Academic literature on the topic 'Solderability test methods'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Solderability test methods.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Solderability test methods"

1

Pang, John H. L., and F. X. Che. "Isothermal Cyclic Bend Fatigue Test Method for Lead-Free Solder Joints." Journal of Electronic Packaging 129, no. 4 (August 27, 2007): 496–503. http://dx.doi.org/10.1115/1.2809442.

Full text
Abstract:
Isothermal three-point and four-point cyclic bend fatigue test methods have been developed for Sn–Ag–Cu solder joints. Reported bend tests from the literature were conducted at room temperature (25°C) and there is lack of data for lead-free solder joints. In this study, very-thin quad flat no-lead (VQFN) assembly with Sn–Ag–Cu lead-free solder was tested under three-point and four-point cyclic bending loads at both room temperature (25°C) and high temperature (125°C). The correlation between three-point and four-point bend tests was developed. Two different board surface finishes of electroless Ni and immersion gold (ENIG) and organic solderability preservatives (OSP) were investigated. Bending fatigue resistance of VQFN with OSP finish is slightly better than ENIG finish case. The acceleration factor of failure at high temperature (125°C) is higher than that at room temperature (25°C). Finite element analysis modeling and simulation were performed for different test conditions to investigate the solder joint stress-strain behavior. Volume-averaged energy density was used as a fatigue damage parameter and energy-based bending fatigue models were developed for VQFN with Sn–Ag–Cu solder joint under cyclic bending load at both 25°C and 125°C.
APA, Harvard, Vancouver, ISO, and other styles
2

Guéné, Emmanuelle, Richard Anisko, and Céline Puechagut. "Solderability and Reliability Evolution of No-Clean Solder Fluxes For Selective Soldering." International Symposium on Microelectronics 2017, no. 1 (October 1, 2017): 000547–56. http://dx.doi.org/10.4071/isom-2017-tha26_146.

Full text
Abstract:
Abstract Flux consumption for wave soldering tends to decrease, mainly due to its gradual replacement by reflow soldering methods (i.e. pin-in-paste) in many electronics applications. However, in several cases, wave soldering still remains a must, with an increasing share of “selective” soldering processes, either using wave frames with dedicated apertures or solder fountains. Such processes are more challenging for the fluxes in terms of reliability under operation, since some chemistries remaining on the printed circuit boards after soldering may promote corrosion. Thus, flux manufacturers had to adapt their formulations to minimize such issues while keeping an efficient activation level, with several types of alloys (tin-lead, tin-silver-copper and low/no-silver) and associated with the numerous types of finishes encountered. The paper will cover the types of flux used in the electronic industry according to their chemistry and activation level (rosin-based, halides, alcohol-based or water-based flux…), and their characteristics with reference to standards. The limits of current standards will be discussed in regards to the last generation solder fluxes. Then, the development of two low-residue new generation fluxes, an alcohol-based flux and a true VOC-free flux, will be described, according to requirements: the lab tests results (surface tension, spread tests, wettability tests…) will be presented and discussed. Reliability will be especially investigated through surface insulation resistance, electro-chemical migration test, ionic contamination as well as Bono tests to determine the candidates able to provide high processability combined with chemical inertness of residues. Finally, the performance of flux will be assessed through customer tests, involving several types of boards, finishes and different solder alloys and wave equipment.
APA, Harvard, Vancouver, ISO, and other styles
3

Wei, Xin, Sa'd Hamasha, Ali Alahmer, and Mohamed Belhadi. "Assessing the SAC305 Solder Joint Fatigue in BGA Assembly Using Strain-Controlled and Stress-Controlled Approaches." Journal of Electronic Packaging, December 22, 2022, 1–29. http://dx.doi.org/10.1115/1.4056559.

Full text
Abstract:
Abstract One of the crucial factors in determining the reliability of an electronic device is fatigue failure of the interconnecting solder joints. In most cases, large bulk samples are used to study the fatigue characteristics of the solder materials. Real solder joints often encountered in ball grid array (BGA) components have only been considered in limited investigations. In this study, a specialized sandwich BGA test vehicle with a 3×3 solder joint was connected to the two substrates. The alloys were tested at room temperature using an Instron micromechanical tester in both the stress-controlled and strain-controlled methods. The tests were performed at a constant strain rate. Four stresses and four strain levels of the solder alloy Sn-3.0Ag-0.5Cu (SAC305) were examined using organic solderability preservative (OSP) and electroless nickel-immersion silver (ENIG) surface finishes. The work per cycle and plastic strain range were computed based on a systematic recording of the stress-strain (hysteresis) loops of each sample. A novel approach based on inelastic work is developed to calculate the fatigue life of a BGA assembled test vehicle. The results of the stress-controlled and strain-controlled tests indicated that the OSP surface finish outperformed the ENIG surface finish. Regardless of the testing process and surface finish, the Coffin-Manson and Morrow energy models were acceptable for SAC305.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Solderability test methods"

1

"Advances in Soldering Technology." In Principles of Soldering, 189–242. ASM International, 2004. http://dx.doi.org/10.31399/asm.tb.ps.t62440189.

Full text
Abstract:
Abstract This chapter presents several materials and processes related to soldering technology. It first provides information on lead-free solders, followed by sections devoted to flip-chip processes, diffusion soldering, and modeling. Scanning acoustic microscopy and fine-focus x-ray techniques are also discussed. The chapter describes several evaluation procedures and tests developed to measure solderability and standards for process calibration. The chapter also describes the characteristics of reinforced solders, amalgams used as solders, and other strategies to boost the strength of solders. Further, the chapter considers methods for quantifying the mechanical integrity of joints and predicting their dimensional stability under specified environmental conditions. It discusses the effects of rare earth elements on the properties of solders. The chapter concludes with information on advanced joint characterization techniques.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Solderability test methods"

1

Lee, S. W. R., J. C. C. Lo, X. Qiu, and N. Tu. "Solderability and Reliability of Sintered Nano-Ag Bond Pads of Printed Re-Distribution Layer (RDL)." In ASME 2021 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/ipack2021-74199.

Full text
Abstract:
Abstract Re-distribution layer (RDL) is one key enabling technology for advance packaging. RDL is usually fabricated in wafer level by photolithography process. An alternative approach for implementing RDL by additive manufacturing (AM) method is proposed in this study. This allows RDL to be fabricated on singulation chip. Nano-silver (nano-Ag) ink is printed on the silicon chip to form routing traces and bond pads. However, the Ag pad may be consumed by solder quickly if the process is not properly controlled. This paper studied the effect of nano-Ag ink sintering condition on the solderability of Ag pad. The solder joint mechanical integrity was evaluated by solder ball shear test. High temperature storage test was also carried out to evaluate the solder joint reliability. Experiment results showed that Ag pad fabricated by AM is SMT compatible. High temperature storage did not cause early failure to the samples. There was not significant change in the Ag3Sn IMC layer thickness and mechanical strength. The finding of the present study will serve as a very useful reference for future practice of forming solder joints on sintered nano-Ag pads.
APA, Harvard, Vancouver, ISO, and other styles
2

Srinivasan, G., R. Murcko, and K. Srihari. "Evaluation of Secondary Wire Bond Integrity on Ag Plated and Ni/Pd Based Lead Frame Plating Finishes." In ASME 2009 InterPACK Conference collocated with the ASME 2009 Summer Heat Transfer Conference and the ASME 2009 3rd International Conference on Energy Sustainability. ASMEDC, 2009. http://dx.doi.org/10.1115/interpack2009-89241.

Full text
Abstract:
As the legislatures demand the use of lead (Pb) free plating finishes in lead frame manufacturing, different plating finishes are being offered by the lead frame makers. Lead frames are most often designed with two different Pb free plating finishes, primarily tin and nickel/palladium (Ni/Pd) based. The tin post mold plated lead frames use silver selective plating on the lead fingers for secondary wire bonding whereas the pre-plated Ni/Pd based lead frames use the same Ni/Pd based finish throughout. Enhanced versions of Ni/Pd based plating finishes such as nickel/palladium/gold (Ni/Pd/Au), nickel/palladium/gold-palladium (Ni/Pd/Au-Pd) and nickel/palladium/gold-silver (Ni/Pd/Au – Ag) are now available to further improve the wirebondability, solderability and reliability of the package. The development of a new lead frame finish involves a wide variety of concerns which must be addressed and thus mandates further evaluation of these new structures. Using the common Pb free lead frame plating finish of selectively plated silver (Ag) as the basis, a comparative approach was used to evaluate the secondary wire bond integrity of a 25 micron (1 mil) thick gold wire on Ni/Pd based lead frame plating finishes. The integrity of the secondary wire bonds for different plating finishes was investigated at various assembly thermal exposure stages using the wire pull strength test as the arbiter. Reliability tests, such as High Temperature Storage (HTS) and Unbiased Highly Accelerated Stress Test (UBHAST), were also conducted. Finally, failure analysis was conducted with the help of metallographic cross sectioning, SEM/EDX (Scanning Electron Microscope/Energy Dispersive X-ray) analysis and statistical analysis of the wire pull strength test results. Before wire bonding the lead frames, the plating surface was investigated for its surface integrity with the help of plating quality tests, such as: (i) adhesive tape test, (ii) bend test, (iii) heating test and the (iv) scribing test. Also, since wire pull is a destructive test, a statistical method called a nested gauge R&R study was used to estimate the repeatability and reproducibility of the measurement system. Failure analysis showed that there were silver and copper migrations over the Ag plated lead frame when exposed to a high temperature storage test at 175°C for 1000 hrs, but this did not affect the bond integrity. However, the Ni/Pd based lead frames did not show any metal migration since nickel acts as a barrier against the base metal diffusion.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography