Academic literature on the topic 'Solid state qubit'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Solid state qubit.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Solid state qubit"

1

Чуйкин, О. А., Я. С. Гринберг, and А. А. Штыгашев. "Затухание вакуумных осцилляций Раби в двухкубитной структуре в высокодобротном резонаторе." Физика твердого тела 62, no. 9 (2020): 1407. http://dx.doi.org/10.21883/ftt.2020.09.49762.13h.

Full text
Abstract:
In this work, we study the damping of vacuum Rabi oscillations for a system of two superconducting solid-state qubits placed in a high-quality microwave resonator. Two different cases are considered: the first qubit is excited at the initial moment, and the initial state is an entangled symmetric and antisymmetric pair. The dependence of the damping on various parameters, primarily on the photon-qubit coupling and on the distance between qubits, is studied in detail. It is shown that for some parameters, the relaxation time of the excited qubit is significantly longer than that for a single qubit in the cavity.
APA, Harvard, Vancouver, ISO, and other styles
2

Miao, Kevin C., Joseph P. Blanton, Christopher P. Anderson, Alexandre Bourassa, Alexander L. Crook, Gary Wolfowicz, Hiroshi Abe, Takeshi Ohshima, and David D. Awschalom. "Universal coherence protection in a solid-state spin qubit." Science 369, no. 6510 (August 13, 2020): 1493–97. http://dx.doi.org/10.1126/science.abc5186.

Full text
Abstract:
Decoherence limits the physical realization of qubits, and its mitigation is critical for the development of quantum science and technology. We construct a robust qubit embedded in a decoherence-protected subspace, obtained by applying microwave dressing to a clock transition of the ground-state electron spin of a silicon carbide divacancy defect. The qubit is universally protected from magnetic, electric, and temperature fluctuations, which account for nearly all relevant decoherence channels in the solid state. This culminates in an increase of the qubit’s inhomogeneous dephasing time by more than four orders of magnitude (to >22 milliseconds), while its Hahn-echo coherence time approaches 64 milliseconds. Requiring few key platform-independent components, this result suggests that substantial coherence improvements can be achieved in a wide selection of quantum architectures.
APA, Harvard, Vancouver, ISO, and other styles
3

Yuan, Tingting, Fang Zhou, Shengping Chen, Shaohua Xiang, Kehui Song, and Yujing Zhao. "Multipurpose Quantum Simulator Based on a Hybrid Solid-State Quantum Device." Symmetry 11, no. 4 (April 2, 2019): 467. http://dx.doi.org/10.3390/sym11040467.

Full text
Abstract:
This paper proposes a scheme to enhance the fidelity of symmetric and asymmetric quantum cloning using a hybrid system based on nitrogen-vacancy (N-V) centers. By setting different initial states, the present scheme can implement optimal symmetric (asymmetric) universal (phase-covariant) quantum cloning, so that the copies with the assistance of a Current-biased Josephson junction (CBJJ) qubit and four transmission-line resonators (TLRs) can be obtained. The scheme consists of two stages: cjhothe first stage is the implementation of the conventional controlled-phase gate, and the second is the realization of different quantum cloning machines (QCM) by choosing a suitable evolution time. The results show that the probability of success for QCM of a copy of the equatorial state can reach 1. Furthermore, the | W 4 ± ⟩ entangled state can be generated in the process of the phase-covariant quantum anti-cloning. Finally, the decoherence effects caused by the N-V center qubits and CBJJ qubit are discussed.
APA, Harvard, Vancouver, ISO, and other styles
4

Kumar, Preethika, and Steven R. Skinner. "Universal quantum computing in linear nearest neighbor architectures." Quantum Information and Computation 11, no. 3&4 (March 2011): 300–312. http://dx.doi.org/10.26421/qic11.3-4-8.

Full text
Abstract:
We introduce a scheme for realizing universal quantum computing in a linear nearest neighbor architecture with fixed couplings. We first show how to realize a controlled-NOT gate operation between two adjacent qubits without having to isolate the two qubits from qubits adjacent to them. The gate operation is implemented by applying two consecutive pulses of equal duration, but varying amplitudes, on the target qubit. Since only a single control parameter is required in implementing our scheme, it is very efficient. We next show how our scheme can be used to realize single qubit rotations and two-qubit controlled-unitary operations. As most proposals for solid state implementations of a quantum computer use a one-dimensional line of qubits, the schemes presented here will be extremely useful.
APA, Harvard, Vancouver, ISO, and other styles
5

Bienfait, A., K. J. Satzinger, Y. P. Zhong, H. S. Chang, M. H. Chou, C. R. Conner, É. Dumur, et al. "Phonon-mediated quantum state transfer and remote qubit entanglement." Science 364, no. 6438 (April 25, 2019): 368–71. http://dx.doi.org/10.1126/science.aaw8415.

Full text
Abstract:
Phonons, and in particular surface acoustic wave phonons, have been proposed as a means to coherently couple distant solid-state quantum systems. Individual phonons in a resonant structure can be controlled and detected by superconducting qubits, enabling the coherent generation and measurement of complex stationary phonon states. We report the deterministic emission and capture of itinerant surface acoustic wave phonons, enabling the quantum entanglement of two superconducting qubits. Using a 2-millimeter-long acoustic quantum communication channel, equivalent to a 500-nanosecond delay line, we demonstrate the emission and recapture of a phonon by one superconducting qubit, quantum state transfer between two superconducting qubits with a 67% efficiency, and, by partial transfer of a phonon, generation of an entangled Bell pair with a fidelity of 84%.
APA, Harvard, Vancouver, ISO, and other styles
6

Markiewicz, Marcin, and Marcin Wieśniak. "One-Qubit and Two-Qubit Codes in Noisy State Transfer." Open Systems & Information Dynamics 17, no. 02 (June 2010): 121–33. http://dx.doi.org/10.1142/s1230161210000096.

Full text
Abstract:
Quantum state transfer is a procedure, which allows to exchange quantum information between stationary qubit systems. It is anticipated that the transfer will find applications in solid-state quantum computing. In this contribution, we discuss the effects of various, physically relevant models of decoherence on a toy model of six qubit linearly coupled by the exchange interaction. In many cases we observe the advantage of the two-qubit encoding, which can be associated with the fact that this encoding does not require the state initialization.
APA, Harvard, Vancouver, ISO, and other styles
7

Chen, Shixian, Xiaojie Li, Kaixuan Wu, and Jiadong Shi. "Quantum coherence in a superconducting circuit coupled with a dissipative cavity field." Laser Physics Letters 19, no. 10 (August 18, 2022): 105202. http://dx.doi.org/10.1088/1612-202x/ac867a.

Full text
Abstract:
Abstract Quantum coherence represents a basic feature of a quantum system that is not present in the classical world. Here, we explore the dynamic behaviors of quantum coherence in two charge qubits who are strongly coupled with a single-mode dissipative cavity field. The results show that quantum coherence is sensitive to the coupled system parameters including qubit dissipation rate, initial qubit distribution angle, and coherent state intensity of the cavity field. Additionally, during the dynamic evolution, quantum coherence behaves periodically in the case of the qubit distribution angle, and this periodicity depends on the qubit dissipation rate. Also, the increasing coherent state intensity of cavity field can enhance the magnitude of quantum coherence, meaning that coherence resource in dissipative solid state quantum system can be controlled to some extent. This controllable coherence resource in engineering applications may quantify the advantage enabled in the superconducting circuit for processing the remarkable quantum information tasks.
APA, Harvard, Vancouver, ISO, and other styles
8

Dzurak, A. S., M. Y. Simmons, A. R. Hamilton, R. G. Clark, R. Brenner, T. M. Buehler, N. J. Curson, et al. "Construction of a silicon-based solid state quantum computer." Quantum Information and Computation 1, Special (December 2001): 82–95. http://dx.doi.org/10.26421/qic1.s-8.

Full text
Abstract:
We discuss progress towards the fabrication and demonstration of a prototype silicon-based quantum computer. The devices are based on a precise array of 31P dopants embedded in 28Si. Fabrication is being pursued via two complementary pathways – a ‘top-down’ approach for near-term production of few-qubit demonstration devices and a ‘bottom-up’ approach for large-scale qubit arrays. The ‘top-down’ approach employs ion implantation through a multi-layer resist structure which serves to accurately register the donors to metal control gates and single-electron transistor (SET) read-out devices. In contrast the ‘bottom-up’ approach uses STM lithography and epitaxial silicon overgrowth to construct devices at an atomic scale. Techniques for qubit read-out, which utilise coincidence measurements on novel twin-SET devices, are also presented.
APA, Harvard, Vancouver, ISO, and other styles
9

Fang, Yang De. "Decoherence of Flux Qubits under Sub-Ohmic Bath." Advanced Materials Research 710 (June 2013): 315–19. http://dx.doi.org/10.4028/www.scientific.net/amr.710.315.

Full text
Abstract:
In two-level approximation, we investigate the influence of mutual inductive coupling in superconducting quantum circuits on the decoherence of flux qubits under sub-Ohmic thermal bath environment by utilizing Bloch-Redfield function. The investigation results show: (1) The memory effect existing in the solid-state environment is beneficial to prolong the decoherence time of the superconducting flux qubit, building sub-Ohmic thermal bath environments can improve the decoherence of the solid-state qubit. (2) When the quantum system and the thermal bath are in weak coupling, generally speaking, the mutual coupling effect between circuit elements will destroy the quantum coherence; but when the quantum system and the thermal bath are in strong coupling, it will help to enhance the decoherence time by controlling the mutual inductive coupling between the loop components.
APA, Harvard, Vancouver, ISO, and other styles
10

Cuccoli, Alessandro, Davide Nuzzi, Ruggero Vaia, and Paola Verrucchi. "Using solitons for manipulating qubits." International Journal of Quantum Information 12, no. 02 (March 2014): 1461013. http://dx.doi.org/10.1142/s0219749914610139.

Full text
Abstract:
Many proposals for quantum devices are based on qubits that are physically realized by the spin magnetic moment of some quantum object. In this case, one of the most often adopted strategies for manipulating qubits is that of using external magnetic fields. However, selectively applying a field just to one qubit may be a practically unattainable goal, as it is, for instance, in most solid-state based setups. In this work, we present a proposal for using nonlinear excitations of solitonic type to accomplish the above task. Our scheme entails the generation of a dynamical soliton in a classical spin-chain which is locally coupled with one qubit: as the soliton runs through, the qubit behaves, due to its interaction with the chain, as if it were subject to a magnetic field with a time dependence that follows from the soliton's features. We here present results for the time evolution of the qubit density-matrix induced by the overall dynamics of the above scheme.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Solid state qubit"

1

Fraval, Elliot, and elliot fraval@gmail com. "Minimising the Decoherence of Rare Earth Ion Solid State Spin Qubits." The Australian National University. Research School of Physical Sciences and Engineering, 2006. http://thesis.anu.edu.au./public/adt-ANU20061010.124211.

Full text
Abstract:
[Mathematical symbols can be only approximated here. For the correct display see the Abstract in the PDF files linked below] This work has demonstrated that hyperfine decoherence times sufficiently long for QIP and quantum optics applications are achievable in rare earth ion centres. Prior to this work there were several QIP proposals using rare earth hyperfine states for long term coherent storage of optical interactions [1, 2, 3]. The very long T_1 (~weeks [4]) observed for rare-earth hyperfine transitions appears promising but hyperfine T_2s were only a few ms, comparable to rare earth optical transitions and therefore the usefulness of such proposals was doubtful. ¶ This work demonstrated an increase in hyperfine T_2 by a factor of 7 × 10^4 compared to the previously reported hyperfine T_2 for Pr^[3+]:Y_2SiO_5 through the application of static and dynamic magnetic field techniques. This increase in T_2 makes previous QIP proposals useful and provides the first solid state optically active Lamda system with very long hyperfine T_2 for quantum optics applications. ¶ The first technique employed the conventional wisdom of applying a small static magnetic field to minimise the superhyperfine interaction [5, 6, 7], as studied in chapter 4. This resulted in hyperfine transition T_2 an order of magnitude larger than the T_2 of optical transitions, ranging fro 5 to 10 ms. The increase in T_2 was not sufficient and consequently other approaches were required. ¶ Development of the critical point technique during this work was crucial to achieving further gains in T_2. The critical point technique is the application of a static magnetic field such that the Zeeman shift of the hyperfine transition of interest has no first order component, thereby nulling decohering magnetic interactions to first order. This technique also represents a global minimum for back action of the Y spin bath due to a change in the Pr spin state, allowing the assumption that the Pr ion is surrounded by a thermal bath. The critical point technique resulted in a dramatic increase of the hyperfine transition T_2 from ~10 ms to 860 ms. ¶ Satisfied that the optimal static magnetic field configuration for increasing T_2 had been achieved, dynamic magnetic field techniques, driving either the system of interest or spin bath were investigated. These techniques are broadly classed as Dynamic Decoherence Control (DDC) in the QIP community. The first DDC technique investigated was driving the Pr ion using a CPMG or Bang Bang decoupling pulse sequence. This significantly extended T_2 from 0.86 s to 70 s. This decoupling strategy has been extensively discussed for correcting phase errors in quantum computers [8, 9, 10, 11, 12, 13, 14, 15], with this work being the first application to solid state systems. ¶ Magic Angle Line Narrowing was used to investigate driving the spin bath to increase T_2. This experiment resulted in T_2 increasing from 0.84 s to 1.12 s. Both dynamic techniques introduce a periodic condition on when QIP operation can be performed without the qubits participating in the operation accumulating phase errors relative to the qubits not involved in the operation. ¶ Without using the critical point technique Dynamic Decoherence Control techniques such as the Bang Bang decoupling sequence and MALN are not useful due to the sensitivity of the Pr ion to magnetic field fluctuations. Critical point and DDC techniques are mutually beneficial since the critical point is most effective at removing high frequency perturbations while DDC techniques remove the low frequency perturbations. A further benefit of using the critical point technique is it allows changing the coupling to the spin bath without changing the spin bath dynamics. This was useful for discerning whether the limits are inherent to the DDC technique or are due to experimental limitations. ¶ Solid state systems exhibiting long T_2 are typically very specialised systems, such as 29Si dopants in an isotopically pure 28Si and therefore spin free host lattice [16]. These systems rely on on the purity of their environment to achieve long T_2. Despite possessing a long T_2, the spin system remain inherently sensitive to magnetic field fluctuations. In contrast, this work has demonstrated that decoherence times, sufficiently long to rival any solid state system [16], are achievable when the spin of interest is surrounded by a concentrated spin bath. Using the critical point technique results in a hyperfine state that is inherently insensitive to small magnetic field perturbations and therefore more robust for QIP applications.
APA, Harvard, Vancouver, ISO, and other styles
2

Thorgrimson, Joelle. "Observation of the all-exchange qubit and realization of a new enhanced readout technique in a gallium arsenide triple quantum dot." Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=119744.

Full text
Abstract:
A GaAs triple quantum dot was cooled to below 100mK and electrically manipulated for two distinct experiments. The first was a new measurement technique, called enhanced charge detection, which involving optimized excited state path relaxation used to increase the charge detection signal-to-noise by a factor of four. This was illustrated with the two spin S-T+ qubit [1]. A spin funnel with 50 coherent oscillations, i.e. 100 rotations, was measured using this scheme. This technique can be used with other spin qubits and readout measurement schemes [2]. The second experiment involved realizing the theoretically predicted all exchange qubit by studying the necessary activation parameters and comparing to theory. The coherent behaviour of an interacting three spin system is complex with contributions arising from several individual qubits, however, the all-exchange qubit is predicted to be protected against some forms of global noise [3]. Magnetic eld dependence measurements were used to isolate this qubit from other qubits. These measurements were compared to theory by modeling the time evolution of spin states [4].
Un triple point quantique fait d'arséniure de gallium a été refroidi en dessous de 100mK et a été manipulé électriquement dans le but de faire deux expériences distinctes. La première expérience est une nouvelle technique de mesure, appelé détection de charge accrue, qui utilise des trajectoires de relaxation d'un état sensible pour augmenter la détection du rapport signal sur bruit de d'un facteur quatre. Cela a été démontré par le qubit de spin S-T+ [1]. Un entonnoir de spin avec environ 50 oscillations cohérentes, c-à-d 100 rotations de piradians, a été mesuré utilisant ce schéma. Cette echnique peut être utilisée avec d'autres modèles de mesures de qubit de spin [2]. La deuxième expérience consiste à la réalisation d'un qubit prédit théoriquement appelé all-exchange qubit. Les paramètres nécessaires à l'activation de ce qubit ont été étudiés et comparés à la théorie. Le comportement d'un système de trois spins en interaction est très complexe à cause des contributions provenant de plusieurs qubits, cependant, il est prédit que le all-exchange qubit devrait être protégé contre la plupart des bruits globaux [3]. Des mesures en champ magnétique sont utilisées pour isoler ce qubit des autres. Ces mesures sont comparées à la théorie en modélisant l'évolution temporelle des états de spin [4].
APA, Harvard, Vancouver, ISO, and other styles
3

Zafarullah, Ijaz. "Thulium ions in a yttrium aluminum garnet host for quantum computing applications material analysis and single qubit operations /." Thesis, Montana State University, 2008. http://etd.lib.montana.edu/etd/2008/zafarullah/ZafarullahI0508.pdf.

Full text
Abstract:
Rare-earth-doped crystals have been used for optical signal processing and storage applications. In this dissertation, their potential for quantum computing applications is explored. In one quantum computing scheme, information is stored in nuclear spin states and this information is then processed by using optical pulses through the coupling of these nuclear spin states to a common electronic level. To implement this scheme, nuclear spin states and coupling of these nuclear spin states to a common electronic level is required. Preliminary work in rare-earth materials like Pr3+ and Eu3+ has shown promising results regarding their suitability for quantum computing applications. One particular problem with these materials is that their transition wavelengths are only accessible with dye lasers. These lasers are inherently unstable, and currently few available systems exhibit the stability required for quantum computing applications. An alternative choice was to investigate other rare-earth ions like thulium. Thulium has a transition wavelength that can be accessed with diode lasers, which are commercially available, easy to stabilize, and compact. This dissertation is based on our investigations of Tm3+:YAG for quantum computing applications. Investigations involved a detailed characterization of the material. Nuclear spin states, in Tm3+:YAG, were obtained by applying an external magnetic field to the sample. First, interaction of an external magnetic field with the thulium ions at various sites in the crystal was analyzed. This analysis was used to measure the magnetic anisotropy in the material. These results show that it is possible, with the suitable choice of the magnetic orientation and the site in the crystal, to build a working 3-level quantum system. In the demonstration of single qubit operations in Tm3+:YAG, we first theoretically studied the effect of Gaussian spatial beam on the single qubit operations. Later on, we experimentally prepared a single isolated ensemble of ions in the inhomogeneously broadened absorption profile of the medium. This single isolated ensemble of ions was used as a test-bed to implement the single qubit operations. We also isolated two ensembles of ions in the inhomogeneous absorption profile of the medium. The interaction between these two isolated ensembles of ions was also studied.
APA, Harvard, Vancouver, ISO, and other styles
4

Lo, Nardo Roberto. "Charge state manipulation of silicon-based donor spin qubits." Thesis, University of Oxford, 2015. http://ora.ox.ac.uk/objects/uuid:29a0f336-82ce-4794-82fe-d7db2802ffc1.

Full text
Abstract:
Spin properties of donor impurities in silicon have been investigated by electron spin resonance (ESR) techniques for more than sixty years. These studies gave us a contribution towards understanding some of the physics of doped semiconductor materials in general, which is the platform for much of our current technology. Despite the fact that donor electron and nuclear spins have been researched for so long, ESR studies of their properties are still giving us interesting insights. With the introduction of the concept of quantum information in the 1980s, some properties of donor spins in silicon, that were known from the fifties (such as long relaxations), have been reinterpreted for their potential application in this field. Since then, incredible experimental results have been achieved with magnetic resonance control, including manipulation and read-out of individual spins. However, some open questions are still to be answered before the realisation of a spin-based silicon quantum architecture will be achieved. Currently, ESR studies still contribute to help answering some of those questions. In this thesis, we demonstrate electrical and optical methods for donor charge state manipulation measured by ESR. Recent experiments have demonstrated that coherence time of nuclear spins may be enhanced by manipulating the state of donors from neutral to singly charged. We investigate electric field ionisation/neutralisation of arsenic donors in a silicon SOI device measured by ESR. Below ionisation threshold, we also measure the hyperfine Stark shift of arsenic donors spins in silicon. These results have, for instance, implications on how fast individual addressability of donor spins may be achieved in certain quantum computer architectures. Here, we also study optical-driven charge state manipulation of selenium impurities in silicon. Selenium has two additional electrons when it replaces an atom in the silicon crystal (i.e. double donor). The electronic properties of singly-ionised selenium make it potentially advantageous as spin qubit, compared to the more commonly studied group-V donors. For instance, we find here that the electron spin relaxation and coherence times of selenium are up to two orders of magnitude longer than phosphorus at the same temperature. Finally, we demonstrate that it is possible to bring selenium impurity in singly-charged state and subsequently re-neutralise them leaving a potential long-lived 77Se nuclear spin.
APA, Harvard, Vancouver, ISO, and other styles
5

Navickas, Tomas. "Towards high-fidelity microwave driven multi-qubit gates on microfabricated surface ion traps." Thesis, University of Sussex, 2018. http://sro.sussex.ac.uk/id/eprint/79060/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bautze, Tobias. "Towards quantum optics experiments with single flying electrons in a solid state system." Thesis, Grenoble, 2014. http://www.theses.fr/2014GRENY059/document.

Full text
Abstract:
Ce travail de thèse porte sur l’étude fondamentale de systèmes nano-électroniques,mesurés à très basse température. Nous avons réalisé des interféromètres électroniques àdeux chemins à partir d’électrons balistiques obtenus dans un gaz 2D d’électrons d’unehétéro-structure GaAs/AlGaAs. Nous montrons que la phase des électrons, et ainsileur état quantique,peut être contrôlée par des grilles électrostatiques. Ces dispositifsse révèlent être des candidats prometteurs pour la réalisation d’un qubit volant. Nousavons développé une simulation numérique évoluée d’un modèle de liaisons fortes à partirde transport quantique ballistique qui décrit toutes les découvertes expérimentales etnous apporte une connaissance approfondie sur les signatures expérimentales de cesdispositifs particuliers. Nous proposons des mesures complémentaires de ce système dequbit volants. Pour atteindre le but ultime, à savoir un qubit volant à un électron unique,nous avons assemblé la source à électron unique précédemment développée dans notreéquipe à un beam splitter électronique. Les électrons sont alors injectés depuis une boîtequantique à un train de boîte quantiques en mouvement. Ce potentiel électrostatique enmouvement est généré par des ondes acoustiques de surface créées par des transducteursinter-digités sur le substrat GaAs piézo-électrique. Nous avons étudié et optimisé chacunde ces composants fondamentaux nécessaires à la réalisation d’un beam splitter à électronunique et développé un procédé local et fiable de fabrication. Ce dispositif nous permet d’étudier les interactions électroniques pour des électrons isolés et pourra servir de basede mesure pour des expériences d’optique quantiques sur un système électronique del’état condensé. Enfin, nous avons développé un outil puissant de simulation du potentielélectrostatique à partir de la géométrie des grilles. Ceci permet d’optimiser la conceptiondes échantillons avant même leur réalisation. Nous proposons ainsi un prototype optimiséde beam splitter à électron unique
This thesis contains the fundamental study of nano-electronic systems at cryogenictemperatures. We made use of ballistic electrons in a two-dimensional electron gasin a GaAs/AlGaAs heterostructure to form a real two-path electronic interferometerand showed how the phase of the electrons and hence their quantum state can becontrolled by means of electrostatic gates. The device represents a promising candidateof a flying qubit. We developed a sophisticated numerical tight-binding model based onballistic quantum transport, which reproduces all experimental findings and allows togain profound knowledge about the subtle experimental features of this particular device.We proposed further measurements with this flying qubit system. With the ultimate goalof building a single electron flying qubit, we combined the single electron source that hasbeen developed in our lab prior to this manuscript with an electronic beam splitter. Theelectrons are injected from static quantum dots into a train of moving quantum dots.This moving potential landscape is induced in the piezoelectric substrate of GaAs bysurface acoustic waves from interdigial transducers. We studied and optimized all keycomponents, which are necessary to build a single electron beam splitter and built up areliable local fabrication process. The device is capable of studying electron interactionson the single electron level and can serve as a measurement platform for quantum opticsexperiments in electronic solid state systems. Finally, we developed a powerful toolcapable of calculating the potential landscapes of any surface gate geometry, which canbe used as a fast feedback optimization tool for device design and proposed an optimizedprototype for the single electron beam splitter
APA, Harvard, Vancouver, ISO, and other styles
7

Gündoğan, Mustafa. "Solid-state quantum memory for photonic qubits." Doctoral thesis, Universitat Politècnica de Catalunya, 2015. http://hdl.handle.net/10803/322551.

Full text
Abstract:
Optical quantum memories (QMs) are one of the fundamental building blocks in quantum information science (QIS). They might find important use in quantum communication and computation applications. Rare-earth ions (REIs) have been investigated for decades for their optical properties. They exhibit excellent coherence properties when cooled down to cryogenic temperatures. Not surprisingly, they emerged as a promising candidate for use in QIS as QMs. In this thesis, we investigated the quantum storage of photonic qubits in a Pr3+ :Y2SiO5 (PrYSO) crystal for potential use in quantum communication and networking applications. We started by constructing the experimental setup and the laser system from scratch as our research group had just been established at the beginning of this PhD study. First experiments included spectroscopy of the PrYSO system in order to identify the electronic transitions that are suitable for the QM experiments. We used the atomic frequency comb (AFC) memory protocol in all the experiments presented in this thesis. We also developed complex pulse sequences that are necessary for the optical preparation of an AFC. As a first experiment, we demonstrated the storage of photonic polarization qubits encoded in weak coherent states in the excited states of Pr3+ ions for a predetermined storage time of 500 ns. This had not been achieved previously due to the polarization dependent absorption of the material. We achieved average storage fidelities of ~95% which surpass the best achievable value with a measure and prepare strategy, thus proving the quantum character of our interface. Nevertheless, in order to be implemented in realistic quantum networking architectures, a QM should have the capability of on-demand retrieval of the stored information. As a first step towards this goal, our next experiment concerned the transfer of the input pulses to and from the long-lived hyperfine ground levels of Pr3+ ions, albeit with bright pulses. Furthermore, by performing time-bin interference experiments, we demonstrated that the coherence is preserved during the storage, transfer and retrieval processes. Temporal multimode storage in the spin-states up to 5 modes was also shown. Finally, in the last part of this thesis we demonstrated a solid-state spinwave quantum memory, with qubits encoded in weak coherent states at the single photon level. Storing and retrieving single-photon level fields in the ground levels of the PrYSO system is challenging as the strong control pulses and the weak input pulse to be stored in the memory are separated by only 10:2 MHz. The control pulses create noise, mostly as free-induction decay, fluorescence and scattering off the optical surfaces. In order to circumvent this problem we employed narrow-band spectral, temporal and spatial filtering. By using spectral-hole burning based narrow band filter created in a second PrYSO crystal, we could achieve signal-to-noise ratio (SNR) > 10 for input pulses with mean photon number of around 1. The high SNR we achieved allowed us to store and recall time-bin qubits with conditional fidelities again higher than that is possible with a measure and prepare strategy. This experiments also represents the first demonstration of a quantum memory for time-bin qubits with on demand read-out of the stored quantum information. The results presented in this thesis fill an important gap in the field of solid-state quantum memories and open the way for the long-lived storage of non-classical states of light. They further strengthen the position of REI based systems in QIS, specifically as nodes in scalable quantum network architectures.
Les memòries quàntiques òptiques (MQs) son un dels elements fonamentals en la ciència de la informació quàntica (CIQ). El seu ús podria ser important en aplicacions relacionades amb la comunicació i la computació quàntiques. Els ions de terres rares (ITRs) han sigut investigats durant dècades per les seves propietats òptiques. Exhibeixen excel·lents propietats de coherència quan es refreden a temperatures criogèniques. Per tant, no es sorprenent que hagin emergit com a candidats per ser usats en la CIQ com a MQs. En aquesta tesis, hem investigat l'emmagatzematge quàntic de qubits fotònics en un cristall de Pr3+:Y2SiO5 (PrYSO) per al seu possible ús en aplicacions relacionades amb xarxes d'informació quàntiques. Vam començar construint el dispositiu experimental i sistemes làser des de zero, ja que el nostre grup de recerca acabava de néixer. Els primers experiments van incloure espectroscòpia del sistema de PrYSO per identificar les transicions electròniques més apropiades per als següents experiments de MQs. En tots els experiments vam utilitzar el protocol de memòria basat en una pinta de freqüències atòmiques (PFA). També vam desenvolupar complexes seqüències de polsos, necessàries per a la preparació òptica d'una PFA. En el primer experiment vam demostrar l'emmagatzematge de qubits fotònics de polarització codificats en estats coherents febles. Aquest emmagatzematge es va dur a terme en els estats excitats dels ions Pr3+ durant un temps d'emmagatzematge predeterminat de 500 ns. Aquesta fita no s'havia assolit abans degut a que l'absorció òptica del material depèn de la polarització llum. Vam aconseguir fidelitats d'emmagatzematge d'un 95% de mitjana les quals sobrepassen el millor valor que es pot aconseguir amb una estratègia de mesura i preparació provant per tant el caràcter quàntic de la nostra interfície. Per poder-se implementar de manera realista en xarxes quàntiques, una MQ hauria de tenir la capacitat de recuperar la informació en-demanda (en el moment que es desitgi). Com a primer pas, el nostre següent experiment va involucrar la transferència dels polsos d'entrada cap a i des de els nivells fonamentals hiperfins i longeus dels ions Pr3+, mitjançant polsos brillants. A més, duent a terme experiments d'interferència, vam demostrar que la coherència es preserva durant els processos d'emmagatzematge, transferència i recuperació. També vam demostrar l'emmagatzematge temporalment multimodal en els estats d'espín, de fins a 5 modes. En l'última part d'aquesta tesis vam demostrar una memòria quàntica d'estat sòlid basada en ones d'espín, amb qubits codificats en estats coherents febles al nivell d'intensitat de fotons individuals. Emmagatzemar i recuperar camps òptics al nivell de fotons individuals en estats fonamentals del sistema PrYSO és exigent perquè els potents polsos de control i el polsos dèbils d'entrada que s'emmagatzemen a la memòria estan separats per només 10.2 MHz. Els polsos de control creen soroll, la majoria consistent en decaïment de lliure inducció, fluorescència i dispersió en les superfícies òptiques. Per resoldre aquest problema vam utilitzar filtratge estret de banda en freqüència i també filtratges temporal i espacial. Utilitzant un filtre estret de banda basat el la crema de forats espectrals en un segon cristall de PrYSO, vam poder aconseguir una relació senyal soroll (RSS) > 10 per a polsos d'entrada amb un número mitjà de fotons al voltant de 1. L'alta RSS que vam aconseguir ens va permetre emmagatzemar i recuperar qubits de inteval-de-temps amb fidelitats condicionals més altes una altra vegada que el que és possible amb l'estratègia de mesura i preparació. Els resultats presentats omplen un buit important en el camp de les memòries quàntiques d'estat sòlid i obren la porta a l'emmagatzematge de llarga durada d'estats de llum no-clàssics. A més, enforteixen la posició dels sistemes de IQ basats en ITR, específicament com a nodes en arquitectures de xarxes quàntiques.
APA, Harvard, Vancouver, ISO, and other styles
8

Witzel, Wayne Martin. "Decoherence and dynamical decoupling in solid-state spin qubits." College Park, Md. : University of Maryland, 2007. http://hdl.handle.net/1903/6889.

Full text
Abstract:
Thesis (PhD) -- University of Maryland, College Park, 2007.
Thesis research directed by: Physics. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
APA, Harvard, Vancouver, ISO, and other styles
9

Xia, Kangwei [Verfasser]. "Spectroscopy of Single Rare Earth Solid-State Qubits / Kangwei Xia." München : Verlag Dr. Hut, 2016. http://d-nb.info/1115550152/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bersin, Eric (Eric A. ). "Super-resolution localization and readout of individual solid-state qubits." Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/115623.

Full text
Abstract:
Thesis: S.M., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2018.
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 67-74).
A central goal in quantum information science is to establish entanglement across multiple quantum memories in a manner that allows individual control and readout of each constituent qubit. In the area of solid state quantum optics, a leading system is the negatively charged nitrogen vacancy center in diamond, which allows access to a spin center that can be entangled to multiple nuclear spins. Scaling these systems will require the entanglement of multiple NV centers, together with their nuclear spins, in a manner that allows for individual control and readout. Here we demonstrate a technique that allows us to prepare and measure individual centers within an ensemble, well below the diffraction limit. The technique relies on optical addressing of spin-dependent transitions, and makes use of the built-in inhomogeneous distribution of emitters resulting from strain splitting to measure individual spins in a manner that is non-destructive to the quantum state of other nearby centers. We demonstrate the ability to resolve individual NV centers with subnanometer spatial resolution. Furthermore, we demonstrate crosstalk-free individual readout of spin populations within a diffraction limited spot by performing resonant readout of one NV during a spectroscopic sequence of another. This method opens the door to multi-qubit coupled spin systems in solids, with individual spin manipulation and readout.
by Eric Bersin.
S.M.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Solid state qubit"

1

Mosseri, R. "Two-Qubit and Three-Qubit Geometry and Hopf Fibrations." In Springer Series in Solid-State Sciences, 187–203. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/3-540-31264-1_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bergou, János A., Mark Hillery, and Mark Saffman. "Solid State Qubits." In Graduate Texts in Physics, 269–301. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-75436-5_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

LaPierre, Ray. "Solid-State Spin Qubits." In The Materials Research Society Series, 259–73. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-69318-3_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bertoni, Andrea. "Charge-Based Solid-State Flying Qubits." In Encyclopedia of Complexity and Systems Science, 1011–27. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-30440-3_67.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Paladino, E., L. Faoro, and G. Falci. "Decoherence Due to Discrete Noise in Josephson Qubits." In Advances in Solid State Physics, 747–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-44838-9_53.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wilhelm, F. K., M. J. Storcz, C. H. van der Wal, C. J. P. M. Harmans, and J. E. Mooij. "Decoherence of Flux Qubits Coupled to Electronic Circuits." In Advances in Solid State Physics, 763–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-44838-9_54.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Grishin, Alex, Igor V. Yurkevich, and Igor V. Lerner. "Low Temperature Decoherence and Relaxation in Charge Josephson Junction Qubits." In Springer Series in Solid-State Sciences, 77–101. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-72632-6_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Korotkov, A. N. "Noisy Quantum Measurement of Solid-State Qubits: Bayesian Approach." In Quantum Noise in Mesoscopic Physics, 205–28. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-010-0089-5_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

McMahon, Peter L., and Kristiaan De Greve. "Towards Quantum Repeaters with Solid-State Qubits: Spin-Photon Entanglement Generation Using Self-assembled Quantum Dots." In Engineering the Atom-Photon Interaction, 365–402. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19231-4_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Solid state qubit"

1

Walther, A., L. Rippe, B. Julsgaard, and S. Kröll. "Solid state qubit quantum state tomography." In Integrated Optoelectronic Devices 2008, edited by Zameer U. Hasan, Alan E. Craig, and Philip R. Hemmer. SPIE, 2008. http://dx.doi.org/10.1117/12.772312.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Singh, M. K., J. Ahn, S. E. Sullivan, A. Kumar, T. Zhou, C. Ji, G. Grant, et al. "Rare earth based solid-state qubit platforms." In 2022 IEEE International Electron Devices Meeting (IEDM). IEEE, 2022. http://dx.doi.org/10.1109/iedm45625.2022.10019546.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Walther, Andreas, Lars Rippe, Brian Julsgaard, and Stefan Kröll. "Experimental Quantum State Tomography of a Solid State Qubit." In International Conference on Quantum Information. Washington, D.C.: OSA, 2008. http://dx.doi.org/10.1364/icqi.2008.qwb3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Jiao, HuJun, Feng Li, Shi-Kuan Wang, Xin-Qi Li, Hsi-Sheng Goan, and Yueh-Nan Chen. "Solid-state qubit measurement with single electron transistors." In SOLID-STATE QUANTUM COMPUTING: Proceedings of the 2nd International Workshop on Solid-State Quantum Computing & Mini-School on Quantum Information Science. AIP, 2008. http://dx.doi.org/10.1063/1.3037144.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ralph, Jason F., Elias J. Griffith, Charles D. Hill, and Terence D. Clark. "Rapid purification of a solid state charge qubit." In Defense and Security Symposium, edited by Eric J. Donkor, Andrew R. Pirich, and Howard E. Brandt. SPIE, 2006. http://dx.doi.org/10.1117/12.665403.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Fujishima, Minoru, Kento Inai, Tetsuro Kitasho, and Koichiro Hoh. "75- qubit Quantum Computing Emulator." In 2003 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2003. http://dx.doi.org/10.7567/ssdm.2003.p1-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Van Winckelt, Steven, Alican Caglar, Benjamin Gys, Steven Brebels, Anton Potocnik, Bertrand Parvais, Piet Wambacq, and Jan Craninckx. "A 28nm 6.5-8.1GHz 1.16mW/qubit Cryo-CMOS System-an-Chip for Superconducting Qubit Readout." In ESSCIRC 2022- IEEE 48th European Solid State Circuits Conference (ESSCIRC). IEEE, 2022. http://dx.doi.org/10.1109/esscirc55480.2022.9911493.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Prabowo, Bagas, Guoji Zheng, Mohammadreza Mehrpoo, Bishnu Patra, Patrick Harvey-Collard, Jurgen Dijkema, Amir Sammak, et al. "13.3 A 6-to-8GHz 0.17mW/Qubit Cryo-CMOS Receiver for Multiple Spin Qubit Readout in 40nm CMOS Technology." In 2021 IEEE International Solid- State Circuits Conference (ISSCC). IEEE, 2021. http://dx.doi.org/10.1109/isscc42613.2021.9365848.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Tomonaga, A., H. Mukai, Y. Zhou, R. Wang, Y. Nakajima, and J. S. Tsai. "Qubit-resonator coupling system for quantum annealing." In 2018 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2018. http://dx.doi.org/10.7567/ssdm.2018.a-7-06.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bersin, Eric, Michael Walsh, Sara Mouradian, Matthew Trusheim, Kevin Chen, Tim Schroder, and Dirk Englund. "Multi-Qubit Registers of Individually Addressable Solid-State Defect Centers." In 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC). IEEE, 2019. http://dx.doi.org/10.1109/cleoe-eqec.2019.8873053.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Solid state qubit"

1

Barrett, Sean E. Spin Decoherence Measurements for Solid State Qubits. Fort Belvoir, VA: Defense Technical Information Center, July 2005. http://dx.doi.org/10.21236/ada459337.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Averin, D. V., S. Han, K. K. Likharev, J. E. Lukens, and V. K. Semenov. Novel Approaches to Quantum Computation Using Solid State Qubits. Fort Belvoir, VA: Defense Technical Information Center, December 2007. http://dx.doi.org/10.21236/ada477137.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Han, Siyuan. (DEPSCOR 99) Experimental Investigation of Superconducting Quantum Interference Devices as Solid State Qubits for Quantum Computing. Fort Belvoir, VA: Defense Technical Information Center, October 2002. http://dx.doi.org/10.21236/ada416906.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography