Academic literature on the topic 'Solid Oxide Cells (SOC)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Solid Oxide Cells (SOC).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Solid Oxide Cells (SOC)"
Horlick, Samuel A., Scott Swartz, David Kopechek, Geoff Merchant, Taylor Cochran, and John Funk. "Progress of Solid Oxide Electrolysis and Fuel Cells for Hydrogen Generation, Power Generation, Grid Stabilization, and Power-to-X Applications." ECS Meeting Abstracts MA2023-01, no. 54 (August 28, 2023): 152. http://dx.doi.org/10.1149/ma2023-0154152mtgabs.
Full textIkegawa, Kazutaka, Kengo Miyara, Yuya Tachikawa, Stephen Matthew Lyth, Junko Matsuda, and Kazunari Sasaki. "Performance and Durability of Solid Oxide Electrolysis Cell Air Electrodes Prepared By Various Conditions." ECS Transactions 109, no. 11 (September 30, 2022): 71–78. http://dx.doi.org/10.1149/10911.0071ecst.
Full textIkegawa, Kazutaka, Kengo Miyara, Yuya Tachikawa, Stephen Matthew Lyth, Junko Matsuda, and Kazunari Sasaki. "Reversible Solid Oxide Cells: Cycling and Long-Term Durability of Air Electrodes." ECS Transactions 111, no. 6 (May 19, 2023): 313–21. http://dx.doi.org/10.1149/11106.0313ecst.
Full textSahu, Sulata K., Dhruba Panthi, Ibrahim Soliman, Hai Feng, and Yanhai Du. "Fabrication and Performance of Micro-Tubular Solid Oxide Cells." Energies 15, no. 10 (May 12, 2022): 3536. http://dx.doi.org/10.3390/en15103536.
Full textShang, Yijing, and Ming Chen. "Phase-Field Modelling of Microstructure Evolution in Solid Oxide Cells." ECS Meeting Abstracts MA2023-02, no. 46 (December 22, 2023): 2253. http://dx.doi.org/10.1149/ma2023-02462253mtgabs.
Full textYamada, Kei, Yuya Tachikawa, Stephen Matthew Lyth, Junko Matsuda, and Kazunari Sasaki. "Ni-Alloy Fuel Electrodes for Reversible Solid Oxide Cells." ECS Meeting Abstracts MA2022-02, no. 47 (October 9, 2022): 1781. http://dx.doi.org/10.1149/ma2022-02471781mtgabs.
Full textSasaki, Kazunari, Katsuya Natsukoshi, Kei Yamada, Kazutaka Ikegawa, Masahiro Yasutake, Yuya Tachikawa, Stephen Matthew Lyth, Junko Matsuda, Bilge Yildiz, and Harry L. Tuller. "Reversible Solid Oxide Cells: Selection of Fuel Electrode Materials for Improved Performance and Durability." ECS Transactions 111, no. 6 (May 19, 2023): 1901–6. http://dx.doi.org/10.1149/11106.1901ecst.
Full textKupecki, Jakub, Konrad Motyliński, Marek Skrzypkiewicz, Michał Wierzbicki, and Yevgeniy Naumovich. "Preliminary Electrochemical Characterization of Anode Supported Solid Oxide Cell (AS-SOC) Produced in the Institute of Power Engineering Operated in Electrolysis Mode (SOEC)." Archives of Thermodynamics 38, no. 4 (December 20, 2017): 53–63. http://dx.doi.org/10.1515/aoter-2017-0024.
Full textShang, Yijing, and Ming Chen. "Phase-Field Modelling of Microstructure Evolution in Solid Oxide Cells." ECS Transactions 112, no. 5 (September 29, 2023): 103–20. http://dx.doi.org/10.1149/11205.0103ecst.
Full textZhao, Chenhuan, Yifeng Li, Wenqiang Zhang, Yun Zheng, Xiaoming Lou, Bo Yu, Jing Chen, Yan Chen, Meilin Liu, and Jianchen Wang. "Heterointerface engineering for enhancing the electrochemical performance of solid oxide cells." Energy & Environmental Science 13, no. 1 (2020): 53–85. http://dx.doi.org/10.1039/c9ee02230a.
Full textDissertations / Theses on the topic "Solid Oxide Cells (SOC)"
Nelson, George Joseph. "Solid Oxide Cell Constriction Resistance Effects." Thesis, Georgia Institute of Technology, 2006. http://hdl.handle.net/1853/10563.
Full textChien, Chang-Yin. "Methane and Solid Carbon Based Solid Oxide Fuel Cells." University of Akron / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=akron1299670407.
Full textTorres-Caceres, Jonathan. "Manufacturing of Single Solid Oxide Fuel Cells." Master's thesis, University of Central Florida, 2013. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/5875.
Full textM.S.M.E.
Masters
Mechanical and Aerospace Engineering
Engineering and Computer Science
Mechanical Engineering; Mechanical Systems
Choi, Hyunkyu. "Perovskite-type oxide material as electro-catalysts for solid oxide fuel cells." The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1354652812.
Full textZalar, Frank M. "Model and theoretical simulation of solid oxide fuel cells." Columbus, Ohio : Ohio State University, 2007. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1189691948.
Full textJohnson, Janine B. "Fracture Failure of Solid Oxide Fuel Cells." Thesis, Georgia Institute of Technology, 2004. http://hdl.handle.net/1853/4847.
Full textGuzman, Montanez Felipe. "SAMARIUM-BASED INTERMEDIATE TEMPERATURE SOLID OXIDE FUEL CELLS." University of Akron / OhioLINK, 2005. http://rave.ohiolink.edu/etdc/view?acc_num=akron1134056820.
Full textBedon, Andrea. "Advanced materials for Solid Oxide Fuel Cells innovation: reversible and single chamber Solid Oxide Fuel Cells, frontiers in sustainable energy." Doctoral thesis, Università degli studi di Padova, 2018. http://hdl.handle.net/11577/3426788.
Full textLa transizione energetica sta cambiando il modo in cui usiamo, convertiamo e immagazziniamo l’energia per tutti i nostri scopi. Si tratta di un processo spinto dal crescente riconoscimento delle rilevanti conseguenze che l’attuale uso intensivo di fonti energetiche fossili comporta, e non è ancora chiaro esattamente a che situazione porterà. Sono molte le tecnologie che di volta in volta si trovano proposte come la soluzione principe per il futuro dell’energia. Tra di esse, le celle a combustibile a ossido solido (SOFC) meritano particolare attenzione. Sono dispositivi ad alta temperatura, in grado di convertire diverse tipologie di combustibili (idrogeno, metanolo, idrocarburi…) in energia elettrica, con efficienze che possono raggiungere il 90% se accoppiate con sistemi di recupero del calore. Queste celle a combustibile si possono operare anche reversibilmente come elettrolizzatori allo stato solido. Possono perciò immagazzinare energia elettrica come combustibile in modo da assorbire le fluttuazioni a cui è sottoposta la produzione di elettricità da fonti rinnovabili, fino al momento in cui c’è bisogno. Per via della alta temperatura operativa, non richiedono metalli nobili. La tecnologia delle SOFC non è ancora matura per una diffusione in larga scala, ma la ricerca in questo senso è intensa. Uno dei difetti principali di questi dispositivi è la ristretta vita operativa paragonata agli alti costi, a causa della degradazione prematura di alcuni componenti. Questo lavoro di tesi è un tentativo verso il miglioramento della sostenibilità economica delle SOFC, attraverso la ricerca di materiali più stabili e che permettano soluzioni più economiche. Particolare attenzione è stata riservata allo sviluppo di materiali adatti a operare in celle reversibili e a camera singola (SC-SOFC), due varianti innovative della SOFC di base. È stato proposto l’utilizzo di un approccio mirato per la progettazione dei nuovi materiali, consistente nell’accoppiamento di una fase conduttrice mista ionica ed elettronica (MIEC) che funge da substrato per una fase attiva, specificamente scelta per ottenere le proprietà ricercate per la rispettiva applicazione. La perovskite LSGF (La0.6Sr0.4Ga0.3Fe0.7O3) è stata sintetizzata e completamente caratterizzata come substrato a conduttività mista. Successivamente, è stata impregnata con ossidi di manganese e ferro, in virtù anche della loro economicità, e i due differenti nanocompositi così ottenuti sono stati studiati in dettaglio. La loro attività come elettrodi per celle a combustibile è stata testata, e si sono registrate prestazioni interessanti del nanocomposito con ferro come catodo e del nanocomposito con manganese come anodo. Una cella a combustibile basata su elettrolita LSGM e con elettrodi compositi a base LSGF è stata preparata e testata con successo. L’altissima omogeneità strutturale di questa cella, che sfrutta materiali molto simili sia come elettrolita che come elettrodi, sarebbe in grado di prevenire la formazione di qualsiasi fase isolante. Gli anodi privi di nichel evitano ogni problema legato all’accrescimento delle particelle di metallo, assicurando al dispositivo una migliore durabilità. LSGF è stato testato come materiale elettrodico per celle simmetriche reversibili, ottenendo risultati promettenti. Un materiale catodico interamente selettivo è stato sviluppato a partire dalla brownmillerite Ca2FeAl0.95Mg0.05O5, impregnata a sua volta con ossido di ferro. Con questo materiale si sono ottenute prestazioni discrete, nonostante l’economicità evidente degli elementi utilizzati. I risultati preliminari indicano che tali materiali potrebbero essere utilizzati per celle a camera singola evitando le ampie perdite di combustibile, inevitabili con l’uso dei catodi dell’attuale stato dell’arte.
Mirzababaei, Jelvehnaz. "Solid Oxide Fuel Cells with Methane and Fe/Ti Oxide Fuels." University of Akron / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=akron1415461807.
Full textFord, James Christopher. "Thermodynamic optimization of a planar solid oxide fuel cell." Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/45843.
Full textBooks on the topic "Solid Oxide Cells (SOC)"
Maric, Radenka, and Gholamreza Mirshekari. Solid Oxide Fuel Cells. First edition. | Boca Raton, FL : CRC Press/Taylor & Francis Group, LLC, 2020. | Series: Electrochemical energy storage & conversion: CRC Press, 2020. http://dx.doi.org/10.1201/9780429100000.
Full textNi, Meng, and Tim S. Zhao, eds. Solid Oxide Fuel Cells. Cambridge: Royal Society of Chemistry, 2013. http://dx.doi.org/10.1039/9781849737777.
Full textIshihara, Tatsumi, ed. Perovskite Oxide for Solid Oxide Fuel Cells. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-77708-5.
Full textPerovskite oxide for solid oxide fuel cells. Dordrecht: Springer, 2009.
Find full textBove, Roberto, and Stefano Ubertini, eds. Modeling Solid Oxide Fuel Cells. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-6995-6.
Full textShao, Zongping, and Moses O. Tadé. Intermediate-Temperature Solid Oxide Fuel Cells. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-52936-2.
Full textBansal, Narottam P., Prabhakar Singh, Sujanto Widjaja, and Dileep Singh, eds. Advances in Solid Oxide Fuel Cells VII. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118095249.
Full textBansal, Narottam P., Prabhakar Singh, Dileep Singh, and Jonathan Salem, eds. Advances in Solid Oxide Fuel Cells V. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2009. http://dx.doi.org/10.1002/9780470584316.
Full textHe, Weidong, Weiqiang Lv, and James Dickerson. Gas Transport in Solid Oxide Fuel Cells. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-09737-4.
Full textBansal, Narottam P., Jonathan Salem, and Dongming Zhu, eds. Advances in Solid Oxide Fuel Cells III. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470339534.
Full textBook chapters on the topic "Solid Oxide Cells (SOC)"
Zuo, Chendong, Mingfei Liu, and Meilin Liu. "Solid Oxide Fuel Cells." In Sol-Gel Processing for Conventional and Alternative Energy, 7–36. Boston, MA: Springer US, 2012. http://dx.doi.org/10.1007/978-1-4614-1957-0_2.
Full textLim, Hui Hui, Erick Sulistya, May Yuan Wong, Babak Salamatinia, and Bahman Amini Horri. "Ceramic Nanocomposites for Solid Oxide Fuel Cells." In Sol-gel Based Nanoceramic Materials: Preparation, Properties and Applications, 157–83. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-49512-5_6.
Full textYoshida, Hiroyuki, Mitsunobu Kawano, Koji Hashino, Toru Inagaki, Seiichi Suda, Koichi Kawahara, Hiroshi Ijichi, and Hideyuki Nagahara. "Microstructure Analysis on Network-Structure Formation of SOFC Anode from NiO-SDC Composite Particles Prepared by Spray Pyrolysis Technique." In Advances in Solid Oxide Fuel Cells IV, 193–202. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2009. http://dx.doi.org/10.1002/9780470456309.ch18.
Full textFujimoto, Tatsuo, Masashi Nakabayashi, Hiroshi Tsuge, Masakazu Katsuno, Shinya Sato, Shoji Uhsio, Komomo Tani, Hirokastu Yashiro, Hosei Hirano, and Takayuki Yano. "The Effects Of Excess Silicon And Carbon In SiC Source Materials On Sic Single Crystal Growth In Physical Vapour Transport Method." In Advances in Solid Oxide Fuel Cells and Electronic Ceramics, 115–27. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119211501.ch12.
Full textBao, Wei Tao, Jian Feng Gao, and Guang Yao Meng. "Preparation of SDC Interlayer and Influence on Performances of Anode Supported Solid Oxide Fuel Cells." In Key Engineering Materials, 486–89. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-410-3.486.
Full textKawahara, Koichi, Seiichi Suda, Seiji Takahashi, Mitsunobu Kawano, Hiroyuki Yoshida, and Toru Inagaki. "Control of Microstructure of NiO-SDC Composite Particles for Development of High Performance SOFC Anodes." In Advances in Solid Oxide Fuel Cells II: Ceramic Engineering and Science Proceedings, Volume 27, Issue 4, 183–91. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2008. http://dx.doi.org/10.1002/9780470291337.ch18.
Full textAtkinson, A., S. J. Skinner, and J. A. Kilner. "Solid Oxide Fuel Cells." In Fuel Cells, 657–85. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-5785-5_19.
Full textDey, Shoroshi, Jayanta Mukhopadhyay, and Abhijit Das Sharma. "Efficiency of the Solid Oxide Cell (SOC) Using Nanocrystalline Mixed Ionic and Electronic Conducting (MIEC) Oxides as Air Electrode Materials in Conjunction with Doped Ceria-Based Interlayers." In Applications of Microscopy in Materials and Life Sciences, 43–53. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2982-2_5.
Full textSong, Jia-Liang, Hua Chen, Yong-Dong Chen, Gai-Ge Yu, Hong-Wei Zou, and Bing-Chuan Han. "Coupled Heat Transfer Characteristics of SiC High Temperature Heat Exchanger in Solid Oxide Fuel Cell." In Proceedings of the 10th Hydrogen Technology Convention, Volume 1, 200–213. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-8631-6_23.
Full textSammes, Nigel M., Kevin Galloway, Mustafa F. Serincan, Toshio Suzuki, Toshiaki Yamaguchi, Masanobu Awano, and Whitney Colella. "Solid Oxide Fuel Cells." In Handbook of Climate Change Mitigation and Adaptation, 3087–112. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-14409-2_44.
Full textConference papers on the topic "Solid Oxide Cells (SOC)"
Park, Kwangjin, Yu-Mi Kim, and Joongmyeon Bae. "Performance Behavior for Solid Oxide Electrolysis Cells." In ASME 2009 7th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2009. http://dx.doi.org/10.1115/fuelcell2009-85071.
Full textWang, Kang, Pingying Zeng, and Jeongmin Ahn. "Performance Investigation of YSZ-SDC Solid Oxide Fuel Cells." In ASME 2012 10th International Conference on Fuel Cell Science, Engineering and Technology collocated with the ASME 2012 6th International Conference on Energy Sustainability. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/fuelcell2012-91429.
Full textWilhelm, Cole, Kenta Tamaoki, Hisashi Nakamura, and Jeongmin Ahn. "Investigation of Ammonia as a Fuel for Solid Oxide Fuel Cells." In ASME Power Applied R&D 2023. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/power2023-108936.
Full textNelson, George, and Comas Haynes. "Parametric Studies of Constriction Resistance Effects Upon Solid Oxide Cell Transport Phenomena." In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-15100.
Full textWang, Caisheng, and M. Hashem Nehrir. "Load Transient Mitigation for Solid Oxide Fuel Cells." In ASME 2006 4th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2006. http://dx.doi.org/10.1115/fuelcell2006-97268.
Full textKarl, Ju¨rgen, Nadine Frank, Sotiris Karellas, Mathilde Saule, and Ulrich Hohenwarter. "Conversion of Syngas From Biomass in Solid Oxide Fuel Cells." In ASME 2006 4th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2006. http://dx.doi.org/10.1115/fuelcell2006-97089.
Full textSohal, M. S., J. E. O’Brien, C. M. Stoots, V. I. Sharma, B. Yildiz, and A. Virkar. "Degradation Issues in Solid Oxide Cells During High Temperature Electrolysis." In ASME 2010 8th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2010. http://dx.doi.org/10.1115/fuelcell2010-33332.
Full textMenzer, Sophie, Grover Coors, Dustin Beeaff, and Dan Storjohann. "Development of Low-Cost Anode Material for Solid Oxide Fuel Cells." In ASME 2008 6th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2008. http://dx.doi.org/10.1115/fuelcell2008-65099.
Full textShakrawar, S., J. G. Pharoah, B. A. Peppley, and S. B. Beale. "A Review of Stress Analysis Issues for Solid Oxide Fuel Cells." In ASME 2010 International Mechanical Engineering Congress and Exposition. ASMEDC, 2010. http://dx.doi.org/10.1115/imece2010-40968.
Full textSchiller, Günter, Rudolf Henne, Michael Lang, and Matthias Müller. "DC and RF Plasma Processing for Fabrication of Solid Oxide Fuel Cells." In ITSC2004, edited by Basil R. Marple and Christian Moreau. ASM International, 2004. http://dx.doi.org/10.31399/asm.cp.itsc2004p0047.
Full textReports on the topic "Solid Oxide Cells (SOC)"
Singh, Raj. Innovative Seals for Solid Oxide Fuel Cells (SOFC). Office of Scientific and Technical Information (OSTI), June 2008. http://dx.doi.org/10.2172/953469.
Full textSingh, Raj. Innovative Self-Healing Seals for Solid Oxide Fuel Cells (SOFC). Office of Scientific and Technical Information (OSTI), June 2012. http://dx.doi.org/10.2172/1054518.
Full textDr. Christopher E. Milliken and Dr. Robert C. Ruhl. LOW COST MULTI-LAYER FABRICATION METHOD FOR SOLID OXIDE FUEL CELLS (SOFC). Office of Scientific and Technical Information (OSTI), May 2001. http://dx.doi.org/10.2172/810440.
Full textPrasad Enjeti and J.W. Howze. Development of a New Class of Low Cost, High Frequency Link Direct DC to AC Converters for Solid Oxide Fuel Cells (SOFC). Office of Scientific and Technical Information (OSTI), December 2003. http://dx.doi.org/10.2172/861667.
Full textSkone, Timothy J. Solid oxide fuel cell (SOFC) Manufacture. Office of Scientific and Technical Information (OSTI), June 2015. http://dx.doi.org/10.2172/1509449.
Full textJamieson, Matthew. Solid Oxide Fuel Cell (SOEC) operations. Office of Scientific and Technical Information (OSTI), January 2023. http://dx.doi.org/10.2172/1922944.
Full textGhezel-Ayagh, Hossein. TRANSFORMATIONAL SOLID OXIDE FUEL CELL (SOFC) TECHNOLOGY. Office of Scientific and Technical Information (OSTI), January 2022. http://dx.doi.org/10.2172/1854102.
Full textHaberman, Ben, Carlos Martinez-Baca, and Greg Rush. LG Solid Oxide Fuel Cell (SOFC) Model Development. Office of Scientific and Technical Information (OSTI), May 2013. http://dx.doi.org/10.2172/1093540.
Full textSkone, Timothy J. Life Cycle Analysis: Solid Oxide Fuel Cell (SOFC) Power Plants. Office of Scientific and Technical Information (OSTI), May 2018. http://dx.doi.org/10.2172/1542445.
Full textManohar S. Sohal, Anil V. Virkar, Sergey N. Rashkeev, and Michael V. Glazoff. Modeling Degradation in Solid Oxide Electrolysis Cells. Office of Scientific and Technical Information (OSTI), September 2010. http://dx.doi.org/10.2172/993195.
Full text