Journal articles on the topic 'Solid electrodes][Intercalation battery'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Solid electrodes][Intercalation battery.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Wen, Shi-Jie, Xiao-Tian Yin, and L. Nazar. "The New Approach of Intercalation Material for The Application of Rechargeable Lithium Batteries." Active and Passive Electronic Components 17, no. 1 (1994): 1–8. http://dx.doi.org/10.1155/1994/95740.
Full textChothe, Ujjwala, Chitra Ugale, Milind Kulkarni, and Bharat Kale. "Solid-State Synthesis of Layered MoS2 Nanosheets with Graphene for Sodium-Ion Batteries." Crystals 11, no. 6 (June 10, 2021): 660. http://dx.doi.org/10.3390/cryst11060660.
Full textAlemu, Tibebu, and Fu-Ming Wang. "In situelectrochemical synchrotron radiation for Li-ion batteries." Journal of Synchrotron Radiation 25, no. 1 (January 1, 2018): 151–65. http://dx.doi.org/10.1107/s1600577517015533.
Full textMan, Yu Hong, Yong Ping Zhang, and Pei Tao Guo. "Freestanding Ultralong Aligned Carbon Nanotube Films as Electrode Materials for a Lithium-Ion Battery." Advanced Materials Research 798-799 (September 2013): 143–46. http://dx.doi.org/10.4028/www.scientific.net/amr.798-799.143.
Full textJohnsen, Rune E., and Poul Norby. "Capillary-based micro-battery cell forin situX-ray powder diffraction studies of working batteries: a study of the initial intercalation and deintercalation of lithium into graphite." Journal of Applied Crystallography 46, no. 6 (October 11, 2013): 1537–43. http://dx.doi.org/10.1107/s0021889813022796.
Full textVanimisetti, Sampath K., and Narayanrao Ramakrishnan. "Effect of the electrode particle shape in Li-ion battery on the mechanical degradation during charge–discharge cycling." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 226, no. 9 (December 16, 2011): 2192–213. http://dx.doi.org/10.1177/0954406211432668.
Full textMOLENDA, J. "MATERIAL PROBLEMS AND PROSPECTS OF Li-ION BATTERIES FOR VEHICLES APPLICATIONS." Functional Materials Letters 04, no. 02 (June 2011): 107–12. http://dx.doi.org/10.1142/s1793604711001816.
Full textUnocic, Raymond R., Xiao-Guang Sun, Robert L. Sacci, Leslie A. Adamczyk, Daan Hein Alsem, Sheng Dai, Nancy J. Dudney, and Karren L. More. "Direct Visualization of Solid Electrolyte Interphase Formation in Lithium-Ion Batteries with In Situ Electrochemical Transmission Electron Microscopy." Microscopy and Microanalysis 20, no. 4 (July 4, 2014): 1029–37. http://dx.doi.org/10.1017/s1431927614012744.
Full textZhang, Changhuan, Liran Zhang, Nianwu Li, and Xiuqin Zhang. "Studies of FeSe2 Cathode Materials for Mg–Li Hybrid Batteries." Energies 13, no. 17 (August 25, 2020): 4375. http://dx.doi.org/10.3390/en13174375.
Full textFu, Kun (Kelvin), Yunhui Gong, Jiaqi Dai, Amy Gong, Xiaogang Han, Yonggang Yao, Chengwei Wang, et al. "Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries." Proceedings of the National Academy of Sciences 113, no. 26 (June 15, 2016): 7094–99. http://dx.doi.org/10.1073/pnas.1600422113.
Full textKondo, Yasuyuki, Tomokazu Fukutsuka, Yuko Yokoyama, Yuto Miyahara, Kohei Miyazaki, and Takeshi Abe. "Kinetic properties of sodium-ion transfer at the interface between graphitic materials and organic electrolyte solutions." Journal of Applied Electrochemistry 51, no. 4 (February 7, 2021): 629–38. http://dx.doi.org/10.1007/s10800-020-01523-z.
Full textLai, Wei, and Francesco Ciucci. "Small-Signal Apparent Diffusion Impedance of Intercalation Battery Electrodes." Journal of The Electrochemical Society 158, no. 2 (2011): A115. http://dx.doi.org/10.1149/1.3515896.
Full textFlandrois, S., and J. Herran. "Battery electrodes based on metal chloride-graphite intercalation compounds." Synthetic Metals 14, no. 1-2 (March 1986): 103–11. http://dx.doi.org/10.1016/0379-6779(86)90132-3.
Full textWhittingham, M. "The intercalation and hydrothermal chemistry of solid electrodes." Solid State Ionics 94, no. 1-4 (February 1, 1997): 227–38. http://dx.doi.org/10.1016/s0167-2738(96)00509-7.
Full textHall, Florian, Sabine Wußler, Hilmi Buqa, and Wolfgang G. Bessler. "Asymmetry of Discharge/Charge Curves of Lithium-Ion Battery Intercalation Electrodes." Journal of Physical Chemistry C 120, no. 41 (October 6, 2016): 23407–14. http://dx.doi.org/10.1021/acs.jpcc.6b07949.
Full textGarrick, Taylor R., Kenneth Higa, Shao-Ling Wu, Yiling Dai, Xinyu Huang, Venkat Srinivasan, and John W. Weidner. "Modeling Battery Performance Due to Intercalation Driven Volume Change in Porous Electrodes." Journal of The Electrochemical Society 164, no. 11 (2017): E3592—E3597. http://dx.doi.org/10.1149/2.0621711jes.
Full textGarrick, T. R., Y. Dai, K. Higa, V. Srinivasan, and J. W. Weidner. "Modeling Battery Performance Due to Intercalation Driven Volume Change in Porous Electrodes." ECS Transactions 72, no. 11 (September 21, 2016): 11–31. http://dx.doi.org/10.1149/07211.0011ecst.
Full textLai, Wei, and Francesco Ciucci. "Thermodynamics and kinetics of phase transformation in intercalation battery electrodes – phenomenological modeling." Electrochimica Acta 56, no. 1 (December 2010): 531–42. http://dx.doi.org/10.1016/j.electacta.2010.09.015.
Full textBesenhard, J. O. "Ambient Temperature Solid State Reactions in Battery Electrodes." Materials Science Forum 152-153 (March 1994): 13–34. http://dx.doi.org/10.4028/www.scientific.net/msf.152-153.13.
Full textSanthanam, R., and M. Noel. "Electrochemical intercalation of ionic species of tetrabutylammonium perchlorate on graphite electrodes. A potential dual-intercalation battery system." Journal of Power Sources 56, no. 1 (July 1995): 101–5. http://dx.doi.org/10.1016/0378-7753(95)80016-a.
Full textByles, Bryan W., Mallory Clites, David A. Cullen, Karren L. More, and Ekaterina Pomerantseva. "Improved electrochemical cycling stability of intercalation battery electrodes via control of material morphology." Ionics 25, no. 2 (September 12, 2018): 493–502. http://dx.doi.org/10.1007/s11581-018-2715-z.
Full textJang, Yunjai, Chia-Hung Hou, Sanghyuk Park, Kyungjung Kwon, and Eunhyea Chung. "Direct electrochemical lithium recovery from acidic lithium-ion battery leachate using intercalation electrodes." Resources, Conservation and Recycling 175 (December 2021): 105837. http://dx.doi.org/10.1016/j.resconrec.2021.105837.
Full textIshige, Yu, Stefan Klink, and Wolfgang Schuhmann. "Intercalation Compounds as Inner Reference Electrodes for Reproducible and Robust Solid-Contact Ion-Selective Electrodes." Angewandte Chemie International Edition 55, no. 15 (March 11, 2016): 4831–35. http://dx.doi.org/10.1002/anie.201600111.
Full textBalaish, Moran, and Yair Ein-Eli. "Enhancing oxygen adsorption capabilities in Li–O2battery cathodes through solid perfluorocarbons." Journal of Materials Chemistry A 5, no. 27 (2017): 14152–64. http://dx.doi.org/10.1039/c7ta03376a.
Full textMcNulty, David, Hugh Geaney, Eileen Armstrong, and Colm O'Dwyer. "High performance inverse opal Li-ion battery with paired intercalation and conversion mode electrodes." Journal of Materials Chemistry A 4, no. 12 (2016): 4448–56. http://dx.doi.org/10.1039/c6ta00338a.
Full textLi, Yiyang, Farid El Gabaly, Todd R. Ferguson, Raymond B. Smith, Norman C. Bartelt, Joshua D. Sugar, Kyle R. Fenton, et al. "Current-induced transition from particle-by-particle to concurrent intercalation in phase-separating battery electrodes." Nature Materials 13, no. 12 (September 14, 2014): 1149–56. http://dx.doi.org/10.1038/nmat4084.
Full textProffit, Danielle L., Albert L. Lipson, Baofei Pan, Sang-Don Han, Timothy T. Fister, Zhenxing Feng, Brian J. Ingram, Anthony K. Burrell, and John T. Vaughey. "Reducing Side Reactions Using PF6-based Electrolytes in Multivalent Hybrid Cells." MRS Proceedings 1773 (2015): 27–32. http://dx.doi.org/10.1557/opl.2015.590.
Full textSangrós Giménez, Clara, Laura Helmers, Carsten Schilde, Alexander Diener, and Arno Kwade. "Modeling the Electrical Conductive Paths within All‐Solid‐State Battery Electrodes." Chemical Engineering & Technology 43, no. 5 (March 25, 2020): 819–29. http://dx.doi.org/10.1002/ceat.201900501.
Full textBernardi, Dawn M., Rajeswari Chandrasekaran, and Joo Young Go. "Solid-State Transport of Lithium in Lithium-Ion-Battery Positive Electrodes." Journal of The Electrochemical Society 160, no. 9 (2013): A1430—A1441. http://dx.doi.org/10.1149/2.042309jes.
Full textBarannikova, Evgenia, and Mark Allen. "Solid-Binding Peptides as a Biotemplate for Li-Ion Battery Electrodes." Biophysical Journal 108, no. 2 (January 2015): 634a. http://dx.doi.org/10.1016/j.bpj.2014.11.3447.
Full textSong, Weixin, Elena Stein Scholtis, Peter C. Sherrell, Deana K. H. Tsang, Jonathan Ngiam, Johannes Lischner, Sarah Fearn, et al. "Electronic structure influences on the formation of the solid electrolyte interphase." Energy & Environmental Science 13, no. 12 (2020): 4977–89. http://dx.doi.org/10.1039/d0ee01825b.
Full textChristensen, Christian K., Espen D. Bøjesen, Daniel R. Sørensen, Jonas H. Kristensen, Jette K. Mathiesen, Bo B. Iversen, and Dorthe B. Ravnsbæk. "Structural Evolution during Lithium- and Magnesium-Ion Intercalation in Vanadium Oxide Nanotube Electrodes for Battery Applications." ACS Applied Nano Materials 1, no. 9 (August 31, 2018): 5071–82. http://dx.doi.org/10.1021/acsanm.8b01183.
Full textHuang, R. W. J. M., Foen Chung, and E. M. Kelder. "Impedance Simulation of a Li-Ion Battery with Porous Electrodes and Spherical Li[sup +] Intercalation Particles." Journal of The Electrochemical Society 153, no. 8 (2006): A1459. http://dx.doi.org/10.1149/1.2203947.
Full textClites, Mallory, and Ekaterina Pomerantseva. "Bilayered vanadium oxides by chemical pre-intercalation of alkali and alkali-earth ions as battery electrodes." Energy Storage Materials 11 (March 2018): 30–37. http://dx.doi.org/10.1016/j.ensm.2017.09.005.
Full textWang, Kuaibing, Saier Wang, Jiadi Liu, Yuxuan Guo, Feifei Mao, Hua Wu, and Qichun Zhang. "Fe-Based Coordination Polymers as Battery-Type Electrodes in Semi-Solid-State Battery–Supercapacitor Hybrid Devices." ACS Applied Materials & Interfaces 13, no. 13 (March 24, 2021): 15315–23. http://dx.doi.org/10.1021/acsami.1c01339.
Full textYoshino, K., K. Suzuki, Y. Yamada, T. Satoh, M. Finsterbusch, K. Fujita, T. Kamiya, et al. "Lithium distribution analysis in all-solid-state lithium battery using microbeam particle-induced X-ray emission and particle-induced gamma-ray emission techniques." International Journal of PIXE 27, no. 01n02 (January 2017): 11–20. http://dx.doi.org/10.1142/s012908351850002x.
Full textChen, Chien-Fan, and Partha P. Mukherjee. "Probing the morphological influence on solid electrolyte interphase and impedance response in intercalation electrodes." Physical Chemistry Chemical Physics 17, no. 15 (2015): 9812–27. http://dx.doi.org/10.1039/c4cp05758a.
Full textChen, Guangwei, Zhitao Liu, and Hongye Su. "An Optimal Fast-Charging Strategy for Lithium-Ion Batteries via an Electrochemical–Thermal Model with Intercalation-Induced Stresses and Film Growth." Energies 13, no. 9 (May 11, 2020): 2388. http://dx.doi.org/10.3390/en13092388.
Full textShen, Hao, Eongyu Yi, Marco Amores, Lei Cheng, Nobumichi Tamura, Dilworth Y. Parkinson, Guoying Chen, Kai Chen, and Marca Doeff. "Oriented porous LLZO 3D structures obtained by freeze casting for battery applications." Journal of Materials Chemistry A 7, no. 36 (2019): 20861–70. http://dx.doi.org/10.1039/c9ta06520b.
Full textSuzuki, Shinya, Naoko Sakai, and Masaru Miyayama. "Fabrication of Titanate Thin Film by Electrophoretic Deposition of Tetratitanate Nanosheets for Electrodes of Li-Ion Battery." Key Engineering Materials 388 (September 2008): 37–40. http://dx.doi.org/10.4028/www.scientific.net/kem.388.37.
Full textZhou, Xin, Hao Jiang, Hao Zheng, Yi Sun, Xin Liang, and Hongfa Xiang. "Nonflammable hybrid solid electrolyte membrane for a solid-state lithium battery compatible with conventional porous electrodes." Journal of Membrane Science 603 (May 2020): 117820. http://dx.doi.org/10.1016/j.memsci.2020.117820.
Full textEliseeva, Svetlana N., Mikhail A. Kamenskii, Elena G. Tolstopyatova, and Veniamin V. Kondratiev. "Effect of Combined Conductive Polymer Binder on the Electrochemical Performance of Electrode Materials for Lithium-Ion Batteries." Energies 13, no. 9 (May 1, 2020): 2163. http://dx.doi.org/10.3390/en13092163.
Full textChung, S. K., A. A. Andriiko, A. P. Mon'ko, and S. H. Lee. "On charge conditions for Li-ion and other secondary lithium batteries with solid intercalation electrodes." Journal of Power Sources 79, no. 2 (June 1999): 205–11. http://dx.doi.org/10.1016/s0378-7753(99)00058-0.
Full textKim, Sung-Woo, Seung-Bok Lee, and Su-Il Pyun. "ChemInform Abstract: The Fundamentals and Advances of Solid-State Electrochemistry: Intercalation (Insertion) and Deintercalation (Extraction) in Solid-State Electrodes." ChemInform 42, no. 1 (December 9, 2010): no. http://dx.doi.org/10.1002/chin.201101213.
Full textZhu, Yun Guang, Thaneer Malai Narayanan, Michal Tulodziecki, Hernan Sanchez-Casalongue, Quinn C. Horn, Laura Meda, Yang Yu, et al. "High-energy and high-power Zn–Ni flow batteries with semi-solid electrodes." Sustainable Energy & Fuels 4, no. 8 (2020): 4076–85. http://dx.doi.org/10.1039/d0se00675k.
Full textAshby, David S., Christopher S. Choi, Martin A. Edwards, A. Alec Talin, Henry S. White, and Bruce S. Dunn. "High-Performance Solid-State Lithium-Ion Battery with Mixed 2D and 3D Electrodes." ACS Applied Energy Materials 3, no. 9 (July 21, 2020): 8402–9. http://dx.doi.org/10.1021/acsaem.0c01029.
Full textAnjass, Montaha H., Max Deisböck, Simon Greiner, Maximilian Fichtner, and Carsten Streb. "Differentiating Molecular and Solid-State Vanadium Oxides as Active Materials in Battery Electrodes." ChemElectroChem 6, no. 2 (November 20, 2018): 398–403. http://dx.doi.org/10.1002/celc.201801406.
Full textAshby, David, Christopher S. Choi, Martin A. Edwards, A. Alec Talin, Henry S. White, and Bruce S. Dunn. "High-Performance Solid-State Lithium-Ion Battery with Mixed 2D and 3D Electrodes." ECS Meeting Abstracts MA2020-02, no. 5 (November 23, 2020): 1026. http://dx.doi.org/10.1149/ma2020-0251026mtgabs.
Full textCastaing, Rémi, Philippe Moreau, Yvan Reynier, Donald Schleich, Séverine Jouanneau Si Larbi, Dominique Guyomard, and Nicolas Dupré. "NMR quantitative analysis of solid electrolyte interphase on aged Li-ion battery electrodes." Electrochimica Acta 155 (February 2015): 391–95. http://dx.doi.org/10.1016/j.electacta.2014.12.049.
Full textDavis, Andrew L., Vishwas Goel, Daniel W. Liao, Mark N. Main, Eric Kazyak, John Lee, Katsuyo Thornton, and Neil P. Dasgupta. "Rate Limitations in Composite Solid-State Battery Electrodes: Revealing Heterogeneity with Operando Microscopy." ACS Energy Letters 6, no. 8 (August 4, 2021): 2993–3003. http://dx.doi.org/10.1021/acsenergylett.1c01063.
Full text