Academic literature on the topic 'Solid-liquid interface'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Solid-liquid interface.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Solid-liquid interface"

1

Storaska, Garrett A., and James M. Howe. "In-Situ TEM Investigation of the Solid/Liquid Interface in Al-Si Alloys." Microscopy and Microanalysis 6, S2 (August 2000): 1068–69. http://dx.doi.org/10.1017/s1431927600037831.

Full text
Abstract:
The solid/liquid interface is a junction between two condensed phases with completely different atomic arrangements. At the interface between the periodically ordered solid and the amorphous liquid, the atoms adopt a structure that minimizes the excess energy due to the abrupt change between the surrounding phases. Faceted and diffuse interfaces describe two extremes in morphology of a solid/liquid interface. In a faceted interface, the change from solid to liquid occurs over one atomic layer, however periodic order extends into the first few liquid layers adjacent to the crystalline solid, as predicted by numerous models.1 The faceted interface advances by nucleation and growth of ledges on the interface. A diffuse interface has a structure in which the change from solid to liquid occurs over several atomic layers. This interface contains many ledges to which liquid atoms may attach continuously as the interface advances.
APA, Harvard, Vancouver, ISO, and other styles
2

Lozovskii, V. N., A. N. Ovcharenko, and V. P. Popov. "Liquid-solid interface stability." Progress in Crystal Growth and Characterization 13, no. 3 (January 1986): 145–62. http://dx.doi.org/10.1016/0146-3535(86)90018-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Howe, J. M. "Quantification of order in the liquid at a solid-liquid interface by high-resolution transmission electron microscopy (HRTEM)." Proceedings, annual meeting, Electron Microscopy Society of America 54 (August 11, 1996): 114–15. http://dx.doi.org/10.1017/s0424820100163034.

Full text
Abstract:
A number of different theoretical approaches have been used to model the atomic structure and properties of solid-liquid interfaces. Most calculations indicate that ordering occurs in the first several layers of the liquid, adjacent to the crystal surface. In contrast to the numerous theoretical investigations, there have been no direct experimental observations of the atomic structure of a solid-liquid interface for comparison. Saka et al. examined solid-liquid interfaces in In and In-Sb at lattice-fringe resolution in the TEM, but their data do not reveal information about the atomic structure of the liquid phase. The purpose of this study is to determine the atomic structure of a solid-liquid interface using a highly viscous supercooled liquid, i.e., a crystal-amorphous interface.
APA, Harvard, Vancouver, ISO, and other styles
4

Veen, J. F. van der, and H. Reichert. "Structural Ordering at the Solid–Liquid Interface." MRS Bulletin 29, no. 12 (December 2004): 958–62. http://dx.doi.org/10.1557/mrs2004.267.

Full text
Abstract:
AbstractMany processes in nature and technology are based on the static and dynamic properties of solid–liquid interfaces. Prominent examples are crystal growth, melting, and recrystallization. These processes are strongly affected by the local structure at the solid–liquid interface. Therefore, it is mandatory to understand the change in the structure across the interface. The break of the translational symmetry at the interface induces ordering phenomena, and interactions between the liquid's molecules and the atomically corrugated solid surface may induce additional ordering effects. In the past decade, new techniques have been developed to investigate the structural properties of such (deeply) buried interfaces in their natural environment. These methods are based on deeply penetrating probes such as brilliant x-ray beams, providing full access to the structure parallel and perpendicular to the interface. Here, we review the results of a number of case studies including liquid metals in contact with Group IV elements (diamond and silicon), where charge transfer effects at the interface may come into play. Another particularly important liquid in our environment is water. The structural properties of water vary widely as it is brought in contact with other materials. We will then proceed from these seemingly simple cases to complex fluids such as colloids.
APA, Harvard, Vancouver, ISO, and other styles
5

Nemoshkalenko, V. V., O. P. Fedorov, E. I. Zhivolub, E. I. Bersudsky, and G. P. Chemerinsky. "«Morphos» Experiment Experimental study of solid-liquid interface in transparent substances." Kosmìčna nauka ì tehnologìâ 6, no. 4 (July 30, 2000): 135–36. http://dx.doi.org/10.15407/knit2000.04.151.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Crispin, Xavier, and Sergei V. Kalinin. "Probing the solid–liquid interface." Nature Materials 16, no. 7 (June 19, 2017): 704–5. http://dx.doi.org/10.1038/nmat4921.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Saka, H., K. Sasaki, S. Tsukimoto, and S. Arai. "In situ Observation of Solid–liquid Interfaces by Transmission Electron Microscopy." Journal of Materials Research 20, no. 7 (July 1, 2005): 1629–40. http://dx.doi.org/10.1557/jmr.2005.0212.

Full text
Abstract:
Recent progress in in situ observation of solid–liquid interfaces by means of transmission electron microscopy, carried out by the Nagoya group, was reviewed. The results obtained on pure materials are discussed based on Jackson's theory. The structure of the solid–liquid interfaces of eutectic alloys was also observed. The in situ observation technique of solid–liquid interface is applied to industrially important reactions which include liquid phases.
APA, Harvard, Vancouver, ISO, and other styles
8

Spencer, B. J., S. H. Davis, G. B. McFadden, and P. W. Voorhees. "Effects of Elastic Stress on the Stability of a Solid-Liquid Interface." Applied Mechanics Reviews 43, no. 5S (May 1, 1990): S54—S55. http://dx.doi.org/10.1115/1.3120850.

Full text
Abstract:
The effects of elastic stress on the stability of solid-liquid interfaces under a variety of conditions are discussed. In the cases discussed, the nonuniform composition field in the solid, which accompanies either the melting process or the development of a perturbation on the solid-liquid interface during solidification, generates nonhydrostatic stresses in the solid. Such compositionally generated elastic stresses have been shown experimentally to induce a solidifying solid-liquid interface to become unstable. We are in the process of analyzing the effects of these stresses on the conditions for morphological stability of a directionally solidified binary alloy.
APA, Harvard, Vancouver, ISO, and other styles
9

Saleman, Abdul Rafeq, Mohamad Shukri Zakaria, Ridhwan Jumaidin, Nur Hazwani Mokhtar, and Nor Aslily Sarkam. "Molecular Dynamics Study: Correlation of Heat Conduction Across S-L Interfaces Between Constant Heat Flux and Shear Applied to Liquid Systems." Journal of Mechanical Engineering 19, no. 3 (September 15, 2022): 33–53. http://dx.doi.org/10.24191/jmeche.v19i3.19795.

Full text
Abstract:
Heat conduction (HC) at solid-liquid (S-L) interfaces play a significant role in the performance of engineering systems. Thus, this study investigates HC at S-L interfaces and its correlation between constant heat flux (CHF) and shear applied to liquid (SAL) systems using non-equilibrium molecular dynamics simulation. The S-L interface consists of solids with the face-centred cubic (FCC) lattice of (110), (111) and (100) planes facing the liquid. The solid is modelled by Morse potential whereas the liquid is modelled by Lennard Jones potential. The interaction between solid-liquid was modelled by Lorentz-Bertholet combining rules. The temperature and heat flux of the system is evaluated to correlate the HC at the S-L interface which reflect by the interfacial thermal resistance (ITR). The results suggest that the surfaces of FCC influence ITR at the S-L interface. The (110) surface for both cases of CHF and SAL has the lowest ITR as compared to other surfaces. In general, ITR for the case of SAL is higher than the CHF. SAL disturbs the adsorption behaviour of liquid at the S-L interfaces, thus reducing the HC. In conclusion, the surface of FCC and liquid experiencing shear do influence the characteristics of HC at the S-L interface.
APA, Harvard, Vancouver, ISO, and other styles
10

Rettenmayr, Markus, Oleg Kashin, and Stephanie Lippmann. "Simulation of Liquid Film Migration during Melting." Materials Science Forum 790-791 (May 2014): 127–32. http://dx.doi.org/10.4028/www.scientific.net/msf.790-791.127.

Full text
Abstract:
Melting of a single-phase polycrystalline material is known to start by the formation of liquid films at the surface and at grain boundaries. The internal liquid films are not necessarily quiescent, but can migrate to avoid/reduce supersaturation in the solid phase. The migration is discussed in the literature to be governed by coherency strains of the solid/liquid interface, by concentration gradients in the liquid or by concentration gradients in the solid phase. A phase transformation model for diffusional phase transformations considering interface thermodynamics (possible deviations from local deviations) has been put up to describe the migration of the solid/liquid (trailing) and the liquid/solid (leading) interfaces of the liquid film. New experimental results on melting in a temperature gradient in combination with simulation calculations reveal that concentration fluctuations in the liquid phase trigger the liquid film migration and determine the migration direction, until after a short time in the order of microseconds the process is governed by diffusion in the solid phase.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Solid-liquid interface"

1

Denk, Matthias. "Structural investigation of solid liquid interfaces metal semiconductor interface /." [S.l. : s.n.], 2006. http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-29148.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

McDermott, D. C. "Adsorption at the solid/liquid interface." Thesis, University of Oxford, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.317917.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Marsh, Richard James. "Protein adsorption at the solid/liquid interface." Thesis, University of Cambridge, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.624796.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sun, Chen-guang. "Non-covalent bonding at the solid-liquid interface." Thesis, University of Cambridge, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.610589.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Curwen, Thomas Daniel. "Kinetics of surfactant adsorption at the solid-liquid interface." Thesis, University of Oxford, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.442388.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Xu, Dan. "The adsorption of nanoparticles at the solid-liquid interface." Thesis, University of Leeds, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.577526.

Full text
Abstract:
This study aims to investigate the adsorption of nanoparticles at the solid-water interface. Surface treatments with nanoparticles have been increasingly explored for a broad range of potential applications. However, the adsorption behaviour of inorganic nanoparticles has not been well studied to-date. Nanoparticle adsorption can be affected by several factors, such as the type of solid substrate, nanoparticle shape, nanoparticle concentration and salt concentration in the nanoparticle suspension, Two types of nanoparticles are used in this thesis: spherical Ludox silica (20 nm) and disk-like laponite clay (25 nm across, 1 nm thick). The adsorption of Laponite nanoparticles at the solid-water interface on various substrates and over a range of Laponite concentrations has been investigated using a quartz crystal microbalance (QCM) and an optical reflectometer (OR). Adsorption of laponite was only observed on a positively charged poly(diallyldimethylammonium chloride) (PDADMAC) surface, whereas no adsorption was seen on hydrophilic/hydrophobic, negative or neutrally charged surfaces. This shows that when fully wetted, Laponite adsorption depends primarily on the surface charge. The adsorption of both Laponite and Ludox silica onto PDADMAC coated surfaces over the first few seconds were studied by OR. The initial adsorption rate of Laponite was faster than Ludox, possibly due to reorientation of the laponite nanoparticles as they approach the substrate. Over longer times, the QCM data for Ludox III nanopartic1es demonstrated more complex adsorption behaviour than Laponite, demonstrating intermixing processes taking place within the PDADMAC-Ludox layer. The effect of a monovalent salt (NaCI) on the adsorption behaviour of both PDADMAC and Ludox nanopartic1es was also investigated using QCM. These data suggest that the adsorbed amount of Ludox increase with NaCI concentration. This can be explained by the roughening of the PDADMAC surface at high salt concentrations leading to more Ludox nanopartic1es adsorbing per unit area. Preliminary evidence for less intermixing between the PDADMAC and the Ludox when the PDADMAC layer was adsorbed and then pre-dried was also found.
APA, Harvard, Vancouver, ISO, and other styles
7

Patel, Asha. "Adsorption studies of polysiloxanes at the solid/liquid interface." Thesis, University of York, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.304063.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hjalmarsson, Nicklas. "Ionic liquids : The solid-liquid interface and surface forces." Doctoral thesis, KTH, Yt- och korrosionsvetenskap, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-186267.

Full text
Abstract:
Ionic liquids (ILs) present new approaches for controlling interactions at the solid-liquid interface. ILs are defined as liquids consisting of bulky and asymmetric ions, with a melting point below 373 K. Owing to their amphiphilic character they are powerful solvents but also possess other interesting properties. For example, ILs can self-assemble and are attracted to surfaces due to their charged nature. As a result, they are capable of forming nanostructures both in bulk and at interfaces. This thesis describes how the solid-IL interface responds to external influences such as elevated temperatures, the addition of salt and polarisation. An improved understanding of how these factors govern the surface composition can provide tools for tuning systems to specific applications such as friction. Normal and friction forces are measured for ethylammonium nitrate (EAN) immersed between a mica surface and a silica probe, at different temperatures or salt concentrations. The results demonstrate that an increase in temperature or low concentrations of added salt only induce small changes in the interfacial structure and that the boundary layer properties remain intact. In contrast, at sufficiently large salt concentrations the smaller lithium ion prevails and the surface composition changes. The interfacial layer of a similar IL is also investigated upon the addition of salt and the results reveal that lithium ions affect the surface composition differently depending on the ion structure of the IL. This demonstrates that the surface selectivity strongly depends on the ion chemistry. Remarkably, a repulsive double layer force manifests itself for EAN at 393 K, which is not observed for lower temperatures. This indicates a temperature dependent change in EAN’s microscopic association behaviour and has general implications for how ILs are perceived. A new method is developed based on a quartz crystal microbalance to investigate how the surface compositions of ILs respond to polarisation. The approach demonstrates that interfacial layers of both a neat IL and an IL dissolved in oil can be controlled using potentials of different magnitudes and signs. Furthermore, the method enables two independent approaches for monitoring the charges during polarisation which can be used to quantify the surface composition. The technique also provides information on ion kinetics and surface selectivity. This work contributes to the fundamental understanding of the solid-IL interface and demonstrates that the surface composition of ILs can be controlled and monitored using different approaches.
Jonvätskor möjliggör nya tillvägagångssätt för att kontrollera interaktioner vid gränsskiktet mellan fasta ytor och vätskor. Jonvätskor definieras som vätskor som består av stora och asymmetriska joner med en smältpunkt under 373 K. På grund av sin amfifila karaktär är de starka lösningsmedel men har också andra intressanta egenskaper. Jonvätskor kan till exempel självorganisera sig och attraheras till ytor på grund av sin laddning. En följd av detta är att de bildar nanostrukturer både i bulk och på ytor. Denna avhandling beskriver hur gränsskiktet mellan fasta ytor och jonvätskor svarar på yttre påverkan såsom en ökning i temperatur, tillsättning av ett salt samt polarisering. En ökad förståelse för hur dessa faktorer styr ytkompositionen av jonvätskor kan bidra med verktyg för att kontrollera system till specifika applikationer såsom friktion. Normala- och friktionskrafter mäts för etylammonium nitrat (EAN) mellan en glimmeryta och en kolloidprob vid olika temperaturer eller saltkoncentrationer. Resultaten visar att en ökning av temperatur eller låga koncentrationer av tillsatt salt bara marginellt framkallar ändringar i strukturen på gränsytan och att det adsorberade lagret förblir intakt. När saltkoncentrationen emellertid var tillräckligt hög får den mindre litiumjonen överhanden och ytsammansättningen ändras. Ytlagret av en liknande jonvätska undersöks också vid tillsättning av salt och resultaten avslöjar att litiumjoner påverkar ytsammansättningen annorlunda beroende på jonstrukturen av jonvätskan. Detta visar att ytselektiviteten starkt beror på jonkemin. En repulsiv dubbellagerkraft yttrar sig anmärkningsvärt för EAN vid 393 K vilket inte observeras vid lägre temperaturer. Detta indikerar en ändring i EANs mikroskopiska sammansättningsbeteende och har generella återverkningar för hur jonvätskor uppfattas. En ny metod har utvecklats baserad på en kvartskristall mikrovåg för att undersöka hur ytsammansättningen av jonvätskor reagerar på polarisering. Denna metod visar att det adsorberade lagret av både en ren jonvätska och en jonvätska löst i olja kan kontrolleras genom att applicera spänningar med olika tecken och storlekar. Dessutom möjliggör metoden två oberoende tillvägagångssätt för att övervaka laddningarna under polarisering vilket kan användas för att kvantifiera ytsammansättningen. Tekniken ger också information om jonkinetik och ytselektivitet. Detta arbete bidrar till den grundläggande förståelsen av gränsskiktet mellan fasta ytor och jonvätskor och visar att ytsammansättningen av jonvätskor kan kontrolleras och övervakas med olika tillvägagångssätt.

QC 20160518

APA, Harvard, Vancouver, ISO, and other styles
9

Stocker, Isabella Natalie. "Adsorption at the calcite-liquid interface." Thesis, University of Cambridge, 2013. https://www.repository.cam.ac.uk/handle/1810/252293.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Brügger, Georges. "Evanescent wave techniques for nanoparticle deposition at liquid-solid interface /." [S.l.] : [s.n.], 2009. http://opac.nebis.ch/cgi-bin/showAbstract.pl?sys=000288123.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Solid-liquid interface"

1

Halley, J. Woods, ed. Solid-Liquid Interface Theory. Washington, DC: American Chemical Society, 2001. http://dx.doi.org/10.1021/bk-2001-0789.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gewirth, Andrew A., and Hans Siegenthaler, eds. Nanoscale Probes of the Solid/Liquid Interface. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-015-8435-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gewirth, Andrew A. Nanoscale Probes of the Solid/Liquid Interface. Dordrecht: Springer Netherlands, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

A, Gewirth Andrew, Siegenthaler Hans, North Atlantic Treaty Organization. Scientific Affairs Division., and NATO Advanced Study Institute on Nanoscale Probes of the Solid/Liquid Interface (1993 : Sophia-Antipolis, France), eds. Nanoscale probes of the solid/liquid interface. Dordrecht: Kluwer Academic Publishers, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mauri, Roberto. Multiphase microfluidics: The diffuse interface model. Wien: Springer Verlag, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

J, Brown. Acoustic fields of a laser generated ultrasound source at a liquid/solid interface. Manchester: UMIST, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sawato, Tsukasa. Synthesis of Optically Active Oxymethylenehelicene Oligomers and Self-assembly Phenomena at a Liquid–Solid Interface. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-3192-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wandelt, Klaus, and Stephe Thurgate, eds. Solid—Liquid Interfaces. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-44817-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Jerkiewicz, Gregory, Manuel P. Soriaga, Kohei Uosaki, and Andrzej Wieckowski, eds. Solid-Liquid Electrochemical Interfaces. Washington, DC: American Chemical Society, 1997. http://dx.doi.org/10.1021/bk-1997-0656.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Déjardin, Philippe, ed. Proteins at Solid-Liquid Interfaces. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/3-540-32658-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Solid-liquid interface"

1

Tadros, Tharwat. "Interface, Solid-liquid." In Encyclopedia of Colloid and Interface Science, 636. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-20665-8_110.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Memming, Rüdiger. "Solid-Liquid Interface." In Semiconductor Electrochemistry, 89–125. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527688685.ch5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Morrison, S. Roy. "The Solid/Liquid Interface." In The Chemical Physics of Surfaces, 297–331. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4899-2498-8_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Blinov, Lev M. "Liquid Crystal – Solid Interface." In Structure and Properties of Liquid Crystals, 257–82. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-8829-1_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zajac, Jerzy Jozef. "Calorimetry at the Solid–Liquid Interface." In Calorimetry and Thermal Methods in Catalysis, 197–270. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-11954-5_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Perronet, Karen, and Fabrice Charra. "STM-Induced Photoemission at Solid-Liquid Interface." In Organic Nanophotonics, 119–26. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-010-0103-8_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Gramsbergen, E. F., and G. H. Wegdam. "Brillouin Scattering near a Solid-Liquid Interface." In Static and Dynamic Properties of Liquids, 85–87. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-74907-0_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Rohrer, H. "Solid-Liquid: The Interface of the Future." In Nanoscale Probes of the Solid/Liquid Interface, 1–3. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-015-8435-7_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Berkowitz, Brian, Ishai Dror, and Bruno Yaron. "Abiotic Transformation at the Solid–Liquid Interface." In Contaminant Geochemistry, 373–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-54777-5_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Siegenthaler, H., E. Ammann, P. F. Indermühle, and G. Repphun. "Nanoscale Probes of the Solid — Liquid Interface." In Nanoscale Science and Technology, 297–315. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5024-8_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Solid-liquid interface"

1

Lewis, T. J. "The solid-liquid interface." In IEE Colloquium on An Engineering Review of Liquid Insulation. IEE, 1997. http://dx.doi.org/10.1049/ic:19970014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Daher, Ali, Amine Ammar, and Abbas Hijazi. "Dynamics of solid nanoparticles near a liquid-liquid interface." In PROCEEDINGS OF THE 21ST INTERNATIONAL ESAFORM CONFERENCE ON MATERIAL FORMING: ESAFORM 2018. Author(s), 2018. http://dx.doi.org/10.1063/1.5034924.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Daley, P. F. "Conversion coefficients at a liquid/solid interface." In SEG Technical Program Expanded Abstracts 2001. Society of Exploration Geophysicists, 2001. http://dx.doi.org/10.1190/1.1816553.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Argirakis, I. "The liquid-solid interface: the effect of negative liquid discharge." In Seventh International Conference on Dielectric Materials, Measurements and Applications. IEE, 1996. http://dx.doi.org/10.1049/cp:19961010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Martini, A., S. Lichter, R. Q. Snurr, and Q. Wang. "Solid-Liquid Interface Slip as a Rate Process." In ASME/STLE 2007 International Joint Tribology Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/ijtc2007-44022.

Full text
Abstract:
Thin film lubrication may be significantly affected by slip at the solid-liquid interface. Slip occurs when there is a jump in the mean speed between the walls and the first layer of liquid molecules. Using molecular simulation, we show that the amount of slip is greatly affected by solvation pressure and that this dependence can be accounted for by treating slip as a rate process. This treatment enables formulation of a quantitative relationship between solvation pressure and interface slip.
APA, Harvard, Vancouver, ISO, and other styles
6

Kamanina, Natalia V., and Vladimir I. Berendyaev. "Influence of solid/liquid crystal interface on characteristics of liquid crystal cells." In Optoelectronics and High-Power Lasers & Applications, edited by Richard L. Sutherland. SPIE, 1998. http://dx.doi.org/10.1117/12.305502.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Liu, Haibo, Sreedevi Krishnan, and H. S. Udaykumar. "A Fast Sharp Interface Method for Solid, Liquid and Gas Interface Calculations." In 16th AIAA Computational Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2003. http://dx.doi.org/10.2514/6.2003-4108.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ueki, Yoshitaka, Tomoya Oyabu, and Masahiko Shibahara. "THERMAL RESISTANCE OF NANOPARTICLE LAYER DEPOSITED SOLID-LIQUID INTERFACE." In International Heat Transfer Conference 16. Connecticut: Begellhouse, 2018. http://dx.doi.org/10.1615/ihtc16.tpm.022135.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Duffy, David C., Paul B. Davies, Colin D. Bain, Robert N. Ward, and Andrew M. Creeth. "Sum frequency vibrational spectroscopy of the solid-liquid interface." In SPIE's 1995 International Symposium on Optical Science, Engineering, and Instrumentation, edited by Janice M. Hicks, Wilson Ho, and Hai-Lung Dai. SPIE, 1995. http://dx.doi.org/10.1117/12.221487.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Nakao, Yoshitaka, T. Koshiya, H. Tagashira, K. Miyagi, and Yosuke Sakai. "Creepage discharge propagation over liquid/solid interface in insulating oil." In 24th International Congress on High-Speed Photography and Photonics, edited by Kazuyoshi Takayama, Tsutomo Saito, Harald Kleine, and Eugene V. Timofeev. SPIE, 2001. http://dx.doi.org/10.1117/12.424322.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Solid-liquid interface"

1

Blum, L., and D. A. Huckaby. Exact Results for the Structured Liquid-Solid Interface. Fort Belvoir, VA: Defense Technical Information Center, January 1991. http://dx.doi.org/10.21236/ada232992.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Blum, L., and D. A. Huckaby. Exact Results for the Structured Liquid-Solid Interface. Fort Belvoir, VA: Defense Technical Information Center, April 1990. http://dx.doi.org/10.21236/ada222762.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Carlson, A. B. Liquid effluent services and solid waste disposal interface control document. Office of Scientific and Technical Information (OSTI), October 1994. http://dx.doi.org/10.2172/10102583.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Prof. P. Somasundaran. BEHAVIOR OF SURFACTANT MIXTURE AT SOLID/LIQUID AND OIL/LIQUID INTERFACE IN CHEMICAL FLOODING SYSTEMS. Office of Scientific and Technical Information (OSTI), March 2002. http://dx.doi.org/10.2172/811903.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Butler, P. D., W. A. Hamilton, J. B. Hayter, L. J. Magid, and T. M. Slawecki. Effect of a solid/liquid interface on bulk solution structures under flow. Office of Scientific and Technical Information (OSTI), July 1997. http://dx.doi.org/10.2172/532532.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Greager, T. M. ,. Westinghouse Hanford. Interface control document between liquid effluent services and solid waste disposal division. Office of Scientific and Technical Information (OSTI), June 1996. http://dx.doi.org/10.2172/658890.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

DR. PAUL WYNBLATT. ENERGETICS OF SOLID/SOLID AND LIQUID/SOLID INTERFACES. Office of Scientific and Technical Information (OSTI), October 2004. http://dx.doi.org/10.2172/833421.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mark Asta. Computational Investigations of Solid-Liquid Interfaces. Office of Scientific and Technical Information (OSTI), August 2011. http://dx.doi.org/10.2172/1023516.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Cahil, David, G., and Paul, V. Braun. Final Report: Thermal Conductance of Solid-Liquid Interfaces. Office of Scientific and Technical Information (OSTI), May 2006. http://dx.doi.org/10.2172/885425.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kleiner, Kevin Gordon, Aparna Nair-Kanneganti, Ivana Gonzales, Christian Francisco Andres Negre, and Anders Mauritz Niklasson. Modeling solid-liquid interfaces using next generation quantum molecular dynamics. Office of Scientific and Technical Information (OSTI), August 2018. http://dx.doi.org/10.2172/1467197.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography