEL potential gives good control over the shape of the dispersion relation, which allows it to be tuned to the regime where the system forms quasicrystals. In this regime, we study in detail the nature of the liquid state pair correlations and in particular the form of the asymptotic decay as the distance between the particles r tends to infinity. The usual approach used for fluids in three dimensions has to be generalised, in order to be applicable in 2D. It is found that there is a line in the phase diagram at which the asymptotic decay crosses over from being oscillatory with one wavelength to oscillatory with a different wavelength. We expect this to be a general characteristic of systems that form quasicrystals.
APA, Harvard, Vancouver, ISO, and other styles
3

Hashemi-Ahmady, M. "Solidification, structure and mechanical properties of A357 aluminium alloy." Thesis, University of Southampton, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.381127.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Giron, Gilles. "Structure de solidification des aciers rapides en refusion continue." Grenoble INPG, 1993. http://www.theses.fr/1993INPG0141.

Full text
Abstract:
L'etude porte sur la structure de solidification d'un acier rapide au molybdene et sa sensibilite aux conditions de refusion a l'arc sous vide. Les equilibres de phases a haute temperature et les microstructures correspondantes, relatifs a cet alliage, sont determines d'abord dans fe-c-mo. Puis l'influence du chrome et du vanadium est examinee. Les resultats sont completes par les donnees thermodynamiques de la base thermo-calc. L'espacement dendritique secondaire est defini en fonction des conditions de solidification, en incluant l'effet de la maturation. Deux modeles numeriques montrent l'influence des conditions de solidification sur la microstructure. Le premier modele traite la cristallisation d'un alliage en fonction de la loi de refroidissement imposee. Il tient compte de la diffusion dans le solide en relation avec l'espacement dendritique. Le second modele traite les aspects thermiques du procede de refusion a l'arc sous vide. Il fournit la loi de refroidissement qui controle la solidification. L'ensemble des deux modeles permet d'extrapoler depuis les resultats microstructuraux obtenus en laboratoire jusqu'aux conditions de solidification en refusion a l'arc sous vide. Les resultats sont compares avec les mesures sur lingots industriels.
APA, Harvard, Vancouver, ISO, and other styles
5

Cunha, M. A. da. "Structure and magnetic properties of Si-Fe ribbons produced by rapid solidification." Thesis, University of Leeds, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.383371.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Garda, Brahim. "Essais de coulabilité en fonderie : aspects thermiques, hydrodynamiques et structure de solidification." Grenoble INPG, 1993. http://www.theses.fr/1993INPG0166.

Full text
Abstract:
L'essai de coulabilite est couramment pratique en fonderie des pieces minces. Le metal liquide est injecte dans un moule en forme de tube et la longueur parcourue par le metal lorsque la solidification le bloque, mesure la coulabilite. Du point de vue theorique, la solidification de pieces minces fait intervenir de facon couplee l'hydrodynamique de remplissage qui dure quelques diziemes de seconde, la thermique, en particulier les echanges metal-moule, et les mecanismes de solidification. L'ecoulement est modifie par la solidification. Reciproquement, la structure de grains est sensible a l'ecoulement. Le champ de temperature depend fortement de l'ecoulement, principalement au voisinage du front liquide-gaz. Nous avons propose une formulation analytique des lignes de courant. Ensuite, nous avons realise plusieurs series d'essais sur la fonte et sur l'alliage al-2% cu. Ces essais ont montre que les echanges metal-moule peuvent etre representes par un coefficient d'echange, qui depend de la vitesse d'injection. Les essais sur la fonte ont permis de suivre en direct la progression du liquide tout en enregistrant la temperature du front liquide. Les essais sur l'alliage d'aluminium comportent des mesures sur la transition colonnaire-equiaxe et sur la taille des grains. Nous avons etabli un modele de nucleation et croissance des grains equiaxes qui permet de calculer la taille des grains a partir des conditions de refroidissement. Les differentes mesures, traitees par les modeles simplifies, ont permis de proposer un mecanisme du blocage par gel en croute: ecoulement tout liquide, formation de la croute colonnaire, sa fermeture, cristallisation equiaxe en bande, cristallisation qui bloque la croissance colonnaire. Ces resultats, et les modeles correspondants serviront de donnees pour valider un code numerique qui est developpe dans le cadre du programme europeen convective effects in solidification
APA, Harvard, Vancouver, ISO, and other styles
7

Heringer, Ferreira Romulo Adolfo. "Modélisation de la solidification de gouttes atomisées." Vandoeuvre-les-Nancy, INPL, 2004. http://www.theses.fr/2004INPL093N.

Full text
Abstract:
Il est indéniable que, du point de vue des structures de solidification, les pièces mises en forme par des procédés de la métallurgie des poudres sont homogènes à l'échelle macroscopique (du produit). En est-il de même à l'échelle des particules qui composent ces pièces? Dans ce travail, nous présentons des analyses expérimentales à partir de mesures locales de composition faites sur des gouttes atomisées d'Al-Cu. Ces analyses montrent que la distribution de soluté n'est pas uniforme à l'échelle de ces gouttes. Un modèle numérique a été proposé pour la solidification de gouttes sphériques d'alliages binaires soumises à la convection. La solidification démarre au centre de la goutte pour une surfusion donnée et progresse radialement vers sa surface extérieure. Des moyennes volumiques des bilans d'énergie et de soluté sur chaque phase ont été prises. La résolution numérique des équations obtenues permet l'évaluation des distributions de l'enthalpie, de la température, des fractions des phases, et du titre massique de soluté dans la goutte. Des résultats sont présentés pour une goutte d'Al 1O%mass Cu avec des surfusions de germination à 0, 30 et 60 °C. Le modèle prévoit des ségrégations de soluté dans la goutte. Il prévoit également la refusion systématique des structures solides sursaturées, laquelle peut être à l'origine de la fragmentation et du possible affinage spontané des grains déjà observés dans les gouttes atomisées
It's well known that, from the structural point of view, the parts formed by powder metallurgy processes are quite homogeneous on a macroscopic scale (of the product). Does it go in the same way on the scale of the particles which compose these parts? In this work we present results of local measurements of the species composition made on atomized Al-Cu droplets. This analysis shows a non-uniform distribution of alloy compounds in the observed sections of the droplets. A numerical model was proposed for the solidification of a spherical droplet subject to convection. The solidification starts with an imposed undercooling at the center of the droplet and progresses spherically towards its external surface. Volume average of the energy and solute balances was taken for each phase. The numerical solution of these equations allowed to evaluate the distributions of the enthalpy, temperature, phase fractions, and solute composition in the droplet. Results are presented for a droplet of Al 10%mass Cu, and nucleation undercooling of 0, 30 and 60 °C. The model predicts the solute segregation in the droplet. It predicts also a systematic remelting of the supersaturated solid structures, which can be related with fragmentation and possible grain refining
APA, Harvard, Vancouver, ISO, and other styles
8

Lehmann, Peter. "Controle de la solidification par effet Seebeck." Grenoble INPG, 1996. http://www.theses.fr/1996INPG0098.

Full text
Abstract:
Au cours de la solidification des alliages metalliques, du fait de la difference de pouvoir thermoelectrique entre le solide et le liquide, l'interface entre les deux phases peut etre consideree comme une jonction de thermocouple. Ainsi, lorsque cette interface est plane (donc isotherme), on accede directement a la temperature de celle-ci en mesurant la tension generee par l'ensemble solide-liquide. La premiere partie de ce travail est consacree au depouillement de mesures faites en microgravite. L'etude de la solidification en front plan a permis de montrer que dans ce cas, le regime de transport du solute etait purement diffusif. La destabilisation morphologique a ainsi pu etre etudiee dans les hypotheses du critere de mullins et sekerka. Lorsque l'interface est de type cellulaire, une densite de courant d'origine thermoelectrique apparait et le signal mesure a la fois la contribution thermique et la chute de tension ohmique. Un modele est developpe pour rendre compte de cet effet. A partir du signal il est alors possible de deduire la fraction liquide moyenne de la zone pateuse ainsi que les temperatures a la pointe et en fond de celle-ci. L'interaction d'un champ magnetique permanent avec ces courants thermoelectriques locaux cree une force de laplace. Dans la seconde partie, des experiences de solidification dendritique sont menees en configuration horizontale sous champ transverse. Cette force peut ainsi s'ajouter a la force de flottabilite ce qui permet de freiner ou d'augmenter la convection naturelle. Le regime de transport diffusif peut etre approche et notre modele permet de predire correctement la valeur du champ magnetique necessaire. Il est montre que l'espacement primaire interdendritique depend fortement du niveau convectif au voisinage du regime diffusif. Un modele simple est propose pour decrire la convection interdendritique dans cette configuration
APA, Harvard, Vancouver, ISO, and other styles
9

Albert, Virginie. "Macroségrégations et mouvement des cristaux équiaxes lors de la solidification d'alliages." Vandoeuvre-les-Nancy, INPL, 1998. http://www.theses.fr/1998INPL037N.

Full text
Abstract:
Ce travail s'inscrit dans un programme de modélisation de la solidification et de la macroségrégation incluant le transport des cristaux équiaxes. Dans la première partie de l'étude, nous avons montré que les phénomènes physiques élémentaires à l'origine de la macroségrégation de lingotins Al-Cu de solidification dirigée ascendante ou descendante incluent le mouvement du liquide interdendritique lié à la convection naturelle ainsi que le mouvement des cristaux equiaxes. Dans la seconde partie, nous avons mis en place une expérience de sédimentation/croissance de cristaux equiaxes dans un alliage NH4Cl-H2O en surfusion. Nous avons donné la vitesse de croissance moyenne du cristal en fonction de sa vitesse de chute moyenne et l'évolution de sa vitesse de chute fonction de sa taille. Une modélisation de ces resultats expérimentaux doit prendre en compte l'effet de la convection liée à la sédimentation des cristaux equiaxes sur la croissance.
APA, Harvard, Vancouver, ISO, and other styles
10

Ben, Hamouda Haithem. "Modélisation et simulation de la structure de solidification dans les superalliages base-nickel : application AM1." Thesis, Paris, ENMP, 2012. http://www.theses.fr/2012ENMP0040/document.

Full text
Abstract:
L'alliage de première génération (AM1) est un superalliage base-nickel utilisé par la Snecma pour élaborer des aubes de turbine monocristallines de géométrie complexe capables de résister aux conditions extrêmes de température et de pression. Cependant, lors du procédé de solidification, le contrôle du flux de chaleur est difficile pour des raisons de complexité de la géométrie, de la mise en grappe des pièces ou de la cinétique de solidification de l'alliage. Par conséquent, le risque de germination parasite peut avoir lieu dans le liquide surfondu. Pour comprendre l'origine de la germination parasite, il est important d'identifier avec précision la variation des isothermes dans la pièce au cours de la solidification pour localiser les zones de surfusion critiques. Pour ce faire, nous avons prédit par simulation numérique la germination et la croissance des grains au cours de la solidification. Nous avons implémenté dans le module CAFE du code Procast un algorithme de couplage permettant de tenir compte de la transformation liquide→solide dans la résolution du problème thermique. Ce couplage a permis de prédire le phénomène de recalescence qui témoigne de la germination parasite. La conversion enthalpie→température dans ce couplage tient compte de plusieurs chemins de solidification qui dépendent du taux de refroidissement à chaque nœud du maillage éléments-finis. Ces chemins de solidification sont tabulés grâce à un nouveau modèle de microségrégation conçu pour les alliages multicomposés en solidification dendritique colonnaire et équiaxe. Ce modèle est basé sur les équations de conservation de la masse totale et de la masse des solutés moyennées sur un volume représentatif. Dans ce modèle, la diffusion des espèces chimiques est contrôlée dans toutes les phases. Le modèle est aussi couplé avec un logiciel de calcul thermodynamique et un modèle de cinétique de croissance dendritique conçu pour les alliages multicomposés. Les prédictions du modèle retrouvent d'expériences menées sur l'AM1
AM1 is a nickel-based superalloy that Snecma relies on to elaborate single crystal turbine blades having complex geometry and high resistance to extreme conditions of temperature and pressure. However, controlling heat flux during solidification process is difficult because of many reasons such as the complex geometry, the way of clustering parts and the superalloy solidification kinetics. Consequently, stray grain nucleation can occur in the undercooling liquid. Therefore, it is important to precisely identify critical undercooled zones during solidification. To do this, a new coupling algorithm is integrated in Procast software through its CAFE module. This coupling considers liquid→solid transformation in solving thermal problem. Thus, predicted recalescence during stray grain nucleation can be observed. Enthalpy→temperature conversion is based on tabulated solidification paths depending on cooling rate computed at each Finite Element node. Solidification paths are calculated using a new microsegregation model based on total mass and solute mass conservation equations over a representative volume element. It includes both finite diffusion in phases and growth kinetics for multicomponent alloys. It is also coupled with a thermodynamic software for equilibrium computation. The microsegregation model fits experimental data provided by quenching tests on AM1 superalloy
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Solidification structure"

1

Minkoff, I. Solidification and cast structure. Chichester [West Sussex]: Wiley, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

E, Loper David, ed. Structure and dynamics of partially solidified systems. Dordrecht: Martinus Nijhoff Publishers, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Tekkō Kiso Kyōdō Kenkyūkai. Tekkō no Kyūsoku Gyōko Bukai. Kyūsoku gyōko soshiki shashinshū: Collected photographs of structures of rapidly solidified materials. Tōkyō: Nihon Tekkō Kyōkai, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Jones, I. A. Procedures for reducing solidification cracking in CO2 laser welds in structural steel. Cambridge: TWI, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Li, Jiang-shan. Evolution Mechanism on Structural Characteristics of Lead-Contaminated Soil in the Solidification/Stabilization Process. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-1193-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

ASM Materials Week '86 (1986 Orlando, Fla.). Processing of structural metals by rapid solidification: Proceedings of a seven session symposium on Enhanced Properties in Structural Metals via Rapid Solidification sponsored by the Materials Processing Committee of ASM's Materials Science Division held at Materials Week '86, Orlando, Fla., 6-9 October 1986. [Metals Park, Ohio]: ASM International, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Rohatgi Honorary Symposium (2006 San Antonio, Tex.). Solidification processing of metal matrix composites: Rohatgi Honorary Symposium : proceedings of a symposium sponsored by the Solidification Committee of the Materials Processing & Manufacturing Division (MPMD) and the Composite Materials Committee of the Structural Materials Division (SMD) of TMS (The Minerals, Metals & Materials Society), held during the TMS Annual Meeting in San Antonio, Texas, USA, March 12-16, 2006. Warrendale, Pennsylvania: TMS, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

L, Regelʹ L., and United States. National Aeronautics and Space Administration., eds. Modelling directional soldification: Progress report on grant NAG8-831, 1 May 1991 to 31 October 1992. Potsdam, N.Y: Clarkson University, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

United States. National Aeronautics and Space Administration., ed. Modelling directional soldification: Second semi-annual progress report, 1 November 1990 to 30 April 1991. Potsdam, N.Y: Clarkson University, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

United States. National Aeronautics and Space Administration., ed. Modelling directional soldification: Fourth semi-annual progress report, 1 March 1987 to 31 August 1987. Potsdam, N.Y: Clarkson University, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Solidification structure"

1

Ohno, Atsumi. "Controlling the Macro Structure of Cast Metals." In Solidification, 42–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-95537-2_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Glicksman, Martin Eden. "Interface Structure and Growth Kinetics." In Principles of Solidification, 369–95. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-7344-3_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bergman, Michael I. "Solidification of the Earth's core." In Earth's Core: Dynamics, Structure, Rotation, 105–27. Washington, D. C.: American Geophysical Union, 2003. http://dx.doi.org/10.1029/gd031p0105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wagner, C. N. J., M. A. Otooni, and W. Krakow. "Structure and Characterization of Rapidly Solidified Alloys." In Elements of Rapid Solidification, 49–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-45755-5_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Durand, F. "Convective Effects on Solidification Grain Structure." In Interactive Dynamics of Convection and Solidification, 203–15. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2809-4_33.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Stanley, H. E. "Role of Fluctuations in Fluid Mechanics and Dendritic Solidification." In The Physics of Structure Formation, 210–44. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-73001-6_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Saito, Yukio, Makio Uwaha, and Susumu Seki. "Dynamics and Structure of an Aggregation Growing from a Diffusion Field." In Interactive Dynamics of Convection and Solidification, 27–29. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2809-4_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bennett, M. J., R. A. Brown, and L. H. Ungar. "Nonlinear Interactions of Interface Structures of Differing Wavelength in Directional Solidification." In The Physics of Structure Formation, 180–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-73001-6_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Thompson, M. E., and J. Szekely. "Double Diffusive Convection during Solidification at a Vertical Wall." In Structure and Dynamics of Partially Solidified Systems, 59–77. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3587-7_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Weigand, B., and H. Beer. "A Numerical and Experimental Study of Wavy Ice Structure in a Parallel Plate Channel." In Interactive Dynamics of Convection and Solidification, 233–35. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2809-4_38.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Solidification structure"

1

Conti, M. "Fluid flow and pressure effects in phase-field models for solidification." In FLUID STRUCTURE INTERACTION/MOVING BOUNDARIES 2007. Southampton, UK: WIT Press, 2007. http://dx.doi.org/10.2495/fsi070261.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Nastac, L., S. Sundarraj, and K.-O. Yu. "Stochastic Modeling of Solidification Structure in Alloy 718 Remelt Ingots." In Superalloys. TMS, 1997. http://dx.doi.org/10.7449/1997/superalloys_1997_55_66.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kang, Feifei, Yongjin Wu, Wenyan Zhou, Hongying Pei, Jianwen Kong, and Kunhua Zhang. "Directional Solidification Structure and Deformation Behavior of Silver Bonding Wire." In 2018 19th International Conference on Electronic Packaging Technology (ICEPT). IEEE, 2018. http://dx.doi.org/10.1109/icept.2018.8480814.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Caraeni, Daniela, Ahmed Bakkar, and Wagdi G. Habashi. "Fluid-Structure Interaction Extended-FEM Approach to Air-Ice Solidification." In AIAA Scitech 2019 Forum. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2019. http://dx.doi.org/10.2514/6.2019-0641.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

McCracken, Steven L., X. Yu, Y. C. Lim, D. F. Farson, and S. S. Babu. "Grain Structure Refinement in Nickel Alloy Welds by Magnetic Arc Stirring." In ASME 2011 Pressure Vessels and Piping Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/pvp2011-57681.

Full text
Abstract:
Nickel alloys with high chromium content provide optimum resistant to stress corrosion cracking for service in the reactor coolant system of commercial nuclear power plants. High chromium nickel-base alloys however present many challenges, such as less than ideal weldability and susceptibility to solidification cracking or solid-state cracking depending on welding conditions and dilution effects with dissimilar metals. Moreover, the presence of large solidification grains, typical of nickel alloy weld metals, makes ultrasonic examination of the weldment difficult. Magnetic stirring of the nickel alloy weld pool has the potential to address these challenges and improve joining, overlay welding, cladding, and repair of critical components in commercial nuclear power plants. This study evaluates use of magnetic arc stirring to modify weld pool solidification conditions in order to promote a fine solidification grain structure in nickel alloy welds.
APA, Harvard, Vancouver, ISO, and other styles
6

Jia, Lisi, Ying Chen, Shijun Lei, Songping Mo, Zhuowei Liu, and Xuefeng Shao. "Improving Solidification Structure of Paraffin-Based Nanofluid by Surfactant and Ultrasound." In The 15th International Heat Transfer Conference. Connecticut: Begellhouse, 2014. http://dx.doi.org/10.1615/ihtc15.cnd.009506.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Liu, Jing, and Gangyin Yan. "Research progress on solidification micro structure simulation using phase-field method." In 2012 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER). IEEE, 2012. http://dx.doi.org/10.1109/cyber.2012.6319984.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Anikanova, L., O. Volkova, A. Kudyakov, Y. Sarkisov, and D. Tolstov. "Influence of solidification accelerators on structure formation of anhydrite-containing binders." In ADVANCED MATERIALS IN TECHNOLOGY AND CONSTRUCTION (AMTC-2015): Proceedings of the II All-Russian Scientific Conference of Young Scientists “Advanced Materials in Technology and Construction”. AIP Publishing LLC, 2016. http://dx.doi.org/10.1063/1.4937872.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Caraeni, Daniela, Ahmed Bakkar, and Wagdi G. Habashi. "Correction: Fluid-Structure Interaction Extended-FEM Approach to Air-Ice Solidification." In AIAA Scitech 2019 Forum. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2019. http://dx.doi.org/10.2514/6.2019-0641.c1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Wilden, J., and H. Frank. "Thermal Spraying – Simulation of Coating Structure." In ITSC2005, edited by E. Lugscheider. Verlag für Schweißen und verwandte Verfahren DVS-Verlag GmbH, 2005. http://dx.doi.org/10.31399/asm.cp.itsc2005p0287.

Full text
Abstract:
Abstract Thermal sprayed coatings are widely used to improve wear and corrosion behavior of metallic surfaces. The coating characteristics depend on the morphology, which can be designed and adjusted for special applications. Therefore the knowledge of the interaction of process parameters with the resulting structure plays a very important role in the optimization of coating processes. The implementation of mathematical models allows to foresee the coating characteristics and enhance quality and process efficiency as well. In this paper, a model of the vacuum plasma spray process is presented. Theoretical studies show the influence of process parameters on temperature and velocity within the plasma jet. Heating and acceleration of particles by the plasma and following the spreading, superposition, cooling and solidification of particles on the substrate are investigated. The resulting structure depends on plasma properties, injection conditions, particle parameters and substrate properties. Systematic studies show the effect of parameter variation on the particle properties, cooling and solidification behavior and subsequently on the coating structure.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Solidification structure"

1

Dress, W. B., T. Zacharia, and B. Radhakrishnan. Cellular automata modeling of weld solidification structure. Office of Scientific and Technical Information (OSTI), December 1993. http://dx.doi.org/10.2172/244608.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Brooks, J. A., M. Li, and N. C. Y. Yang. Solidification behavior and structure of Al-Cu alloy welds. Office of Scientific and Technical Information (OSTI), September 1997. http://dx.doi.org/10.2172/654139.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Flinn, J. E. Rapid solidification processing of iron-base alloys for structural applications. Office of Scientific and Technical Information (OSTI), September 1991. http://dx.doi.org/10.2172/6199198.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography