To see the other types of publications on this topic, follow the link: Solid-liquid interface.

Journal articles on the topic 'Solid-liquid interface'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Solid-liquid interface.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Storaska, Garrett A., and James M. Howe. "In-Situ TEM Investigation of the Solid/Liquid Interface in Al-Si Alloys." Microscopy and Microanalysis 6, S2 (August 2000): 1068–69. http://dx.doi.org/10.1017/s1431927600037831.

Full text
Abstract:
The solid/liquid interface is a junction between two condensed phases with completely different atomic arrangements. At the interface between the periodically ordered solid and the amorphous liquid, the atoms adopt a structure that minimizes the excess energy due to the abrupt change between the surrounding phases. Faceted and diffuse interfaces describe two extremes in morphology of a solid/liquid interface. In a faceted interface, the change from solid to liquid occurs over one atomic layer, however periodic order extends into the first few liquid layers adjacent to the crystalline solid, as predicted by numerous models.1 The faceted interface advances by nucleation and growth of ledges on the interface. A diffuse interface has a structure in which the change from solid to liquid occurs over several atomic layers. This interface contains many ledges to which liquid atoms may attach continuously as the interface advances.
APA, Harvard, Vancouver, ISO, and other styles
2

Lozovskii, V. N., A. N. Ovcharenko, and V. P. Popov. "Liquid-solid interface stability." Progress in Crystal Growth and Characterization 13, no. 3 (January 1986): 145–62. http://dx.doi.org/10.1016/0146-3535(86)90018-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Howe, J. M. "Quantification of order in the liquid at a solid-liquid interface by high-resolution transmission electron microscopy (HRTEM)." Proceedings, annual meeting, Electron Microscopy Society of America 54 (August 11, 1996): 114–15. http://dx.doi.org/10.1017/s0424820100163034.

Full text
Abstract:
A number of different theoretical approaches have been used to model the atomic structure and properties of solid-liquid interfaces. Most calculations indicate that ordering occurs in the first several layers of the liquid, adjacent to the crystal surface. In contrast to the numerous theoretical investigations, there have been no direct experimental observations of the atomic structure of a solid-liquid interface for comparison. Saka et al. examined solid-liquid interfaces in In and In-Sb at lattice-fringe resolution in the TEM, but their data do not reveal information about the atomic structure of the liquid phase. The purpose of this study is to determine the atomic structure of a solid-liquid interface using a highly viscous supercooled liquid, i.e., a crystal-amorphous interface.
APA, Harvard, Vancouver, ISO, and other styles
4

Veen, J. F. van der, and H. Reichert. "Structural Ordering at the Solid–Liquid Interface." MRS Bulletin 29, no. 12 (December 2004): 958–62. http://dx.doi.org/10.1557/mrs2004.267.

Full text
Abstract:
AbstractMany processes in nature and technology are based on the static and dynamic properties of solid–liquid interfaces. Prominent examples are crystal growth, melting, and recrystallization. These processes are strongly affected by the local structure at the solid–liquid interface. Therefore, it is mandatory to understand the change in the structure across the interface. The break of the translational symmetry at the interface induces ordering phenomena, and interactions between the liquid's molecules and the atomically corrugated solid surface may induce additional ordering effects. In the past decade, new techniques have been developed to investigate the structural properties of such (deeply) buried interfaces in their natural environment. These methods are based on deeply penetrating probes such as brilliant x-ray beams, providing full access to the structure parallel and perpendicular to the interface. Here, we review the results of a number of case studies including liquid metals in contact with Group IV elements (diamond and silicon), where charge transfer effects at the interface may come into play. Another particularly important liquid in our environment is water. The structural properties of water vary widely as it is brought in contact with other materials. We will then proceed from these seemingly simple cases to complex fluids such as colloids.
APA, Harvard, Vancouver, ISO, and other styles
5

Nemoshkalenko, V. V., O. P. Fedorov, E. I. Zhivolub, E. I. Bersudsky, and G. P. Chemerinsky. "«Morphos» Experiment Experimental study of solid-liquid interface in transparent substances." Kosmìčna nauka ì tehnologìâ 6, no. 4 (July 30, 2000): 135–36. http://dx.doi.org/10.15407/knit2000.04.151.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Crispin, Xavier, and Sergei V. Kalinin. "Probing the solid–liquid interface." Nature Materials 16, no. 7 (June 19, 2017): 704–5. http://dx.doi.org/10.1038/nmat4921.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Saka, H., K. Sasaki, S. Tsukimoto, and S. Arai. "In situ Observation of Solid–liquid Interfaces by Transmission Electron Microscopy." Journal of Materials Research 20, no. 7 (July 1, 2005): 1629–40. http://dx.doi.org/10.1557/jmr.2005.0212.

Full text
Abstract:
Recent progress in in situ observation of solid–liquid interfaces by means of transmission electron microscopy, carried out by the Nagoya group, was reviewed. The results obtained on pure materials are discussed based on Jackson's theory. The structure of the solid–liquid interfaces of eutectic alloys was also observed. The in situ observation technique of solid–liquid interface is applied to industrially important reactions which include liquid phases.
APA, Harvard, Vancouver, ISO, and other styles
8

Spencer, B. J., S. H. Davis, G. B. McFadden, and P. W. Voorhees. "Effects of Elastic Stress on the Stability of a Solid-Liquid Interface." Applied Mechanics Reviews 43, no. 5S (May 1, 1990): S54—S55. http://dx.doi.org/10.1115/1.3120850.

Full text
Abstract:
The effects of elastic stress on the stability of solid-liquid interfaces under a variety of conditions are discussed. In the cases discussed, the nonuniform composition field in the solid, which accompanies either the melting process or the development of a perturbation on the solid-liquid interface during solidification, generates nonhydrostatic stresses in the solid. Such compositionally generated elastic stresses have been shown experimentally to induce a solidifying solid-liquid interface to become unstable. We are in the process of analyzing the effects of these stresses on the conditions for morphological stability of a directionally solidified binary alloy.
APA, Harvard, Vancouver, ISO, and other styles
9

Saleman, Abdul Rafeq, Mohamad Shukri Zakaria, Ridhwan Jumaidin, Nur Hazwani Mokhtar, and Nor Aslily Sarkam. "Molecular Dynamics Study: Correlation of Heat Conduction Across S-L Interfaces Between Constant Heat Flux and Shear Applied to Liquid Systems." Journal of Mechanical Engineering 19, no. 3 (September 15, 2022): 33–53. http://dx.doi.org/10.24191/jmeche.v19i3.19795.

Full text
Abstract:
Heat conduction (HC) at solid-liquid (S-L) interfaces play a significant role in the performance of engineering systems. Thus, this study investigates HC at S-L interfaces and its correlation between constant heat flux (CHF) and shear applied to liquid (SAL) systems using non-equilibrium molecular dynamics simulation. The S-L interface consists of solids with the face-centred cubic (FCC) lattice of (110), (111) and (100) planes facing the liquid. The solid is modelled by Morse potential whereas the liquid is modelled by Lennard Jones potential. The interaction between solid-liquid was modelled by Lorentz-Bertholet combining rules. The temperature and heat flux of the system is evaluated to correlate the HC at the S-L interface which reflect by the interfacial thermal resistance (ITR). The results suggest that the surfaces of FCC influence ITR at the S-L interface. The (110) surface for both cases of CHF and SAL has the lowest ITR as compared to other surfaces. In general, ITR for the case of SAL is higher than the CHF. SAL disturbs the adsorption behaviour of liquid at the S-L interfaces, thus reducing the HC. In conclusion, the surface of FCC and liquid experiencing shear do influence the characteristics of HC at the S-L interface.
APA, Harvard, Vancouver, ISO, and other styles
10

Rettenmayr, Markus, Oleg Kashin, and Stephanie Lippmann. "Simulation of Liquid Film Migration during Melting." Materials Science Forum 790-791 (May 2014): 127–32. http://dx.doi.org/10.4028/www.scientific.net/msf.790-791.127.

Full text
Abstract:
Melting of a single-phase polycrystalline material is known to start by the formation of liquid films at the surface and at grain boundaries. The internal liquid films are not necessarily quiescent, but can migrate to avoid/reduce supersaturation in the solid phase. The migration is discussed in the literature to be governed by coherency strains of the solid/liquid interface, by concentration gradients in the liquid or by concentration gradients in the solid phase. A phase transformation model for diffusional phase transformations considering interface thermodynamics (possible deviations from local deviations) has been put up to describe the migration of the solid/liquid (trailing) and the liquid/solid (leading) interfaces of the liquid film. New experimental results on melting in a temperature gradient in combination with simulation calculations reveal that concentration fluctuations in the liquid phase trigger the liquid film migration and determine the migration direction, until after a short time in the order of microseconds the process is governed by diffusion in the solid phase.
APA, Harvard, Vancouver, ISO, and other styles
11

Howe, James M., and Hiroyasu Saka. "In Situ Transmission Electron Microscopy Studies of the Solid–Liquid Interface." MRS Bulletin 29, no. 12 (December 2004): 951–57. http://dx.doi.org/10.1557/mrs2004.266.

Full text
Abstract:
AbstractIn situtransmission electron microscopy (TEM) studies allow one to determine the structure, chemistry, and kinetic behavior of solid–liquid (S–L) interfaces with subnanometer spatial resolution. This article illustrates some important contributions ofin situTEM to our understanding of S–L interfaces in Al-Si alloys and liquid In particles in Al and Fe matrices.Four main areas are discussed:ordering in the liquid at a S–L interface, compositional changes across the interface, the kinetics and mechanisms of interface migration, and the contact angles and equilibrium melting temperature of small particles.Results from these studies reveal that (1)partially ordered layers form in the liquid at a Si{111} S–L interface in an Al–Si alloy, (2)the crystalline and compositional changes occur simultaneously across an Al S–L interface, (3)the Al interface is diffuse and its growth can be followed at velocities of a fewnm/s at extremely low undercoolings, and (4)the melting temperature of In particles less than ~ 10 nm in diameter can be raised or lowered in Al or Fe, depending on the contact angle that the S–L interface makes at the three-phase junction. These results illustrate the benefits of in situ TEM for providing fundamental insight into the mechanisms that control the behavior of S–L interfaces in materials.
APA, Harvard, Vancouver, ISO, and other styles
12

SHIKHMURZAEV, YULII D. "Moving contact lines in liquid/liquid/solid systems." Journal of Fluid Mechanics 334 (March 10, 1997): 211–49. http://dx.doi.org/10.1017/s0022112096004569.

Full text
Abstract:
A general mathematical model which describes the motion of an interface between immiscible viscous fluids along a smooth homogeneous solid surface is examined in the case of small capillary and Reynolds numbers. The model stems from a conclusion that the Young equation, σ1 cos θ = σ2 − σ3, which expresses the balance of tangential projection of the forces acting on the three-phase contact line in terms of the surface tensions σi and the contact angle θ, together with the well-established experimental fact that the dynamic contact angle deviates from the static one, imply that the surface tensions of contacting interfaces in the immediate vicinity of the contact line deviate from their equilibrium values when the contact line is moving. The same conclusion also follows from the experimentally observed kinematics of the flow, which indicates that liquid particles belonging to interfaces traverse the three-phase interaction zone (i.e. the ‘contact line’) in a finite time and become elements of another interface – hence their surface properties have to relax to new equilibrium values giving rise to the surface tension gradients in the neighbourhood of the moving contact line. The kinematic picture of the flow also suggests that the contact-line motion is only a particular case of a more general phenomenon – the process of interface formation or disappearance – and the corresponding mathematical model should be derived from first principles for this general process and then applied to wetting as well as to other relevant flows. In the present paper, the simplest theory which uses this approach is formulated and applied to the moving contact-line problem. The model describes the true kinematics of the flow so that it allows for the ‘splitting’ of the free surface at the contact line, the appearance of the surface tension gradients near the contact line and their influence upon the contact angle and the flow field. An analytical expression for the dependence of the dynamic contact angle on the contact-line speed and parameters characterizing properties of contacting media is derived and examined. The role of a ‘thin’ microscopic residual film formed by adsorbed molecules of the receding fluid is considered. The flow field in the vicinity of the contact line is analysed. The results are compared with experimental data obtained for different fluid/liquid/solid systems.
APA, Harvard, Vancouver, ISO, and other styles
13

Negahdar, Leila, Christopher M. A. Parlett, Mark A. Isaacs, Andrew M. Beale, Karen Wilson, and Adam F. Lee. "Shining light on the solid–liquid interface: in situ/operando monitoring of surface catalysis." Catalysis Science & Technology 10, no. 16 (2020): 5362–85. http://dx.doi.org/10.1039/d0cy00555j.

Full text
Abstract:
Many industrially important chemical transformations occur at the interface between a solid catalyst and liquid reactants. In situ and operando spectroscopies offer unique insight into the reactivity of such catalytically active solid–liquid interfaces.
APA, Harvard, Vancouver, ISO, and other styles
14

McFadden, G. B., S. R. Coriell, L. N. Brush, and K. A. Jackson. "Interface Instabilities During Laser Melting of Thin Films." Applied Mechanics Reviews 43, no. 5S (May 1, 1990): S70—S75. http://dx.doi.org/10.1115/1.3120854.

Full text
Abstract:
Thin silicon films on a cooled substrate are often found to develop two-phase lamellar structures upon radiative heating. Jackson and Kurtz developed a two-dimensional model for the process in which the heated film consists of alternating parallel bands of liquid and solid phases separated by straight solid-liquid interfaces. To understand the cellular or dendritic structures that sometimes are observed in these interfaces, they also performed a linearized morphological stability analysis and obtained the conditions for the growth or decay of infinitesimal perturbations to the interface. In this work we extend that analysis to finite amplitudes by developing a boundary integral representation of the thermal field, and obtain numerical solutions for nonplanar solid-liquid interfaces.
APA, Harvard, Vancouver, ISO, and other styles
15

Kolb, D. M. "Reaction at the Liquid—Solid Interface." Electrochimica Acta 37, no. 1 (January 1992): 181. http://dx.doi.org/10.1016/0013-4686(92)80028-k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

van der Veen, Friso, Michel Zwanenburg, and Willem Jan Huisman. "Layering at the solid-liquid interface." Synchrotron Radiation News 12, no. 2 (March 1999): 47–52. http://dx.doi.org/10.1080/08940889908260988.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Bowley, RM. "Instabilities of the liquid solid interface." Journal of Low Temperature Physics 89, no. 1-2 (October 1992): 401–15. http://dx.doi.org/10.1007/bf00692613.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Rossmeisl, Jan, Egill Skúlason, Mårten E. Björketun, Vladimir Tripkovic, and Jens K. Nørskov. "Modeling the electrified solid–liquid interface." Chemical Physics Letters 466, no. 1-3 (November 2008): 68–71. http://dx.doi.org/10.1016/j.cplett.2008.10.024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

JIAN, Z., K. KURIBAYASHI, W. JIE, and F. CHANG. "Solid–liquid interface energy of silicon." Acta Materialia 54, no. 12 (July 2006): 3227–32. http://dx.doi.org/10.1016/j.actamat.2006.03.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Aharon, Hannah, Omer Shavit, Matan Galanty, and Adi Salomon. "Second Harmonic Generation for Moisture Monitoring in Dimethoxyethane at a Gold-Solvent Interface Using Plasmonic Structures." Nanomaterials 9, no. 12 (December 16, 2019): 1788. http://dx.doi.org/10.3390/nano9121788.

Full text
Abstract:
Second harmonic generation (SHG) is forbidden from most bulk metals because metals are characterized by centrosymmetric symmetry. Adsorption or desorption of molecules at the metal interface can break the symmetry and lead to SHG responses. Yet, the response is relatively low, and minute changes occurring at the interface, especially at solid/liquid interfaces, like in battery electrodes are difficult to assess. Herein, we use a plasmonic structure milled in a gold electrode to increase the overall SHG signal from the interface and gain information about small changes occurring at the interface. Using a specific homebuilt cell, we monitor changes at the liquid/electrode interface. Specifically, traces of water in dimethoxyethane (DME) have been detected following changes in the SHG responses from the plasmonic structures. We propose that by plasmonic structures this technique can be used for assessing minute changes occurring at solid/liquid interfaces such as battery electrodes.
APA, Harvard, Vancouver, ISO, and other styles
21

Lee, Joon-Hyung, Jeong-Joo Kim, Haifeng Wang, and Sang-Hee Cho. "Observation of Intergranular Films in BaB2O4-added BaTiO3 Ceramics." Journal of Materials Research 15, no. 7 (July 2000): 1600–1604. http://dx.doi.org/10.1557/jmr.2000.0229.

Full text
Abstract:
Distribution characteristics of boundary phase in BaB2O4 added BaTiO3 ceramics were investigated with a focus on the curvature difference of solid–liquid interfaces at two-grain and triple junctions. High-resolution transmission electron microscopy revealed that the triple junction of solid grains showed the positive curvature of solid–liquid interface and consisted of the mixture of liquid phase and crystallized BaB2O4 phase. On the other hand, flat amorphous thin film of 2.5-nm thickness was observed at the two-grain junction. This kind of boundary phase distribution characteristic was explained by the solubility difference between two kinds of junctions of solid grains that had different curvature of solid–liquid interfaces.
APA, Harvard, Vancouver, ISO, and other styles
22

Favaro, Marco, Fatwa Abdi, Ethan Crumlin, Zhi Liu, Roel van de Krol, and David Starr. "Interface Science Using Ambient Pressure Hard X-ray Photoelectron Spectroscopy." Surfaces 2, no. 1 (January 28, 2019): 78–99. http://dx.doi.org/10.3390/surfaces2010008.

Full text
Abstract:
The development of novel in situ/operando spectroscopic tools has provided the opportunity for a molecular level understanding of solid/liquid interfaces. Ambient pressure photoelectron spectroscopy using hard X-rays is an excellent interface characterization tool, due to its ability to interrogate simultaneously the chemical composition and built-in electrical potentials, in situ. In this work, we briefly describe the “dip and pull” method, which is currently used as a way to investigate in situ solid/liquid interfaces. By simulating photoelectron intensities from a functionalized TiO2 surface buried by a nanometric-thin layer of water, we obtain the optimal photon energy range that provides the greatest sensitivity to the interface. We also study the evolution of the functionalized TiO2 surface chemical composition and correlated band-bending with a change in the electrolyte pH from 7 to 14. Our results provide general information about the optimal experimental conditions for characterizing the solid/liquid interface using the “dip and pull” method, and the unique possibilities offered by this technique.
APA, Harvard, Vancouver, ISO, and other styles
23

You, Hoydoo, and Zoltán Nagy. "Applications of Synchrotron Surface X-Ray Scattering Studies of Electrochemical Interfaces." MRS Bulletin 24, no. 1 (January 1999): 36–40. http://dx.doi.org/10.1557/s088376940005171x.

Full text
Abstract:
Aqueous-solution/solid interfaces are ubiquitous in modern manufacturing environments as well as in our living environment, and studies of such interfaces are an active area of science and engineering research. An important area is the study of liquid/solid interfaces under active electrochemical control, which has many immediate technological implications, for example, corrosion/passivation of metals and energy storage in batteries and ultracapacitors. The central phenomenon of electrochemistry is the charge transfer at the interface, and the region of interest is usually wider than a single atomic layer, ranging from a monolayer to thousands of angstroms, extending into both phases.Despite the technological and environmental importance of liquid/solid interfaces, the atomic level understanding of such interfaces had been very much hampered by the absence of nondestructive, in situ experimental techniques. The situation has changed somewhat in recent decades with the development of the largely ex situ ultrahigh vacuum (UHV) surface science, modern spectroscopic techniques, and modern surface microscopy.However in situ experiments of electrochemical interfaces are difficult, stemming from the special nature of these interfaces. These are so-called buried interfaces in which the solid electrode surface is covered by a relatively thick liquid layer. For this reason, the probe we use in the structural investigation must satisfy simultaneously two conditions: (1) the technique must be surface/interface sensitive, and (2) absorption of the probe in the liquid phase must be sufficiently small for penetration to and from the interface of interest without significant intensity loss.
APA, Harvard, Vancouver, ISO, and other styles
24

Bhagwat, Sunil S. "Gas—liquid—solid reactions: importance of fine bubbles near solid—liquid interface." Chemical Engineering Science 45, no. 4 (1990): 1130–33. http://dx.doi.org/10.1016/0009-2509(90)85034-b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Zhao, Yu Hong, Wei Jin Liu, Hua Hou, and Yu Hui Zhao. "Impact on Solidification Dendrite Growth by Interfacial Atomic Motion Time with Phase Field Method." Materials Science Forum 749 (March 2013): 660–67. http://dx.doi.org/10.4028/www.scientific.net/msf.749.660.

Full text
Abstract:
The Phase Field model of solidification processes was carried out coupled with temperature field model. The influence of interface atomic time on dendrite growth morphology in undercooled melt was simulated with pure nickel. The experimental results show that when the interface atomic motion time parameter is minor, the liquid-solid interfaces were unstable, disturbance can be amplified easily so the complicated side branches will grow, and the disturbance speed up the dendrite growth. With the increase of , the liquid-solid interfaces become more stable and finally the smooth dendrite morphology can be obtained.
APA, Harvard, Vancouver, ISO, and other styles
26

Titova, E. A., and D. V. Alexandrov. "The boundary integral equation for curved solid/liquid interfaces propagating into a binary liquid with convection." Journal of Physics A: Mathematical and Theoretical 55, no. 5 (January 11, 2022): 055701. http://dx.doi.org/10.1088/1751-8121/ac463e.

Full text
Abstract:
Abstract The boundary integral method is developed for unsteady solid/liquid interfaces propagating into undercooled binary liquids with convection. A single integrodifferential equation for the interface function is derived using the Green function technique. In the limiting cases, the obtained unsteady convective boundary integral equation transforms into a previously developed theory. This integral is simplified for the steady-state growth in arbitrary curvilinear coordinates when the solid/liquid interface is isothermal (isoconcentration). Finally, we evaluate the boundary integral for a binary melt with a forced flow and analyze how the melt undercooling depends on Péclet and Reynolds numbers.
APA, Harvard, Vancouver, ISO, and other styles
27

Wang, Xiaoyu, Cynthia J. Jameson, and Sohail Murad. "Interfacial Thermal Conductivity and Its Anisotropy." Processes 8, no. 1 (December 24, 2019): 27. http://dx.doi.org/10.3390/pr8010027.

Full text
Abstract:
There is a significant effort in miniaturizing nanodevices, such as semi-conductors, currently underway. However, a major challenge that is a significant bottleneck is dissipating heat generated in these energy-intensive nanodevices. In addition to being a serious operational concern (high temperatures can interfere with their efficient operation), it is a serious safety concern, as has been documented in recent reports of explosions resulting from many such overheated devices. A significant barrier to heat dissipation is the interfacial films present in these nanodevices. These interfacial films generally are not an issue in macro-devices. The research presented in this paper was an attempt to understand these interfacial resistances at the molecular level, and present possibilities for enhancing the heat dissipation rates in interfaces. We demonstrated that the thermal resistances of these interfaces were strongly anisotropic; i.e., the resistance parallel to the interface was significantly smaller than the resistance perpendicular to the interface. While the latter is well-known—usually referred to as Kapitza resistance—the anisotropy and the parallel component have previously been investigated only for solid-solid interfaces. We used molecular dynamics simulations to investigate the density profiles at the interface as a function of temperature and temperature gradient, to reveal the underlying physics of the anisotropy of thermal conductivity at solid-liquid, liquid-liquid, and solid-solid interfaces.
APA, Harvard, Vancouver, ISO, and other styles
28

CHAUDHURI, ABHISHEK, DEBASISH CHAUDHURI, and SURAJIT SENGUPTA. "INDUCED INTERFACES AT NANOSCALES: STRUCTURE AND DYNAMICS." International Journal of Nanoscience 04, no. 05n06 (October 2005): 995–99. http://dx.doi.org/10.1142/s0219581x05003966.

Full text
Abstract:
We show how interfaces may be induced in materials using external fields. The structure and the dynamics of these interfaces may then be manipulated externally to achieve desired properties. We discuss three types of such interfaces: an Ising interface in a nonuniform magnetic field, a solid–liquid interface and an interface between a solid and a smectic like phase. In all of these cases we explicitly show how small size, leading to atomic-scale discreteness and stiff constraints produce interesting effects which may have applications in the fabrication of nanostructured materials.
APA, Harvard, Vancouver, ISO, and other styles
29

Hung, R. J., H. L. Pan, and Y. T. Long. "EFFECT OF BAFFLES ON SLOSHING MODULATED FORCES AND TORQUES DISTURBANCES REACTED TO GRAVITY GRADIENT DOMINATED ACCELERATIONS." Transactions of the Canadian Society for Mechanical Engineering 20, no. 2 (June 1996): 187–202. http://dx.doi.org/10.1139/tcsme-1996-0011.

Full text
Abstract:
The behavior of sloshing dynamics modulated fluid systems driven by the orbital accelerations including gravity gradient and jitter accelerations have been studied. Partially liquid-filled rotating dewar applicable to a full-scale Gravity Probe-B Spacecraft container with and without baffle are considered. Results show that slosh waves excited along the liquid-vapor interface induced by gravity gradient dominated orbital accelerations provide torsional moment with tidal motion of bubble oscillations in the rotating dewar. Fluctuations of slosh reaction forces and torques exerted on the dewar wall driven by the orbital accelerations are also investigated. Since the viscous force between a liquid-solid interface, and the surface tension force between a liquid-vapor-solid interface can greatly contribute to the damping effect of slosh wave excitation, a rotating dewar with baffle provides more areas of liquid-solid and liquid-vapor-solid interfaces than that of rotating Dewar without the baffle. Results show that the damping effect provided by baffle reduces the amplitudes of slosh reactions forces and torques feedback from the fluids to the container, in particular, the components of fluctuations transverse to the direction of baffle.
APA, Harvard, Vancouver, ISO, and other styles
30

Lojkowski, Witold, Akira Otsuki, and Andrzej Morawski. "High-pressure effect on grain boundary wetting in aluminium bicrystals." International Journal of Materials Research 96, no. 10 (October 1, 2005): 1211–12. http://dx.doi.org/10.1515/ijmr-2005-0208.

Full text
Abstract:
Abstract The effect of pressure and misorientation on grain boundary wetting in aluminium bicrystals has been investigated. The grain boundaries were of [100] symmetrical tilt type. The wetting liquid was an Sn– Zn alloy. It is shown that the wetting angle is a function of misorientation but not of pressure. The reasons of the above results are discussed, assuming a linear dependence between the interface energy and pressure. It is shown that the difference of energy of the liquid/solid and solid/solid interface as well as the misorientation dependence of energy is simply proportional to the free volume of the interfaces.
APA, Harvard, Vancouver, ISO, and other styles
31

Crumlin, Ethan J. "(Invited) Using Ambient Pressure XPS to Probe the Solid/Gas and Solid/Liquid Interface Under in Situ and Operando Conditions." ECS Meeting Abstracts MA2022-02, no. 46 (October 9, 2022): 1715. http://dx.doi.org/10.1149/ma2022-02461715mtgabs.

Full text
Abstract:
Interfaces play an essential role in nearly all aspects of life and are critical for electrochemistry. Prof. Robert Savinell has played a pivotal interface to me in the role of mentorship in both life and electrochemistry, and I look to honor his contributions to both through this talk. Electrochemical systems ranging from high-temperature solid oxide fuel cells (SOFC) to batteries to capacitors have a wide range of important interfaces between solids, liquids, and gases, which play a pivotal role in how energy is stored, transferred, and converted. I will share the use of ambient pressure XPS (APXPS) to directly probe the solid/gas and solid/liquid electrochemical interface. APXPS is a photon-in/electron-out process that can provide both atomic concentration and chemical-specific information at pressures greater than 20 Torr. Using synchrotron X-rays at Lawrence Berkeley Nation Laboratory, the Advanced Light Source has several beamlines dedicated to APXPS endstations that are outfitted with various in situ/operando features such as heating to temperatures > 500 °C, pressures greater than 20 Torr to support solid/liquid experiments and electrical leads to support applying electrical potentials support the ability to collect XPS data of actual electrochemical devices while it's operating in near ambient pressures. This talk will introduce APXPS and provide several interface electrochemistry examples using in situ and operando APXPS, including the probing of Sr segregation on a SOFC electrode to a Pt metal electrode undergoing a water-splitting reaction to generate oxygen, the ability to measure the electrochemical double layer (EDL) to our most recent efforts to directly probe an ion exchange membranes Donnan potential. Gaining new insight to guide the design and control of future electrochemical interfaces and how Bob, electrochemistry, and I have interfaced over the years.
APA, Harvard, Vancouver, ISO, and other styles
32

ANDERSEN, JØRGEN VITTING. "PINNING OF A SOLID–LIQUID–VAPOR INTERFACE." Modern Physics Letters B 10, no. 09 (April 20, 1996): 359–75. http://dx.doi.org/10.1142/s0217984996000419.

Full text
Abstract:
We propose a macroscopic Hamiltonian approach to study the pinning (sticking) of a solid–liquid–vapor contact line by pinning centers on the solid. We have so far studied the case of a vertical solid immersed into a liquid in the presence of gravity, but the method is general and can easily be extended to other geometries with and without gravity. Using computer simulations the method can be used to give a nonperturbative estimate for whether pinning centers interact cooperatively or independently in the pinning of the contact line.
APA, Harvard, Vancouver, ISO, and other styles
33

Yan, Shuo, Ali Merati, Chae-Ho Yim, Elena Baranova, Arnaud Weck, and Yaser Abu-Lebdeh. "Understanding the Role of Liquid Electrolytes in Performance Improvement of Solid-State Lithium Metal Batteries." ECS Meeting Abstracts MA2022-01, no. 4 (July 7, 2022): 551. http://dx.doi.org/10.1149/ma2022-014551mtgabs.

Full text
Abstract:
Abstract Garnet-type Li7La3Zr2O12 (LLZO) Solid-State Electrolytes (SSEs) enable Solid-State Lithium Metal Batteries (SSLMBs) with high power density due to their superior ionic conductivity over 1 mS cm-1 at room temperature and good chemical stability against Lithium (Li) metal. A major cause of failure in SSLMBs is the large interfacial resistance between LLZO and electrodes. The high resistance at the interfaces is normally associated with insufficient solid-solid surface contact. It is a common practice to introduce a Liquid Electrolyte (LE) in SSLMBs either in combination with SSEs to form quasi-solid electrolytes or as the interface to enhance battery cycling performance. Several studies are conducted on resolving the contact issue between LLZO and the Li-metal anode but very few focused on the LLZO/cathode interface. In this research, a carbonate-based LE was introduced at the interface of Li6.5La2.9Ba0.1Zr1.4Ta0.6O12 (LLBZTO) | LiNi0.6Mn0.6Co0.2O2 (NMC 622) cathode with the aim of understanding the mechanism which the LE enhances the SSLMBs performance, using the Scanning Transmission X-ray Microscopy (STXM) and X-ray Absorption Scanning (XAS). The assembled Li | LLBZTO SSEs | LE | NMC 622 cell exhibited an initial discharge capacity of 168 mAh g-1 with a capacity retention ratio of ~82 % after 30 cycles. The results from the STXM revealed the reactions of the LE with LLZO and NMC 622. The XAS analysis showed the formation of two new interfaces: Cathode-Electrolyte Interface (CEI) and Solid-Liquid Electrolyte Interface (SLEI). Also, the result indicated that the LE decomposed completely in the cell after 30 cycles and transformed to a dense and robust SLEI. This in turn led to the enhanced interfacial contact with the cathode and an improved Li+ ion transport at the interface. In addition, fluorides (i.e., LiF and LaF3) and carbonates (i.e., Li2CO3) were confirmed as the main components of the SLEI. In this study, two interfaces in SSLMBs (CEI and SLEI) were characterized. Fully understanding the roles of LE as the interface would enhance the practical application of quasi-solid electrolytes in SSLMBs. Keywords Solid-state lithium metal batteries; Garnet; Interface; Ceramic electrolyte; STXM
APA, Harvard, Vancouver, ISO, and other styles
34

Sun, Zhouting, Mingyi Liu, Yong Zhu, Ruochen Xu, Zhiqiang Chen, Peng Zhang, Zeyu Lu, Pengcheng Wang, and Chengrui Wang. "Issues Concerning Interfaces with Inorganic Solid Electrolytes in All-Solid-State Lithium Metal Batteries." Sustainability 14, no. 15 (July 25, 2022): 9090. http://dx.doi.org/10.3390/su14159090.

Full text
Abstract:
All-solid-state batteries have attracted wide attention for high-performance and safe batteries. The combination of solid electrolytes and lithium metal anodes makes high-energy batteries practical for next-generation high-performance devices. However, when a solid electrolyte replaces the liquid electrolyte, many different interface/interphase issues have arisen from the contact with electrodes. Poor wettability and unstable chemical/electrochemical reaction at the interfaces with lithium metal anodes will lead to poor lithium diffusion kinetics and combustion of fresh lithium and active materials in the electrolyte. Element cross-diffusion and charge layer formation at the interfaces with cathodes also impede the lithium ionic conductivity and increase the charge transfer resistance. The abovementioned interface issues hinder the electrochemical performance of all-solid-state lithium metal batteries. This review demonstrates the formation and mechanism of these interface issues between solid electrolytes and anodes/cathodes. Aiming to address the problems, we review and propose modification strategies to weaken interface resistance and improve the electrochemical performance of all-solid-state lithium metal batteries.
APA, Harvard, Vancouver, ISO, and other styles
35

Agathopoulos, Simeon, D. U. Tulyaganov, and José Maria F. Ferreira. "Stages of Reactive Wetting." Key Engineering Materials 280-283 (February 2007): 1801–4. http://dx.doi.org/10.4028/www.scientific.net/kem.280-283.1801.

Full text
Abstract:
A universal model for describing the wetting kinetics at solid/liquid interfaces, where interfacial chemical reaction occurs, is proposed, whereby four distinct stages separated from each other by transition points are anticipated. The stages are described by means of comparing the dimensions of the base of the liquid sessile drop with the evolution of the reaction product forming on the solid/liquid interface, over time.
APA, Harvard, Vancouver, ISO, and other styles
36

OGATA, Satoshi. "Flow Visualization near the Solid-Liquid Interface." Journal of the Visualization Society of Japan 33, no. 129 (2013): 2–7. http://dx.doi.org/10.3154/jvs.33.129_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

T. N. Ha, Nguyen, Thiruvancheril G. Gopakumar, Nguyen D. C. Yen, Carola Mende, Lars Smykalla, Maik Schlesinger, Roy Buschbeck, et al. "Ester formation at the liquid–solid interface." Beilstein Journal of Nanotechnology 8 (October 12, 2017): 2139–50. http://dx.doi.org/10.3762/bjnano.8.213.

Full text
Abstract:
A chemical reaction (esterification) within a molecular monolayer at the liquid–solid interface without any catalyst was studied using ambient scanning tunneling microscopy. The monolayer consisted of a regular array of two species, an organic acid (trimesic acid) and an alcohol (undecan-1-ol or decan-1-ol), coadsorbed out of a solution of the acid within the alcohol at the interface of highly oriented pyrolytic graphite (HOPG) (0001) substrate. The monoester was observed promptly after reaching a threshold either related to the increased packing density of the adsorbate layer (which can be controlled by the concentration of the trimesic acid within the alcoholic solution via sonication or extended stirring) or by reaching a threshold with regards to the deposition temperature. Evidence that esterification takes place directly at the liquid–solid interface was strongly supported.
APA, Harvard, Vancouver, ISO, and other styles
38

Gewirth, Andrew A., and Karrie J. Hanson. "Imaging Atoms at the Solid/Liquid Interface." Electrochemical Society Interface 2, no. 1 (March 1, 1993): 37–43. http://dx.doi.org/10.1149/2.f03931if.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Ogushi, Fumiko, Takashi Shimada, Nobuyasu Ito, and Bauwen Li. "113 Energy Transportation of Solid-Liquid Interface." Proceedings of The Computational Mechanics Conference 2009.22 (2009): 394–95. http://dx.doi.org/10.1299/jsmecmd.2009.22.394.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Hong, Jiani, and Ying Jiang. "Atomic-level characterization of liquid/solid interface." Chinese Physics B 29, no. 11 (October 2020): 116803. http://dx.doi.org/10.1088/1674-1056/aba9d0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Söngen, Hagen, Christoph Marutschke, Peter Spijker, Eric Holmgren, Ilka Hermes, Ralf Bechstein, Stefanie Klassen, John Tracey, Adam S. Foster, and Angelika Kühnle. "Chemical Identification at the Solid–Liquid Interface." Langmuir 33, no. 1 (December 22, 2016): 125–29. http://dx.doi.org/10.1021/acs.langmuir.6b03814.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Shao, Jiao-Jing, Si-Da Wu, Shao-Bo Zhang, Wei Lv, Fang-Yuan Su, and Quan-Hong Yang. "Graphene oxide hydrogel at solid/liquid interface." Chemical Communications 47, no. 20 (2011): 5771. http://dx.doi.org/10.1039/c1cc11166c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Zaera, Francisco. "Surface chemistry at the liquid/solid interface." Surface Science 605, no. 13-14 (July 2011): 1141–45. http://dx.doi.org/10.1016/j.susc.2011.04.021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Leggett, A. J. "Liquid–solid helium interface: some conceptual questions." Progress in Surface Science 74, no. 1-8 (December 2003): 405–14. http://dx.doi.org/10.1016/j.progsurf.2003.08.031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Kolb, D. M., and F. C. Simeone. "Nanostructure formation at the solid/liquid interface." Current Opinion in Solid State and Materials Science 9, no. 1-2 (February 2005): 91–97. http://dx.doi.org/10.1016/j.cossms.2006.02.015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Bremmell, K. E., G. J. Jameson, and S. Biggs. "Polyelectrolyte adsorption at the solid/liquid interface." Colloids and Surfaces A: Physicochemical and Engineering Aspects 139, no. 2 (August 1998): 199–211. http://dx.doi.org/10.1016/s0927-7757(98)00281-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Danikas, M. G., P. Atten, and A. Saker. "Streamer propagation over a liquid/solid interface." IEEE Transactions on Dielectrics and Electrical Insulation 1, no. 2 (April 1994): 348–50. http://dx.doi.org/10.1109/94.300268.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

BARRAT, JEAN-LOUIS, and FRANÇOIS CHIARUTTINI. "Kapitza resistance at the liquid—solid interface." Molecular Physics 101, no. 11 (June 10, 2003): 1605–10. http://dx.doi.org/10.1080/0026897031000068578.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Atten, P., and A. Saker. "Streamer propagation over a liquid/solid interface." IEEE Transactions on Electrical Insulation 28, no. 2 (April 1993): 230–42. http://dx.doi.org/10.1109/14.212248.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

MANNING, M. B., M. J. MOELTER, and C. ELBAUM. "ULTRASONIC STUDIES OF4He SOLID-LIQUID INTERFACE MOBILITY." Le Journal de Physique Colloques 46, no. C10 (December 1985): C10–801—C10–804. http://dx.doi.org/10.1051/jphyscol:198510175.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography