Academic literature on the topic 'Solid state electrolyte'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Solid state electrolyte.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Solid state electrolyte"

1

Liu, Liyu, Kai Chen, Liguo Zhang, and Bong-Ki Ryu. "Prospects of Sulfide-Based Solid-State Electrolytes Modified by Organic Thin Films." International Journal of Energy Research 2023 (February 6, 2023): 1–7. http://dx.doi.org/10.1155/2023/2601098.

Full text
Abstract:
Lithium-ion batteries are key to tackling today’s energy crisis. In recent years, compared with the research on other components of lithium-ion batteries, the research on solid-state electrolytes is particularly hot. Among various solid-state electrolyte modification measures, we found that the material design of organic/inorganic composite flexible solid-state electrolytes can achieve the best all-solid-state battery cycling performance. Based on the study of sulfide-based organic/inorganic composite solid-state electrolytes, this article firstly introduces the classification of inorganic solid electrolytes and the advantages and disadvantages of each type of materials. At the same time, the research progress of various oxide solid electrolyte materials and sulfide solid electrolyte materials in recent years is introduced as well as the advantages of organic/inorganic composite solid-state electrolyte materials. Then the influencing factors that affect the performance of solid-state electrolytes, such as material lattice, lattice defects, electrolyte interface problems, and electrolyte microcracks, are introduced. Finally, the superiority of the industrial electrochemical performance of the organic/inorganic composite solid electrolyte material and its future prospects are introduced.
APA, Harvard, Vancouver, ISO, and other styles
2

Carmona, Eric A., and Paul Albertus. "Solid-State Electrolyte Fracture in Lithium Metal Batteries." ECS Meeting Abstracts MA2022-02, no. 4 (October 9, 2022): 396. http://dx.doi.org/10.1149/ma2022-024396mtgabs.

Full text
Abstract:
Next generation batteries utilizing solid-state electrolytes to enable use of lithium metal electrodes are of significant interest due to increased energy density and the potential safety enhancements. Despite their high yield strength, high room temperature ionic conductivity, and lack of reactivity with metallic lithium, these ceramic solid electrolytes are still prone to dendrite formation and subsequent cell failure above critical current densities. One experimentally observed dendrite formation and propagation mechanism requires mechanical failure of the electrolyte via fracture. Ceramic solid electrolyte’s do not undergo ductile deformation, leaving fracture as the primary means of stress relaxation. The electrolyte’s propensity to fracture is dependent on its material properties (i.e. fracture toughness), electrode mechanical properties, and the cell operating conditions (e.g. applied current density, stack pressure, temperature). This talk will focus on electrochemical-mechanical coupling (including thermodynamic and kinetic couplings of mechanical forces with electrochemical behavior) and the relationship between the current distribution, developed stresses, and solid-electrolyte fracture initiation at Li protrusions. The effect of current focusing on stress-driven fracture, plastic deformation of lithium, and the influence of mechanical boundary conditions will be described.
APA, Harvard, Vancouver, ISO, and other styles
3

Bhardwaj, Ravindra Kumar, and David Zitoun. "Recent Progress in Solid Electrolytes for All-Solid-State Metal(Li/Na)–Sulfur Batteries." Batteries 9, no. 2 (February 3, 2023): 110. http://dx.doi.org/10.3390/batteries9020110.

Full text
Abstract:
Metal–sulfur batteries, especially lithium/sodium–sulfur (Li/Na-S) batteries, have attracted widespread attention for large-scale energy application due to their superior theoretical energy density, low cost of sulfur compared to conventional lithium-ion battery (LIBs) cathodes and environmental sustainability. Despite these advantages, metal–sulfur batteries face many fundamental challenges which have put them on the back foot. The use of ether-based liquid electrolyte has brought metal–sulfur batteries to a critical stage by causing intermediate polysulfide dissolution which results in poor cycling life and safety concerns. Replacement of the ether-based liquid electrolyte by a solid electrolyte (SEs) has overcome these challenges to a large extent. This review describes the recent development and progress of solid electrolytes for all-solid-state Li/Na-S batteries. This article begins with a basic introduction to metal–sulfur batteries and explains their challenges. We will discuss the drawbacks of the using liquid organic electrolytes and the advantages of replacing liquid electrolytes with solid electrolytes. This article will also explain the fundamental requirements of solid electrolytes in meeting the practical applications of all solid-state metal–sulfur batteries, as well as the electrode–electrolyte interfaces of all solid-state Li/Na-S batteries.
APA, Harvard, Vancouver, ISO, and other styles
4

Kim, A.-yeon, Hun-Gi Jung, Hyeon-Ji Shin, and Jun tae Kim. "Binderless Sheet-Type Oxide-Sulfide Composite Solid Electrolyte for All-Solid-State Batteries." ECS Meeting Abstracts MA2023-02, no. 4 (December 22, 2023): 745. http://dx.doi.org/10.1149/ma2023-024745mtgabs.

Full text
Abstract:
Lithium-ion batteries have been used as energy sources not only for small electronic devices but also for high-capacity and high-energy-density applications such as electric vehicles. However, the use of flammable organic liquid electrolytes in lithium-ion batteries has raised safety concerns in various applications. Therefore, solid-state batteries using flame-retardant inorganic materials are considered a more reasonable direction for future energy sources due to their high safety and high energy density. Solid electrolytes(SEs) are divided into oxide-based, sulfide-based, and polymer-based. Each solid electrolyte has its own advantages and disadvantages. Oxide-based solid electrolytes (e.g., Li7La3Zr2O12 (LLZO), Li3xLa2/3-xTiO3 (LLTO), Li1.3Al0.3Ti1.7(PO4)3 (LATP)) are air-stable and exhibit excellent electrochemical properties over a wide potential range. However, their high interfacial resistance may limit their practical application as batteries. Sulfide-based solid electrolytes (e.g., Li6PS5X (X=Cl, Br, I), Li10GeP2S12, (100-x)Li2S-xP2S5)) have high ionic conductivity, ductile properties, low interfacial resistance, and good room temperature workability. However, they are vulnerable to atmospheric instability, which can produce toxic gases such as H2S, and are relatively electrochemically unstable with Li metal. Polymer-based solid electrolytes, such as those made from polymers like PEO, PVDF, PAN, etc. that are compounded with other solid electrolytes (oxides, sulfides, etc.), offer the advantage of being able to form solid electrolyte membranes over large areas. But they have low ionic conductivity and weak mechanical properties of the polymer itself, limiting their practical application. To apply solid-state batteries to practical high-energy density energy storage devices such as electric vehicles, high ion conductivity, electrochemical stability, high mechanical properties, and large area formation of the electrolyte layer are essential. Solid electrolytes are mainly formed in powder form, and without a polymer binder, it is limited to apply as a film for large-capacity storage devices. Here, we fabricated a freestanding sheet-type Al-LLZO oxide-based solid electrolyte that forms a 3D network without a polymer material using an electrospinning method. In addition, we prepared a oxide-sulfide composite solid electrolyte membrane by impregnating LPSCl sulfide-based solid electrolyte into the Al-LLZO solid electrolyte sheet. As a result, This process removed the polymer and improved both the ionic conductivity and mechanical properties. Furthermore, it was possible to achieve both large-area and film characteristics without the need for a polymer.
APA, Harvard, Vancouver, ISO, and other styles
5

Won, Eun-Seo, and Jong-Won Lee. "Biphasic Solid Electrolytes with Homogeneous Li-Ion Transport Pathway Enabled By Metal-Organic Frameworks." ECS Meeting Abstracts MA2022-01, no. 55 (July 7, 2022): 2248. http://dx.doi.org/10.1149/ma2022-01552248mtgabs.

Full text
Abstract:
Solid-state batteries based on nonflammable inorganic solid electrolytes provide a promising technical solution that can resolve the safety issues of current lithium-ion batteries. Biphasic solid electrolytes comprising Li7La3Zr2O12 (LLZO) garnet and polymer have been attracting significant interest for solid-state Li batteries because of their mechanical robustness and enhanced Li+ conductivity, compared to conventional polymer electrolytes. Furthermore, the hybridization allows for the fabrication of thin and large-area electrolyte membranes without the need for high-temperature sintering of LLZO. However, the non-uniform distribution of LLZO particles and polymer species in biphasic electrolytes may cause uneven Li+ conduction, which results in poor interfacial stability with electrodes during repeated charge–discharge cycling. In this study, we report a biphasic solid electrolyte with homogeneous Li+ transport pathway achieved by a metal–organic framework (MOF) layer. To regulate and homogenize the Li+ flux across the interface between the electrolyte and electrode, a free-standing, biphasic solid electrolyte membrane is integrated with the MOF nanoparticle layer. A mixture of plastic crystal (PC) and polymeric phase is infused into porous networks of the MOF-integrated electrolyte membrane, producing the percolating Li+ conduction pathways. The MOF-integrated electrolyte membrane is found to form the smooth and uniform interface with nanoporous channels in contact with the electrodes, effectively facilitating homogeneous Li+ transport. A solid-state battery with the MOF-integrated electrolyte membrane shows the enhanced rate-capability and cycling stability in comparison to the battery with the unmodified biphasic electrolyte. This study demonstrates that the proposed electrolyte design provides an effective approach to improving the interfacial stability of biphasic electrolytes with electrodes for long-cycling solid-state batteries. [1] H.-S. Shin, W. Jeong, M.-H. Ryu, S.W. Lee, K.-N. Jung, J.-W. Lee, Electrode-to-electrode monolithic integration for high-voltage bipolar solid-state batteries based on plastic-crystal polymer electrolyte, Chem. Eng. J, published online. [2] T. Jiang, P. He, G. Wang, Y. Shen, C.-W. Nan, L.-Z. Fan, Solvent-free synthesis of thin, flexible, nonflammable garnet-based composite solid electrolyte for all-solid-state lithium batteries, Adv. Energy Mater. 10 (2020) 1903376.
APA, Harvard, Vancouver, ISO, and other styles
6

Tron, Artur, Andrea Paolella, and Alexander Beutl. "New Insights of Infiltration Process of Argyrodite Li6PS5Cl Solid Electrolyte into Conventional Lithium-Ion Electrodes for Solid-State Batteries." Batteries 9, no. 10 (October 4, 2023): 503. http://dx.doi.org/10.3390/batteries9100503.

Full text
Abstract:
All-solid-state lithium-ion batteries based on solid electrolytes are attractive for electric applications due to their potential high energy density and safety. The sulfide solid electrolyte (e.g., argyrodite) shows a high ionic conductivity (10−3 S cm−1). There is an open question related to the sulfide electrode’s fabrication by simply infiltrating methods applied for conventional lithium-ion battery electrodes via homogeneous solid electrolyte solutions, the structure of electrolytes after drying, chemical stability of binders and electrolyte, the surface morphology of electrolyte, and the deepening of the infiltrated electrolyte into the active materials to provide better contact between the active material and electrolyte and favorable lithium ionic conduction. However, due to the high reactivity of sulfide-based solid electrolytes, unwanted side reactions between sulfide electrolytes and polar solvents may occur. In this work, we explore the chemical and electrochemical properties of the argyrodite-based film produced by infiltration mode by combining electrochemical and structural characterizations.
APA, Harvard, Vancouver, ISO, and other styles
7

Cai, Jinhai, Yingjie Liu, Yingying Tan, Wanying Chang, Jingyi Wu, Tong Wu, and Chunyan Lai. "Constructing Enhanced Composite Solid-State Electrolytes with Sb/Nb Co-Doped LLZO and PVDF-HFP." Applied Sciences 14, no. 7 (April 8, 2024): 3115. http://dx.doi.org/10.3390/app14073115.

Full text
Abstract:
Composite solid-state electrolytes are viewed as promising materials for solid-state lithium-ion batteries due to their combined advantages of inorganic solid-state electrolytes and solid-state polymer electrolytes. In this study, the solid electrolytes Li6.7−xLa3Zr1.7−xSb0.3NbxO12 (LLZSNO) with Sb and Nb co-doping were prepared by a high-temperature solid-phase method. Results indicate that Sb/Nb co-doping causes lattice deformation in LLZO and increases the lithium vacancy concentration and conductivity of LLZO. Then, with the co-doped LLZSNO as an inorganic filler, a composite solid electrolyte of polyvinylidene fluoride-hexafluoropropylene (PVDF-HFP) was prepared with a casting method. The obtained composite solid electrolyte exhibits a high ionic conductivity of 1.76 × 10−4 S/cm at room temperature, a wide electrochemical stable window of 5.2 V, and a lithium-ion transfer number of 0.32. The Li|LiFePO4 coin battery with the composite solid electrolyte shows a high specific capacity of 161.2 mAh/g and a Coulombic efficiency close to 100% at 1 C. In addition, the symmetrical lithium battery Li|Li with the composite electrolyte could cycle stably for about 1500 h without failure at room temperature.
APA, Harvard, Vancouver, ISO, and other styles
8

Jean-Fulcrand, Annelise, Eun Ju Jeon, Schahrous Karimpour, and Georg Garnweitner. "Cross-Linked Solid Polymer-Based Catholyte for Solid-State Lithium-Sulfur Batteries." Batteries 9, no. 7 (June 23, 2023): 341. http://dx.doi.org/10.3390/batteries9070341.

Full text
Abstract:
All-solid-state lithium-sulfur batteries (ASSLSBs) are a promising next-generation battery technology. They exhibit high energy density, while mitigating intrinsic problems such as polysulfide shuttling and lithium dendrite growth that are common to liquid electrolyte-based batteries. Among the various types of solid electrolytes, solid polymer electrolytes (SPE) are attractive due to their superior flexibility and high safety. In this work, cross-linkable polymers composed of pentaerythritol tetraacrylate (PETEA) and tri(ethylene glycol) divinyl ether (PEG), are incorporated into sulfur–carbon composite cathodes to serve a dual function as both a binder and electrolyte, as a so-called catholyte. The influence of key parameters, including the sulfur–carbon ratio, catholyte content, and ionic conductivity of the electrolyte within the cathode on the electrochemical performance, was investigated. Notably, the sulfur composite cathode containing 30 wt% of the PETEA-PEG copolymer catholyte achieved a high initial discharge capacity of 1236 mAh gS−1 at a C-rate of 0.1 and 80 °C.
APA, Harvard, Vancouver, ISO, and other styles
9

Liu, Zhantao, Jue Liu, Yifei Mo, and Hailong Chen. "Design of High-Performance Solid Electrolytes Guided By Crystal Structure Characterization and Understanding." ECS Meeting Abstracts MA2022-02, no. 3 (October 9, 2022): 225. http://dx.doi.org/10.1149/ma2022-023225mtgabs.

Full text
Abstract:
Solid electrolyte is the key component in all-solid-state-batteries that is currently limiting the commercialization of this technology. An ideal solid electrolyte should have high room temperature ionic conductivity, low electronic conductivity, good compatibility with both cathode and anode, good mechanical properties, high air and moisture stability and low manufacture cost. Among these requirements, the improvement of ionic conductivity is prioritized as the conductivity of most existing solid electrolyte is still much lower than that of conventional liquid electrolyte. The improvement of ionic conductivity and design and development of solid electrolyte materials are closely related to our understanding on the ionic diffusion mechanism in solids and the structure-property relationship. We believe that rational design of high-performance solid electrolyte should start from careful characterization and good understanding of the crystal structure. Here we report the crystal structure characterization on sulfides and halide solid electrolytes and the design and development of novel solid electrolytes based on our findings in structural characterizations. Ex situ high resolution synchrotron X-ray and neutron diffraction and pair distribution function analysis are used to understand the crystal structures in great details. In situ X-ray diffraction for different synthesis methods is coupled with variable temperature electrochemical impedance spectroscopy to understand the structure-property relationship in the solid electrolytes. The design, synthesis and electrochemical evaluation of several solid electrolytes will be presented and discussed.
APA, Harvard, Vancouver, ISO, and other styles
10

Lee, Kyoung-Jin, Eun-Jeong Yi, Gangsanin Kim, and Haejin Hwang. "Synthesis of Ceramic/Polymer Nanocomposite Electrolytes for All-Solid-State Batteries." Journal of Nanoscience and Nanotechnology 20, no. 7 (July 1, 2020): 4494–97. http://dx.doi.org/10.1166/jnn.2020.17562.

Full text
Abstract:
Lithium-ion conducting nanocomposite solid electrolytes were synthesized from polyethylene oxide (PEO), poly(methyl methacrylate) (PMMA), LiClO4, and Li1.3Al0.3Ti1.7(PO4)3 (LATP) ceramic particles. The synthesized nanocomposite electrolyte consisted of LATP particles and an amorphous polymer. LATP particles were homogeneously distributed in the polymer matrix. The nanocomposite electrolytes were flexible and self-standing. The lithium-ion conductivity of the nanocomposite electrolyte was almost an order of magnitude higher than that of the PEO/PMMA solid polymer electrolyte.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Solid state electrolyte"

1

Hernandez, Alvarez Erick Ivan. "Electrolyte selection for cobalt-free solid-state batteries." Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/119602.

Full text
Abstract:
Thesis: S.B., Massachusetts Institute of Technology, Department of Materials Science and Engineering, 2018.
Cataloged from PDF version of thesis.
Includes bibliographical references (page 30).
Lithium-ion batteries are widespread in use due to their thermal stability and high energy density. The most common design uses an organic electrolyte and lithium-cobalt electrode. While safe under typical operating conditions, the use of an organic electrolyte subjects the battery user to certain risks; in particular, Li-ion liquid batteries are explosive when exposed to air and subject to thermal runoff, making them highly sensitive to any physical damage. The use of cobalt also poses a moral concern, as the mining and sourcing of cobalt is geographically restricted and most commonly sourced from countries that have a history of foreign exploitation and child labor. An all solid state battery is suggested as a possible alternative battery that reduces operation risks and maintains similar performance characteristics. Lithium-lanthanum-zirconium oxide is presented as a suitable electrolyte replacement. Coupled with cobalt-free electrodes, this battery design would provide a safer, more responsible battery.
by Erick Ivan Hernandez Alvarez.
S.B.
APA, Harvard, Vancouver, ISO, and other styles
2

Yada, Chihiro. "Studies on electrode/solid electrolyte interface of all-solid-state rechargeable lithium batteries." 京都大学 (Kyoto University), 2006. http://hdl.handle.net/2433/144024.

Full text
Abstract:
Kyoto University (京都大学)
0048
新制・課程博士
博士(工学)
甲第12338号
工博第2667号
新制||工||1377(附属図書館)
24174
UT51-2006-J330
京都大学大学院工学研究科物質エネルギー化学専攻
(主査)教授 小久見 善八, 教授 江口 浩一, 教授 田中 功
学位規則第4条第1項該当
APA, Harvard, Vancouver, ISO, and other styles
3

Koç, Tuncay. "In search of the best solid electrolyte-layered oxide pair in all-solid-state batteries." Electronic Thesis or Diss., Sorbonne université, 2022. http://www.theses.fr/2022SORUS535.

Full text
Abstract:
Les batteries à l'état solide (ASSB) qui reposent sur l'utilisation d'électrolytes solides (SE) à conductivité ionique élevée sont le Saint-Graal de la future technologie des batteries, car elles pourraient théoriquement permettre une augmentation de près de 70 et 40 % des densités d'énergie volumétrique (Wh/l) et gravimétrique (Wh/kg), respectivement, ainsi qu'une sécurité accrue par rapport à la technologie des batteries au lithium-ion. À cette fin, la dernière décennie a vu le développement des ASSB, principalement grâce à des SE à base de sulfure, en raison de leurs propriétés intrinsèques favorables. Toutefois, ces progrès n'ont pas permis de mettre au point des ASSB pratiques et performants en raison des réactions complexes de décomposition interfaciale qui se produisent aux électrodes négative et positive et qui entraînent une détérioration de la durée de vie des cycles. En se concentrant sur l'électrode positive, cela nécessite une meilleure compréhension de la compatibilité électrochimique/chimique des SE qui est cruellement nécessaire pour les applications du monde réel.Ce travail vise à fournir des réponses concernant la meilleure paire d'oxyde en couche SE dans la cathode composite pour les ASSB. En menant une étude systématique sur l'effet de la nature des SE sur les performances des batteries, nous montrons que les performances de Li6PS5Cl rivalisent avec celles de Li3InCl6, surpassant toutes deux celles de β-Li3PS4 et ce, indépendamment de la voie de synthèse. Ces performances sont préservées lors de l'assemblage de piles à l'état solide, puisque l'appariement de Li6PS5Cl avec une cathode en oxyde stratifié présente la meilleure rétention en cas de cyclage. Cette étude révèle également que les halogénures réagissent avec les sulfures dans les cellules hétérostructurées, ce qui entraîne une diminution rapide de la capacité en cas de cyclage en raison de réactions de décomposition interfaciales. Pour éliminer ce processus de dégradation interfaciale, nous proposons une stratégie d'ingénierie de surface qui permet d'atténuer la détérioration de la surface et de débloquer des ASSB très performants. Enfin, l'analyse électrochimique, structurelle et spectroscopique combinée démontre que Li3InCl6 ne peut pas résister à des potentiels d'oxydation plus élevés, ce qui entraîne des produits de décomposition contrairement à ce que les calculs théoriques prévoyaient
All-solid-state batteries (ASSBs) that rely on the use of solid electrolytes (SEs) with high ionic conductivity are the holy grail for future battery technology, since it could theoretically enable achieving nearly 70 and 40 % increase in volumetric (Wh/l) and gravimetric (Wh/kg) energy densities, respectively, as well as enhanced safety compared to lithium-ion battery technology. To this end, the last decade has witnessed the development of ASSBs mainly through sulfide-based SEs pertaining to their favorable intrinsic properties. However, such advancements were not straightforward to unlock high-performing practical ASSBs because of complex interfacial decomposition reactions taking place at both negative and positive electrodes, leading to a worsening cycling life. Focusing on the positive electrode, this calls for a better understanding of electrochemical/chemical compatibility of SEs that is sorely needed for real-world applications.This work aims to provide answers regarding the best SE-layered oxide pair in composite cathode for ASSBs. By conducting a systematic study on the effect of nature of SEs in battery performances, we show that Li6PS5Cl performances rival that of Li3InCl6, both outperforming β-Li3PS4 and this, independently of the synthesis route. This is preserved when assembling solid-state cells since Li6PS5Cl pairing with layered oxide cathode shows the best retention upon cycling. This study also unravels that halides react with sulfides in hetero-structured cell design, hence resulting in a rapid capacity decay upon cycling stemming from interfacial decomposition reactions. To eliminate such interfacial degradation process, we suggest a surface engineering strategy that helps to alleviate the surface deterioration, unlocking highly performing ASSBs. Eventually, combined electrochemical, structural and spectroscopic analysis demonstrate that Li3InCl6 cannot withstand at higher oxidation potentials, resulting in decomposition products in contrast to what the theoretical calculations predicted
APA, Harvard, Vancouver, ISO, and other styles
4

Howell, Ian. "The structure of some simple aqueous electrolyte solutions." Thesis, University of Bristol, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.386083.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Shao, Yunfan. "Highly electrochemical stable quaternary solid polymer electrolyte for all-solid-state lithium metal batteries." University of Akron / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=akron1522332577785545.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Li, Si. "HIGHLY CONDUCTIVE SOLID POLYMER ELECTROLYTE CONTAINING LiBOB AT ROOM TEMPERATURE FOR ALL SOLID STATE BATTERY." University of Akron / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=akron1490481514905008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Chen, Kezheng. "Origin of Polarization Behavior in All-Solid-State Lithium-Ion Battery Using Sulfide Solid Electrolyte." Kyoto University, 2018. http://hdl.handle.net/2433/235998.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yin, Yijing. "An Experimental Study on PEO Polymer Electrolyte Based All-Solid-State Supercapacitor." Scholarly Repository, 2010. http://scholarlyrepository.miami.edu/oa_dissertations/440.

Full text
Abstract:
Supercapacitors are one of the most important electrochemical energy storage and conversion devices, however low ionic conductivity of solid state polymer electrolytes and the poor accessibility of the ions to the active sites in the porous electrode will cause low performance for all-solid-state supercapacitors and will limit their application. The objective of the dissertation is to improve the performance of all-solid-state supercapactor by improving electrolyte conductivity and solving accessibility problem of the ions to the active sites. The low ionic conductivity (10-8 S/cm) of poly(ethylene oxide) (PEO) limits its application as an electrolyte. Since PEO is a semicrystal polymer and the ion conduction take place mainly in the amorphous regions of the PEO/Lithium salt complex, improvements in the percentage of amorphous phase in PEO or increasing the charge carrier concentration and mobility could increase the ionic conductivity of PEO electrolyte. Hot pressing along with the additions of different lithium salts, inorganic fillers and plasticizers were applied to improve the ionic conductivity of PEO polymer electrolytes. Four electrode methods were used to evaluate the conductivity of PEO based polymer electrolytes. Results show that adding certain lithium salts, inorganic fillers, and plasticizers could improve the ionic conductivity of PEO electrolytes up 10-4 S/cm. Further hot pressing treatment could improve the ionic conductivity of PEO electrolytes up to 10-3 S/cm. The conductivity improvement after hot pressing treatment is elucidated as that the spherulite crystal phase is convert into the fringed micelle crystal phase or the amorphous phase of PEO electrolytes. PEO electrolytes were added into active carbon as a binder and an ion conductor, so as to provide electrodes with not only ion conduction, but also the accessibility of ion to the active sites of electrodes. The NaI/I2 mediator was added to improve the conductivity of PEO electrolyte and provide pseudocapacitance for all-solid-state supercapacitors. Impedance, cyclic voltammetry, and gavalnostatic charge/discharge measurements were conducted to evaluate the electrochemical performance of PEO polymer electrolytes based all-solid-state supercapacitors. Results demonstrate that the conductivity of PEO electrolyte could be improved to 0.1 S/cm with a mediator concentration of 50wt%. A high conductivity in the PEO electrolyte with mediator is an indication of a high electron exchange rate between the mediator and mediator. The high electron exchange rates at mediator carbon interface and between mediator and mediator are essential in order to obtain a high response rate and high power. This automatically solves the accessibility problem. With the addition of NaI/I2 mediator, the specific capacitance increased more than 30 folds, specific power increased almost 20 folds, and specific energy increased around 10 folds. Further addition of filler to the electrodes along with the mediator could double the specific capacitor and specific power of the all-solid-state supercapacitor. The stability of the corresponded supercapacitor is good within 2000 cycles.
APA, Harvard, Vancouver, ISO, and other styles
9

Naboulsi, Agathe. "Composite organic-inorganic membrane as new electrolyte in all solid-state battery." Electronic Thesis or Diss., Sorbonne université, 2023. http://www.theses.fr/2023SORUS451.

Full text
Abstract:
Le développement de batteries tout solide est essentiel pour réussir la transition écologique et le déploiement de véhicules tout électriques. Le développement de cette filière pourra se faire, entre autres, par l'élaboration d’un électrolyte tout solide (SE). Les SE polymères à base de poly(éthylène glycol) présentent l'avantage d'être adaptables aux procédés actuels de fabrication des batteries Li-ion. Malheureusement, leur conductivité reste limitée (10-6 – 10-9 S.cm-1) à température ambiante. Les SE inorganiques, comme le Li7La3Zr2O12, sont en revanche de bons conducteurs ioniques (10-3 S.cm-1), mais ils nécessitent des procédés de mise en forme coûteux et énergivores. L’objectif de cette thèse était le développement de SE composites qui combinent les avantages de ces deux matériaux. Les travaux ont porté sur la conception d'un SE composite performant et l’étude des mécanismes de transport à l'interface de ces deux matériaux. Une étude approfondie sur un SE polymère a été menée afin d'optimiser sa synthèse à partir de monomères, liquides et commerciaux. En utilisant cette approche de synthèse, il a été possible de mettre en œuvre différents procédés de mise en forme de SE composite (frittage basse température, extrusion électro-assistée, coulée évaporation) afin de contrôler le mélange des deux matériaux et leur interface. La spectroscopie d'impédance électrochimique a été largement mise en œuvre pour comprendre les phénomènes de transport dans les SE composites
The development of all-solid-state batteries is essential if we are to make a success of the ecological transition and the deployment of all-electric vehicles. One way of developing this sector is to produce an all-solid electrolyte (SE). Poly(ethylene glycol)-based polymer SEs have the advantage of being adaptable to current Li-ion battery manufacturing processes. Unfortunately, their conductivity remains limited (10-6 - 10-9 S.cm-1) at ambient temperature. Interestingly, inorganic SEs, such as Li7La3Zr2O12, are good ionic conductors (10-3 S.cm-1), but they require costly and energy-intensive shaping processes. This thesis aimed to develop composite SEs that combine the advantages of these two materials. The work focused on the design of a high-performance composite SE and the study of transport mechanisms at the interface of these two materials. An in-depth study of a polymer SE was carried out in order to optimize its synthesis from liquid and commercial monomers. Taking advantage of this synthesis design, various composite SE shaping processes (low-temperature sintering, electro-assisted extrusion, evaporation casting) were explored in order to control the mixing of the two materials and their interface. Electrochemical impedance spectroscopy has been widely used to understand transport phenomena in composite SEs
APA, Harvard, Vancouver, ISO, and other styles
10

Sun, Bing. "Functional Polymer Electrolytes for Multidimensional All-Solid-State Lithium Batteries." Doctoral thesis, Uppsala universitet, Strukturkemi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-248084.

Full text
Abstract:
Pressing demands for high power and high energy densities in novel electrical energy storage units have caused reconsiderations regarding both the choice of battery chemistry and design. Practical concerns originating in the conventional use of flammable liquid electrolytes have renewed the interests of using solvent-free polymer electrolytes (SPEs) as solid ionic conductors for safer batteries. In this thesis work, SPEs developed from two polymer host structures, polyethers and polycarbonates, have been investigated for all-solid-state Li- and Li-ion battery applications. In the first part, functional polyether-based polymer electrolytes, such as poly(propylene glycol) triamine based oligomer and poly(propylene oxide)-based acrylates, were investigated for 3D-microbattery applications. The amine end-groups were favorable for forming conformal electrolyte coatings onto 3D electrodes via self-assembly. In-situ polymerization methods such as UV-initiated and electro-initiated polymerization techniques also showed potential to deposit uniform and conformal polymer coatings with thicknesses down to nano-dimensions. Moreover, poly(trimethylene carbonate) (PTMC), an alternative to the commonly investigated polyether host materials, was synthesized for SPE applications and showed promising functionality as battery electrolyte. High-molecular-weight PTMC was first applied in LiFePO4-based batteries. By incorporating an oligomeric PTMC as an interfacial mediator, enhanced surface contacts at the electrode/SPE interfaces and obvious improvements in initial capacities were realized. In addition, room-temperature functionality of PTMC-based SPEs was explored through copolymerization of ε-caprolactone (CL) with TMC. Stable cycling performance at ambient temperatures was confirmed in P(TMC/CL)-based LiFePO4 half cells (e.g., around 80 and 150 mAh g-1 at 22 °C and 40 °C under C/20 rate, respectively). Through functionalization, hydroxyl-capped PTMC demonstrated good surface adhesion to metal oxides and was applied on non-planar electrodes. Ionic transport behavior in polycarbonate-SPEs was examined by both experimental and computational approaches. A coupling of Li ion transport with the polymer chain motions was demonstrated. The final part of this work has been focused on exploring the key characteristics of the electrode/SPE interfacial chemistry using PEO and PTMC host materials, respectively. X-ray photoelectron spectroscopy (XPS) was used to get insights on the compositions of the interphase layers in both graphite and LiFePO4 half cells.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Solid state electrolyte"

1

Zhai, Haowei. Designing Solid Electrolytes for Rechargeable Solid-State Batteries. [New York, N.Y.?]: [publisher not identified], 2019.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kudo, Tetsuichi. Solid state ionics. Tokyo, Japan: Kodansha, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

I, Kharkat͡s I͡U, ed. Superionnye provodniki. Moskva: "Nauka," Glav. red. fiziko-matematicheskoĭ lit-ry, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

F, Palʹguev S., ed. Tverdye ėlektrolity s provodimostʹi͡u︡ po kationam shchelochnykh metallov. Moskva: Nauka, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Asian Conference on Solid State Ionics (5th 1996 Kandy, Sri Lanka). Solid state ionics: New developments : Kandy, Sri Lanka, 2-7, December 1996. Edited by Chowdari B. V. R, Dissanayake, M. A. K. L., Careem M. A, and Asian Society for Solid State Ionics. Singapore: World Scientific, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

European Workshop on "Solid State Materials for Low to Medium Temperature Fuel Cells and Monitors, with Special Emphasis on Proton Conductors". (3rd 1984 La Grande-Motte, Hérault, France). Solid state protonic conductors III for fuel cells and sensors: European Workshop on "Solid State Materials for Low to Medium Temperature Fuel Cells and Monitors, With Special Emphasis on Proton Conductors,", La Grande-Motte (Hérault), France 15-18 May 1984. Odense, Denmark: Odense University Press, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

L, Tuller Harry, Balkanski Minko 1927-, North Atlantic Treaty Organization. Scientific Affairs Division., and Special Program on Condensed Systems of Low Dimensionality (NATO), eds. Science and technology of fast ion conductors. New York: Plenum Press, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

ller, Martin Mu. Polyelectrolyte Complexes in the Dispersed and Solid State II: Application Aspects. Springer, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

ller, Martin Mu. Polyelectrolyte Complexes in the Dispersed and Solid State II: Application Aspects. Springer, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

ller, Martin Mu. Polyelectrolyte Complexes in the Dispersed and Solid State II: Application Aspects. Springer London, Limited, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Solid state electrolyte"

1

Abraham, K. M. "Lithium Organic Liquid Electrolyte Batteries." In Solid State Batteries, 337–49. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5167-9_22.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Li, Yuyu, and Ming Xie. "Sodium-Ion Solid-State Electrolyte." In ACS Symposium Series, 275–94. Washington, DC: American Chemical Society, 2022. http://dx.doi.org/10.1021/bk-2022-1413.ch011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Goodenough, John B. "Designing a Solid Electrolyte II. Strategies and Illustrations." In Solid State Microbatteries, 177–93. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4899-2263-2_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Radhakrishnan, K. "Thin Films of Solid Electrolyte and Their Applications." In Solid State Materials, 110–21. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-662-09935-3_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Goodenough, John B. "Designing a Solid Electrolyte III. Proton Conduction and Composites." In Solid State Microbatteries, 195–212. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4899-2263-2_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Goodenough, John B. "Designing a Solid Electrolyte I. Quality Criteria and Applications." In Solid State Microbatteries, 157–75. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4899-2263-2_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Goodenough, John B. "Designing a Solid Electrolyte IV. Designing a Reversible Solid Electrode." In Solid State Microbatteries, 213–32. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4899-2263-2_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Jin, Bong Soo, Bok Ki Min, and Chil Hoon Doh. "Characteristics of Lithium Polysilicate Electrolyte Synthesized by Sol-Gel Processing." In Solid State Phenomena, 1031–34. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/3-908451-31-0.1031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kim, Seok, J. Y. Kang, Sung Goo Lee, Jae Rock Lee, and Soo Jin Park. "Influence of Clay Addition on Ion Conductivity of Polymeric Electrolyte Composites." In Solid State Phenomena, 155–58. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/3-908451-18-3.155.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Choi, Jae Won, Gouri Cheruvally, Yong Jo Shin, Hyo Jun Ahn, Ki Won Kim, and Jou Hyeon Ahn. "Effect of Various Lithium Salts in TEGDME Based Electrolyte for Li/Pyrite Battery." In Solid State Phenomena, 971–74. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/3-908451-31-0.971.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Solid state electrolyte"

1

Liu, Wei, Ryan Milcarek, Kang Wang, and Jeongmin Ahn. "Novel Structured Electrolyte for All-Solid-State Lithium Ion Batteries." In ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology collocated with the ASME 2015 Power Conference, the ASME 2015 9th International Conference on Energy Sustainability, and the ASME 2015 Nuclear Forum. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/fuelcell2015-49384.

Full text
Abstract:
In this study, a multi-layer structure solid electrolyte (SE) for all-solid-state electrolyte lithium ion batteries (ASSLIBs) was fabricated and characterized. The SE was fabricated by laminating ceramic electrolyte Li1.3Al0.3Ti1.7(PO4)3 (LATP) with polymer (PEO)10-Li(N(CF3SO2)2 electrolyte and gel-polymer electrolyte of PVdF-HFP/ Li(N(CF3SO2)2. It is shown that the interfacial resistance is generated by poor contact at the interface of the solid electrolytes. The lamination protocol, material selection and fabrication method play a key role in the fabrication process of practical multi-layer SEs.
APA, Harvard, Vancouver, ISO, and other styles
2

Sakamoto, Toshitsugu, Hiroshi Sunamura, Hisao Kawaura, Tsuyoshi Hasegawa, Tomonobu Nakayama, and Masakazu Aono. "Solid-electrolyte nanometer switch." In 2003 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2003. http://dx.doi.org/10.7567/ssdm.2003.e-7-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ramesh, S., K. C. James Raju, and C. Vishnuvardhan Reddy. "Characterization of SDC-Al2O3 solid electrolyte." In SOLID STATE PHYSICS: Proceedings of the 56th DAE Solid State Physics Symposium 2011. AIP, 2012. http://dx.doi.org/10.1063/1.4710323.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Maohua, Chen, Rayavarapu Prasada Rao, and Stefan Adams. "All-Solid-State Lithium Batteries Using Li6PS5Br Solid Electrolyte." In 14th Asian Conference on Solid State Ionics (ACSSI 2014). Singapore: Research Publishing Services, 2014. http://dx.doi.org/10.3850/978-981-09-1137-9_154.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Banno, N., T. Sakamoto, S. Fujieda, and M. Aono. "On-state reliability of solid-electrolyte switch." In 2008 IEEE International Reliability Physics Symposium (IRPS). IEEE, 2008. http://dx.doi.org/10.1109/relphy.2008.4558999.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wendler, F., P. Buschel, O. Kanoun, J. Schadewald, C. C. Bof Bufon, and O. G. Schmidt. "Impedance spectroscopy in solid state electrolyte characterization." In 2012 IEEE 9th International Multi-Conference on Systems, Signals and Devices (SSD). IEEE, 2012. http://dx.doi.org/10.1109/ssd.2012.6198113.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Finsterbusch, Martin. "Oxide-Electrolyte Based All-Solid-State Batteries." In Materials for Sustainable Development Conference (MAT-SUS). València: FUNDACIO DE LA COMUNITAT VALENCIANA SCITO, 2022. http://dx.doi.org/10.29363/nanoge.nfm.2022.088.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yersak, Thomas. "Process Rheology of Oxysulfide Solid-State Electrolyte Separators for Solid-State Batteries." In ACS Fall 2022. US DOE, 2022. http://dx.doi.org/10.2172/2326221.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

SINGH, K., P. AMBEKAR, S. S. BHOGA, and R. U. TIWARI. "STUDY OF SOLID STATE PROTONIC BATTERY WITH COMPOSITE SOLID ELECTROLYTE." In Proceedings of the 8th Asian Conference. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812776259_0021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Zhang, Qifeng, and Yi Ding. "A New Solid Electrolyte with A High Lithium Ionic Conductivity for Solid-State Lithium-Ion Batteries." In WCX SAE World Congress Experience. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2023. http://dx.doi.org/10.4271/2023-01-0519.

Full text
Abstract:
<div class="section abstract"><div class="htmlview paragraph">Solid-state lithium-ion batteries that use a solid electrolyte may potentially operate at wide temperatures and provide satisfactory safety. Moreover, the use of a solid electrolyte, which blocks the formation of lithium dendrites, allows batteries to use metallic lithium for the anode, enabling the batteries gain an energy density significantly higher than that of traditional lithium-ion batteries. Solid electrolytes play a role of conducting lithium ions and are the core of solid-state lithium-ion batteries. However, the development of solid lithium electrolytes towards a high lithium ionic conductivity, good chemical and electrochemical stability and scalable manufacturing method has been challenging. We report a new material composed of nitrogen-doped lithium metaphosphate, denoted as NLiPO<sub>3</sub>. The material delivers a lithium ionic conductivity on the order of 10<sup>-4</sup> S/cm at room temperature, which is about two orders of magnitude higher than that of conventional LiPON – the electrolyte currently used in solid-state thin-film lithium-ion batteries, and is comparable or generally higher than that of most of the existing solid electrolytes. The high lithium ionic conductivity was attributed to the formation of <span class="formula inline"><math display="inline" id="M1"><mi mathvariant="normal">P</mi><mo>−</mo><mi mathvariant="normal">N</mi><mo>&lt;</mo><mtable displaystyle="true"><mtr><mtd><mi mathvariant="normal">P</mi></mtd></mtr><mtr><mtd><mi mathvariant="normal">P</mi></mtd></mtr></mtable></math></span> bonds in amorphous LiPO<sub>3</sub>. The material is stable in ambient environment over a wide range of temperature and can be handled and processed easily. These merits make the material a promising electrolyte for solid-state lithium-ion battery applications.</div></div>
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Solid state electrolyte"

1

Zhang, Pu. All Solid State Batteries Enabled by Multifunctional Electrolyte Materials. Office of Scientific and Technical Information (OSTI), December 2022. http://dx.doi.org/10.2172/1906484.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wachsman, Eric, and Yifei Mo. Low Impedance Cathode/Electrolyte Interfaces for High Energy Density Solid-State Batteries. Office of Scientific and Technical Information (OSTI), August 2023. http://dx.doi.org/10.2172/2007404.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Takeuchi, Esther. Dual Function Solid State Battery with Self-forming Self-healing Electrolyte and Separator. Office of Scientific and Technical Information (OSTI), June 2021. http://dx.doi.org/10.2172/1909517.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Yersak, Thomas. Hot Pressing of Reinforced Li-NMC All-Solid State Batteries with Sulfide Glass Electrolyte. Office of Scientific and Technical Information (OSTI), September 2023. http://dx.doi.org/10.2172/2246589.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Turner, Allen. Power and Thermal Technologies for Air and Space. Delivery Order 0001: Single Ionic Conducting Solid-State Electrolyte. Fort Belvoir, VA: Defense Technical Information Center, November 2005. http://dx.doi.org/10.21236/ada460518.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Takeuchi, Esther, Amy Marschilok, and Kenneth Takeuchi. Final Technical Report - DE-EE0007785 - Dual Function Solid State Battery with Self-Forming Self-Healing Electrolyte and Separator. Office of Scientific and Technical Information (OSTI), June 2021. http://dx.doi.org/10.2172/1787465.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sakamoto, Jeff, D. Siegel, J. Wolfenstine, C. Monroe, and J. Nanda. Solid electrolytes for solid-state and lithium-sulfur batteries. Office of Scientific and Technical Information (OSTI), August 2018. http://dx.doi.org/10.2172/1464928.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ramos, E., J. Ye, and A. Browar. Reactive laser sintering for solid state electrolytes. Office of Scientific and Technical Information (OSTI), September 2022. http://dx.doi.org/10.2172/1885658.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wu, Nick, and Xiangwu Zhang. Solid-State Inorganic Nanofiber Network-Polymer Composite Electrolytes for Lithium Batteries. Office of Scientific and Technical Information (OSTI), April 2021. http://dx.doi.org/10.2172/1779614.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ma, Y. Solid-state sodium batteries using polymer electrolytes and sodium intercalation electrode materials. Office of Scientific and Technical Information (OSTI), August 1996. http://dx.doi.org/10.2172/414308.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography