Academic literature on the topic 'Solid'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Solid.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Solid"

1

El-Shobaky, G. A., G. A. Fagal, and N. H. Amin. "Thermal solid-solid interaction between CuO and pure Al2O3 solids." Thermochimica Acta 141 (March 1989): 205–16. http://dx.doi.org/10.1016/0040-6031(89)87055-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gai, Pratibha L., and Michael W. Anderson. "Solid catalysts and porous solids." Current Opinion in Solid State and Materials Science 5, no. 5 (October 2001): 363–64. http://dx.doi.org/10.1016/s1359-0286(01)00033-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gai, Pratibha L., and Michael W. Anderson. "Solid catalysts and porous solids." Current Opinion in Solid State and Materials Science 6, no. 5 (October 2002): 379. http://dx.doi.org/10.1016/s1359-0286(02)00121-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Davis, MarkE, and IanE Maxwell. "Solid catalysts and porous solids." Current Opinion in Solid State and Materials Science 1, no. 1 (February 1996): 55–56. http://dx.doi.org/10.1016/s1359-0286(96)80010-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zones, Stacey, and Ian E. Maxwell. "Solid catalysts and porous solids." Current Opinion in Solid State and Materials Science 2, no. 1 (February 1997): 55–56. http://dx.doi.org/10.1016/s1359-0286(97)80105-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Cheetham, Anthony K., and Sir John Meurig Thomas. "Solid catalysts and porous solids." Current Opinion in Solid State and Materials Science 3, no. 1 (February 1998): 61–62. http://dx.doi.org/10.1016/s1359-0286(98)80066-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Anderson, Michael W. "Solid catalysts and porous solids." Current Opinion in Solid State and Materials Science 7, no. 3 (June 2003): 189. http://dx.doi.org/10.1016/j.cossms.2003.10.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Anderson, M. W. "Solid Catalysts and Porous Solids." Current Opinion in Solid State and Materials Science 8, no. 6 (December 2004): 396. http://dx.doi.org/10.1016/j.cossms.2005.05.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

AFIFI, M. "EXPERIENCE IN ANALYZING VIBRATIONAL SPECTRA OF SOLIDS AND SOLID-SOLID INTERACTIONS." Al-Azhar Bulletin of Science 19, Issue 1-A (June 1, 2008): 123–33. http://dx.doi.org/10.21608/absb.2008.8999.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Rho, Dae-Ho, Jae-Soo Kim, Dong-Jin Byun, Jae-Woong Yang, and Na-Ri Kim. "Growth of SiC Nanotube by SLS (Solid-Liquid-Solid) Growth Mechanism." Korean Journal of Materials Research 14, no. 2 (February 1, 2004): 83–89. http://dx.doi.org/10.3740/mrsk.2004.14.2.083.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Solid"

1

Pradhan, Sulolit. "Solid state charge transfer in nanoparticle solids /." Diss., Digital Dissertations Database. Restricted to UC campuses, 2008. http://uclibs.org/PID/11984.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Harikrishna, Hari. "Nanoscale thermal transport through solid-solid and solid-liquid interfaces." Diss., Virginia Tech, 2013. http://hdl.handle.net/10919/51160.

Full text
Abstract:
This dissertation presents an experimental investigation of heat transport through solid- solid and solid-liquid interfaces. Heat transport is a process initiated by the presence of a thermal gradient. All interfaces offer resistance to heat flow in the form of temperature drop at the interface. In micro and nano scale devices, the contribution of this resistance often becomes comparable to, or greater than, the intrinsic thermal resistance offered by the device or structure itself. In this dissertation, I report the resistance offered by the interfaces in terms of interface thermal conductance, G, which is the inverse of Kapitza resistance and is quantified by the ratio of heat flux to the temperature drop. For studying thermal transport across interfaces, I adapted a non-contact optical measurement technique called Time-Domain Thermoreflectance (TDTR) that relies on the fact that the reflectivity of a metal has a small, but measurable, dependence on temperature.

The first half of this dissertation is focused on investigating heat transport through thin films and solid-solid interfaces. The samples in this study are thin lead zirconate- titanate (PZT) piezoelectric films used in sensing applications and dielectric films such as SiOC:H used in semiconductor industry. My results on the PZT films indicate that the thermal conductivity of these films was proportional to the packing density of the elements within the films. I have also measured thermal conductivity of dielectric films in different elemental compositions. I also examined thermal conductivity of dielectric films for a variety of different elemental compositions of Si, O, C, and H, and varying degrees of porosity. My measurements showed that the composition and porosity of the films played an important role in determining the thermal conductivity.

The second half of this dissertation is focused on investigating heat transport through solid-liquid interfaces. In this regard, I functionalize uniformly coated gold surfaces with a variety of self-assembled monolayers (SAMs). Heat flows from the gold surface to the sulfur molecule, then through the hydrocarbon chain in the SAM, into the terminal group of the SAM and finally into the liquid. My results showed that by changing the terminal group in a SAM from hydrophobic to hydrophilic, G increased by a factor of three in water. By changing the number of carbon atoms in the SAM, I also report that the chain length does not present a significant thermal resistance. My results also revealed evidence of linear relationship between work of adhesion and interface thermal conductance from experiments with several SAMs on water. By examining a variety of SAM-liquid combination, I find that this linear dependency does not hold as a unified hypothesis. From these experiments, I speculate that heat transport in solid-liquid systems is controlled by a combination of work of adhesion and vibrational coupling between the omega-group in the SAM and the liquid.

Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
3

Lee, Jongho. "Solid modeling using implicit solid elements." [Gainesville, Fla.] : University of Florida, 2003. http://purl.fcla.edu/fcla/etd/UFE0001254.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Rice, Christopher S. (Christopher Scott). "Solid freeform fabrication using semi-solid processing." Thesis, Massachusetts Institute of Technology, 1995. http://hdl.handle.net/1721.1/32166.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zhong, Xiaoguang Knowles James K. Knowles James K. "Continuum dynamics of solid-solid phase transitions /." Diss., Pasadena, Calif. : California Institute of Technology, 1995. http://resolver.caltech.edu/CaltechETD:etd-10222007-135103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Quemin, Elisa. "Exploring solid-solid interfaces in Li6PS5Cl-based cathode composites for all solid state batteries." Electronic Thesis or Diss., Sorbonne université, 2023. http://www.theses.fr/2023SORUS501.

Full text
Abstract:
Les technologies de stockage énergétiques jouent un rôle crucial en accommodant le caractère intermittent des énergies renouvelable. Actuellement, les batteries lithium-ion prédominent le marché des appareils portables. Cependant, pour les véhicules électriques, des avancées sont nécessaires en termes de sécurité et de densité énergétique, conduisant à l'exploration de nouvelles technologies de batterie, notamment les batteries tout-solide. Cette thèse se concentre sur les obstacles entravant l'application pratique de ces batteries tout-solide, en mettant particulièrement en lumière le rôle des composites cathodes. L'attention s'est portée sur un composite couramment utilisé, composé de Li6PS5Cl comme électrolyte solide (SE) associé à un matériau actif de type NMC. Les mécanismes de dégradation se révèlent être influencés par deux interfaces : SE/additif carbone et SE/AM (matériau actif). Le cyclage en dessous de 3,6 V par rapport au Li-In/In montrent que la dégradation prédominante provient de l'interface SE/additif carbone, tandis qu'à 3,9 V, l'interface SE/AM devient le principal foyer de dégradation. A partir de là, l'effet des additifs de carbone dans le composite a été minutieusement étudié. Ainsi, une concentration de plus de 2 % en poids de VGCF a un impact négatif sur la conduction ionique des composites. De plus, une analyse in situ de la conductivité électronique des composites sans carbone révèle des changements induits par l'insertion/désinsertion du lithium dans le transport électronique, avec une réduction de la conductivité électronique à états de charge élevés, en particulier dans les NMC riches en nickel. Globalement, les résultats indiquent qu'une faible quantité d'additif carbone peut avoir des avantages significatifs, à condition que les réactions chimiques soient maitrisées. Ainsi, des stratégies minimisant les pertes de capacité à long terme ont été explorées, en examinant des paramètres tels que la pression d'assemblage, le loading, les cycles de formation, la température et les coating carbonate. En fusionnant les conditions optimales, un composite de cathode optimisé est présenté, ouvrant la voie à des avancées prometteuses dans la technologie des batteries tout-solide
While Lithium-ion batteries dominate portable devices, growing safety and energy density demands in electric vehicle batteries have led to the exploration of "beyond Li-ion" technology. All-Solid-State Batteries (ASSBs) have emerged as a promising alternative to Li-ion batteries. Thus, this doctoral research focuses on overcoming challenges hindering the practical implementation of ASSBs, with a specific emphasis on cathode composites. The investigation revolves around a common composite comprising Li6PS5Cl solid electrolyte (SE) and NMC active material (AM). The research unveils the degradation mechanisms within ASSBs, governed by SE/Carbon additive and SE/AM interfaces. It is observed that capacity deterioration, occurring below 3.6 V vs. Li-In/In, is primarily attributed to SE/Carbon interfaces. Conversely, elevating the voltage to 3.9 V shifts the primary degradation source to SE/AM interfaces. Then, the adverse effects of carbon additives on the ionic conduction of composites are demonstrated, particularly when exceeding 2 wt. % VGCF. Moreover, the study delves into the electronic conductivity of carbon-free composites using innovative in situ monitoring. This reveals Li-induced alterations hindering electronic conductivity, especially at high charge levels, notably in high Ni-content NMC. Furthermore, the influence of particle size and morphology on electronic percolation is extensively examined, advocating for minimal VGCF to enhance kinetics and stability. Strategies for effectively incorporating carbon additives while mitigating long-term capacity loss are explored, encompassing assembly pressure, loading, formation cycles, temperature, and carbonate coating. By mixing these optimal conditions, an enhanced cathode composite is introduced, holding promising potential for the progression of All-Solid-State Battery technology
APA, Harvard, Vancouver, ISO, and other styles
7

Tian, Jian Atwood J. L. "Molecular organic solids for gas adsorption and solid-gas interaction." Diss., Columbia, Mo. : University of Missouri--Columbia, 2009. http://hdl.handle.net/10355/6882.

Full text
Abstract:
Title from PDF of title page (University of Missouri--Columbia, viewed on Feb 24, 2010). The entire thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file; a non-technical public abstract appears in the public.pdf file. Dissertation advisor: Dr. Jerry L. Atwood. Vita. Includes bibliographical references.
APA, Harvard, Vancouver, ISO, and other styles
8

Collins, Kimberlee C. (Kimberlee Chiyoko). "Experimental investigations of solid-solid thermal interface conductance." Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/61600.

Full text
Abstract:
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2010.
Cataloged from PDF version of thesis.
Includes bibliographical references (p. 70-84).
Understanding thermal interface conductance is important for nanoscale systems where interfaces can play a critical role in heat transport. In this thesis, pump and probe transient thermoreflectance methods are used to measure the thermal interface conductance between solid materials. Two experimental studies of thermal interface conductance are presented, each revealing the complexity of phonon interactions at interfaces which are inadequately captured by current models of phonon transmissivity. The first study considers interfaces of different metals with graphite, and finds that atomic-scale roughness at the interface could be appreciably influencing the heat transport due to the extreme anisotropy of graphite. The thermal interface conductance of graphite is found to be similar to that of diamond, suggesting that when estimating the thermal interface conductance between metal and multi-walled carbon nanotubes (MWCNTs), a reasonable assumption may be that the conductance with the side walls of the MWCNTs is similar to the conductance with the ends of the MWCNTs. The second study considered aluminum on diamond interfaces where the diamond samples were functionalized to have different chemical surface terminations. The surface termination of the diamond is found to significantly influence the heat flow, with oxygenated diamond, which is hydrophilic, exhibiting four times higher thermal interface conductance than hydrogen-treated diamond, which is hydrophobic. Microstructure analysis determined that the Al film formed similarly, independent of diamond surface termination, suggesting that differences in interface bonding likely caused the observed difference in thermal interface conductance, a phenomenon which is not captured in current models of solid-solid phonon transmissivity.
by Kimberlee Chiyoko Collins.
S.M.
APA, Harvard, Vancouver, ISO, and other styles
9

Marander, Sanna. "solid objects." Thesis, Konstfack, Institutionen för Konst (K), 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:konstfack:diva-3615.

Full text
Abstract:
solid objects is a collection of objects and its cultural life, where the roles of the object, artist, collector, museum, writer, publisher and curator are suspended to reemerge in other possible forms. In this work the text becomes an object, the pocket a museum, the collection a persona, the artist its curator, the writer a sign.
APA, Harvard, Vancouver, ISO, and other styles
10

Azrak, Edy Edward. "Croissance et caractérisation des Nanofils GeSn et SiSn obtenue par le mécanisme Solide-liquide-Solide." Thesis, Normandie, 2018. http://www.theses.fr/2018NORMR135/document.

Full text
Abstract:
L’alliage germanium-étain est un semiconducteur qui suscite une grande attention en raison de ses propriétés électriques et optiques. L’incorporation de Sn dans le germanium permet d’ajuster la largeur de bande interdite (gap) et d’améliorer la mobilité des électrons et des trous, et pour une quantité suffisante d’étain, le matériau passe d’un gap indirect à direct. Cet alliage est versatile parce qu’il peut être intégré d’une façon monolithique sur le Si, c’est ce qui en fait un matériau idéal dans les domaines de l'optoélectronique à base de silicium. Cette thèse est sur la fabrication et la caractérisation de nanofils cristallins Ge1-xSnx à haute concentration en Sn. Des nouvelles stratégies ont été employées pour fabriquer de nombreux types de nanofils GeSn. Les résultats ont été expliqués en fonction des modèles cinétiques existants. Un nouveau mécanisme de croissance y est décrit: le mécanisme solide-solide-solide – SSS. Il consiste à faire croître des nanofils de GeSn dans le plan du substrat à l’aide de catalyseurs d’étain à une température inférieure au point de fusion de Sn. Quatre modèles de transport de masse sont proposés pour le mécanisme de croissance du SSS. Diverses caractérisations (par exemple TEM et APT) ont été effectuées pour étudier les propriétés physiques, et chimiques des nanofils
Germanium-Tin alloy is a unique class semiconductor gaining a strong attention because of its significant electrical and optical properties. Sn incorporation in Ge allows straightforward band-gap engineering enabling to enhance the electron and hole mobilities, and for a sufficient Sn amount an indirect-to-direct band-gap transition occurs. Its versatility rises due the possible monolithic integration on Si-platforms making it an ideal material in domains of optoelectronics, and high speed electronic devices. This thesis has focused on the fabrication and characterization of crystalline Ge1-xSnx nanowires with high Sn concentrations. New strategies were designed to fabricate many types of GeSn nanowires. The results have been explained as function of the existing kinetic models. A new growth mechanism was reported (i.e. Solid-Solid-Solid mechanism – SSS), it consists of growing in-plane GeSn nanowires using Sn catalysts below the melting point of Sn. Four mass transport models were proposed for the SSS growth mechanism. Various characterizations (e.g. TEM and APT) were done to investigate the physical and chemical properties of the obtained nanowires
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Solid"

1

Keer, H. V. Principles of solid state. New York: J. Wiley & Sons, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Angelo, Joseph A. Solid matter. New York, NY: Facts on File, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Demetz, Aron. Aron Demetz: Solide fragilità = solid fragilities = solide Fragilitäten. Cinisello Balsamo (Milano): Silvana, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Keer, H. V. Principles of the solid state. New York: John Wiley & Sons, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Henderson, Michael. Solid. New York: Funky Town Grooves, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Raine, Melinda. Solid ideas for solid waste. Thousand Oaks, CA (2955 East Hillcrest Drive, Sluite 126, Thousand Oaks, CA 91362): Conejo Future Foundation, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ennis, Bryan J. Solid-solid operations and processing. New York: McGraw-Hill, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

K, Cheetham A., and Day Peter 1938-, eds. Solid state chemistry: Techniques. Oxford: Clarendon, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

1931-, Laskar Amulya L., and Chandra Suresh 1938-, eds. Superionic solids and solid electrolytes: Recent trends. Boston: Academic Press, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Xiao, Junfeng. The Stability at the Solid-Solid and Liquid-Solid Interfaces. [New York, N.Y.?]: [publisher not identified], 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Solid"

1

Wong, Anthony Chi-Ying. "Solid-Solid Mixing." In Powder Technology in Plastics Processing, 47–60. München: Carl Hanser Verlag GmbH & Co. KG, 2021. http://dx.doi.org/10.3139/9781569908709.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chi-Ying Wong, Anthony. "Solid-Solid Mixing." In Powder Technology in Plastics Processing, 47–60. München, Germany: Carl Hanser Verlag GmbH & Co. KG, 2021. http://dx.doi.org/10.1007/978-1-56990-870-9_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kaviany, Massoud. "Solid-Solid-Fluid Systems." In Mechanical Engineering Series, 491–580. New York, NY: Springer New York, 2001. http://dx.doi.org/10.1007/978-1-4757-3488-1_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gooch, Jan W. "Solid." In Encyclopedic Dictionary of Polymers, 676. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_10855.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gooch, Jan W. "Solid." In Encyclopedic Dictionary of Polymers, 676. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_10856.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gossard, A. C. "Solid-Solid Interfaces and Superlattices." In Solvay Conference on Surface Science, 372–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-74218-7_33.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hoffmann, Christoph M. "How solid is solid modeling?" In Applied Computational Geometry Towards Geometric Engineering, 1–8. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/bfb0014475.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mohammad, S. Noor. "Vapor–Solid–Solid Growth Mechanism." In Synthesis of Nanomaterials, 101–19. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-57585-4_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mohammad, S. Noor. "Solid–Liquid–Solid Growth Mechanism." In Synthesis of Nanomaterials, 159–72. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-57585-4_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Chakrapani, Vidhya. "Semiconductor Junctions, Solid-Solid Junctions." In Encyclopedia of Applied Electrochemistry, 1882–93. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4419-6996-5_44.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Solid"

1

Adams, M. J., S. K. Biswas, and B. J. Briscoe. "Solid-Solid Interactions." In First Royal Society–Unilever Indo–UK Forum in Materials Science and Engineering. IMPERIAL COLLEGE PRESS, 1996. http://dx.doi.org/10.1142/9781783263486.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Phillips, Victor. "Smart Centrifuge for Solid Answers to Solids Control." In IADC/SPE Drilling Conference. Society of Petroleum Engineers, 1998. http://dx.doi.org/10.2118/39378-ms.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ramaswami, Krishnan, Yasushi Yamaguchi, and Fritz B. Prinz. "Spatial partitioning of solids for solid freeform fabrication." In the fourth ACM symposium. New York, New York, USA: ACM Press, 1997. http://dx.doi.org/10.1145/267734.267814.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

O’Hern, T. J., S. M. Trujillo, J. B. Oelfke, P. R. Tortora, and S. L. Ceccio. "Solids-Loading Measurements in a Gas-Solid Riser." In ASME 2004 Heat Transfer/Fluids Engineering Summer Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/ht-fed2004-56602.

Full text
Abstract:
Gas-solid multiphase flows are commonly used in chemical processing, petroleum fluid catalytic cracking, and other industrial applications. The distribution of the solid phase in gas-solid flows (generally in the form of small particles) is seldom uniform, but more commonly involves clusters, streamers, and core-annular distributions, depending on the flow orientation and the overall gas and solid flowrates and their ratio. For this reason, tomographic techniques are of great interest for measurement of cross-sectional solids distributions in such flows. The cross-sectional profiles of solids loading can be integrated to yield a cross-sectionally averaged solids loading. Determination of this averaged solids loading is needed to understand the axial variations of solids loading and its sensitivity to flow parameters and to optimize performance. A common technique for determining volume-averaged solids loading in vertical flows like the riser section of a circulating fluidized bed (CFB) is by measurement of the time-averaged axial pressure gradients along the riser axis (differential pressure or ΔP method). Neglecting acceleration and wall friction, the axial momentum balance simplifies to equate the multiphase hydrostatic pressure term with the pressure gradient along the axis. Many authors (e.g., Louge and Chang, 1990) have pointed out the neglected terms in this approach and generally show that ΔP is applicable in the special cases of no solids-loading gradient (fully developed flow) or small solids flux. A more generally applicable technique for measuring solids loading in gas-solid flows is gamma tomography. A gamma tomography system using a 100-mCi Cs-137 source collimated into a fan beam and an array of scintillation detectors, has been developed and implemented for application to a cold-flow (non-reacting) CFB. The CFB has a 14-cm-ID 6-m tall riser, and is currently operated with a multiphase mixture of air and fluid catalytic cracking (FCC) catalyst particles. Typical operating conditions include mean superficial gas velocities up to 7.4 m/s and solids fluxes up to approximately 100 kg/m2·s. Quantitative comparison of gamma- and ΔP-determined solids loadings was made over a range of operating conditions (combination of superficial gas velocity and solids flux). Results indicate that the differences between gamma and ΔP-determined cross-sectionally averaged solids loading are most pronounced near the base of the riser, where solids concentration is highest and the mixture is accelerating. Higher in the riser, the agreement is better. Additionally, the difference is larger in cases of higher superficial gas velocity. In addition, several studies were performed to design an electrical-impedance tomography (EIT) system for a gas-solid flow to collect data suitable for validating computational models. A two-electrode bulk impedance system was studied experimentally. The required accuracy, spatial resolution and temporal resolution of an EIT system are addressed, and modeling and reconstruction are discussed. Bulk solid volume fractions measured by the two-electrode system and by gamma-densitometry tomography are in general agreement. Experiments with the two-electrode system also show that the Maxwell-Hewitt relation, used to convert the mixture impedance to solid volume fraction, must be applied carefully, paying attention to the identity of the dispersed and continuous phases. The design of a 16-electrode system is also described.
APA, Harvard, Vancouver, ISO, and other styles
5

Wojtyna, M. S., and P. A. D. de Maine. "SOLID." In the 1988 ACM sixteenth annual conference. New York, New York, USA: ACM Press, 1988. http://dx.doi.org/10.1145/322609.323140.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hasheminezhad, Seyed Majid, Erling Ildstad, and Arne Nysveen. "Breakdown strength of solid|solid interface." In 2010 10th IEEE International Conference on Solid Dielectrics (ICSD). IEEE, 2010. http://dx.doi.org/10.1109/icsd.2010.5568229.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Takada, Kazunori. "Solid electrolytes and solid-state batteries." In ELECTROCHEMICAL STORAGE MATERIALS: SUPPLY, PROCESSING, RECYCLING AND MODELLING: Proceedings of the 2nd International Freiberg Conference on Electrochemical Storage Materials. Author(s), 2016. http://dx.doi.org/10.1063/1.4961900.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Severino, Jose G., Luis Eduardo Gomez, Shoubo Wang, Ram S. Mohan, and Ovadia Shoham. "Mechanistic Modeling of Solids Separation in Solid/Liquid Hydrocyclones." In SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers, 2009. http://dx.doi.org/10.2118/124499-ms.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Balasubramanian, Ganesh, Ravi Kappiyoor, and Ishwar K. Puri. "Multiscale Thermal Transport Across Solid-Solid Interfaces." In ASME 2010 International Mechanical Engineering Congress and Exposition. ASMEDC, 2010. http://dx.doi.org/10.1115/imece2010-38766.

Full text
Abstract:
We propose a novel multiscale model in order to better understand thermal transport across solid-solid interfaces in a mesoscale system. While Molecular Dynamics (MD) simulations tend to be very accurate, they are also computationally rather expensive. Continuum simulations such as Symmetric Smoothed Particle Hydrodynamics (SSPH), cannot take temperature discontinuities that may occur across interfaces into account, which can cause erroneous results. As such, we develop a multiscale model in which we run MD simulations over the region containing the interface, while running SSPH simulations over the remainder of the domain. This drastically reduces the number of molecules simulated by MD, reducing computational time, while hopefully still maintaining the accuracy provided by a “pure” MD run. Results from the simulation indicate that when boundary temperatures are specified, the data from the multiscale model is highly similar to the data from the pure MD run. However, when boundary fluxes are specified, the multiscale model tends to predict higher temperatures than does MD. We believe that this may be due to continuum SSPH simulations being unable to take into account phonon scattering with non-periodic boundary conditions.
APA, Harvard, Vancouver, ISO, and other styles
10

Hasheminezhad, S. M. "Breakdown strength of solid ∣ solid interfaces." In 2011 IEEE PES PowerTech - Trondheim. IEEE, 2011. http://dx.doi.org/10.1109/ptc.2011.6019392.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Solid"

1

DR. PAUL WYNBLATT. ENERGETICS OF SOLID/SOLID AND LIQUID/SOLID INTERFACES. Office of Scientific and Technical Information (OSTI), October 2004. http://dx.doi.org/10.2172/833421.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Murray, R. W. Solid state voltammetry and sensors in solids and gases. Office of Scientific and Technical Information (OSTI), April 1992. http://dx.doi.org/10.2172/5830050.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Murray, R. (Solid state voltammetry and sensors in solids and gases). Office of Scientific and Technical Information (OSTI), January 1989. http://dx.doi.org/10.2172/5315509.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Cooke, Gary A. Solid Phase Characterization of Solids Recovered from Failed Sluicer Arm. Office of Scientific and Technical Information (OSTI), March 2015. http://dx.doi.org/10.2172/1172386.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

DeRose, Michelle E., and Jessica Harper. Cryogenic Oxidizers: Solid Oxygen and Ozone-Doped Solid Oxygen. Fort Belvoir, VA: Defense Technical Information Center, February 1998. http://dx.doi.org/10.21236/ada397861.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sakamoto, Jeff, D. Siegel, J. Wolfenstine, C. Monroe, and J. Nanda. Solid electrolytes for solid-state and lithium-sulfur batteries. Office of Scientific and Technical Information (OSTI), August 2018. http://dx.doi.org/10.2172/1464928.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Smith, Ianthe, Paola Méndez, and Rodrigo Riquelme. Solid Waste Management in the Caribbean: Proceedings from the Caribbean Solid Waste Conference. Inter-American Development Bank, April 2016. http://dx.doi.org/10.18235/0009290.

Full text
Abstract:
This publication looks into the Solid Waste Sector situation in nine Caribbean countries: The Bahamas, Barbados, Belize, Jamaica, Guyana, Haiti, Suriname, St Lucia and Trinidad and Tobago. Adequate solid waste management is a particularly sensitive issue for them. This publication provides a detailed overview of the institutional arrangements in these countries, describes the main challenges and recommendations for solid waste collection, treatment and disposal, and discusses topics such as the financial sustainability and the impact of climate change on the sector.
APA, Harvard, Vancouver, ISO, and other styles
8

Parazin, R. J. Solid waste handling. Office of Scientific and Technical Information (OSTI), May 1995. http://dx.doi.org/10.2172/90044.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Shaver, David C. Solid State Research. Fort Belvoir, VA: Defense Technical Information Center, August 2001. http://dx.doi.org/10.21236/ada399475.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Shaver, David C. Solid State Research. Fort Belvoir, VA: Defense Technical Information Center, November 2001. http://dx.doi.org/10.21236/ada401971.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography