Academic literature on the topic 'Solar PV array'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Solar PV array.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Solar PV array"
Udenze, Peter, Yihua Hu, Huiqing Wen, Xianming Ye, and Kai Ni. "A Reconfiguration Method for Extracting Maximum Power from Non-Uniform Aging Solar Panels." Energies 11, no. 10 (October 13, 2018): 2743. http://dx.doi.org/10.3390/en11102743.
Full textWei, Xue Ye, Bin Guo, De Yue Li, and Gzhong Yang. "A Modeling Method and I-V Characteristics for PV Array." Applied Mechanics and Materials 713-715 (January 2015): 1202–7. http://dx.doi.org/10.4028/www.scientific.net/amm.713-715.1202.
Full textRajanna, B. V., and Malligunta Kiran Kumar. "Chopper-Based Control Circuit for BESS Integration in Solar PV Grids." Energies 14, no. 6 (March 10, 2021): 1530. http://dx.doi.org/10.3390/en14061530.
Full textKamble, Vishwesh, and Milind Marathe. "Modelling and Simulation of Solar PV Array Field Incorporated with Solar Irradiance and Temperature Variation to Estimate Output Power of Solar PV Field." International Journal of Students' Research in Technology & Management 3, no. 2 (September 27, 2015): 251–57. http://dx.doi.org/10.18510/ijsrtm.2015.323.
Full textSarhaddi, Faramarz, Said Farahat, Hossein Ajam, and Amin Behzadmehr. "Exergetic Optimization of a Solar Photovoltaic Array." Journal of Thermodynamics 2009 (February 10, 2009): 1–11. http://dx.doi.org/10.1155/2009/313561.
Full textSuresh Babu, G., B. Prem Charan, and T. Murali Krishna. "Performance Analysis of SPV Module Using Solar PVTR System." International Journal of Engineering & Technology 7, no. 3.3 (June 21, 2018): 68. http://dx.doi.org/10.14419/ijet.v7i3.3.14488.
Full textArdhenta, Lunde, and Wijono Wijono. "Photovoltaic Array Modeling under Uniform Irradiation and Partial Shading Condition." International Journal of Applied Power Engineering (IJAPE) 6, no. 3 (December 1, 2017): 142. http://dx.doi.org/10.11591/ijape.v6.i3.pp142-149.
Full textArdhenta, Lunde, and Wijono Wijono. "Photovoltaic Array Modeling under Uniform Irradiation and Partial Shading Condition." International Journal of Applied Power Engineering (IJAPE) 6, no. 3 (December 1, 2017): 144. http://dx.doi.org/10.11591/ijape.v6.i3.pp144-152.
Full textMas'ud, Abdullahi Abubakar. "The Combined Effect of Current Boosting and Power Loss on Photovoltaic Arrays under Partial Shading Conditions." Engineering, Technology & Applied Science Research 13, no. 1 (February 5, 2023): 9932–40. http://dx.doi.org/10.48084/etasr.5369.
Full textSmith, Sarah E., Brooke J. Stanislawski, Byron Kasey Eng, Naseem Ali, Timothy J. Silverman, Marc Calaf, and Raúl Bayoán Cal. "Viewing convection as a solar farm phenomenon broadens modern power predictions for solar photovoltaics." Journal of Renewable and Sustainable Energy 14, no. 6 (November 2022): 063502. http://dx.doi.org/10.1063/5.0105649.
Full textDissertations / Theses on the topic "Solar PV array"
Tian, Feng. "SOLAR-BASED SINGLE-STAGE HIGH-EFFICIENCY GRID-CONNECTED INVERTER." Master's thesis, University of Central Florida, 2005. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/3503.
Full textM.S.E.E.
Department of Electrical and Computer Engineering
Engineering and Computer Science
Electrical Engineering
Paul, Biddyut, and s3115524@student rmit edu au. "Direct-Coupling of the Photovoltaic Array and PEM Electrolyser in Solar-Hydrogen Systems for Remote Area Power Supply." RMIT University. Aerospace, Mechanical and Manufacturing Engineering, 2009. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20090624.141048.
Full textChen, Penghao. "Improvement of the Operating Efficiency and Initial Costs of a Utility-Scale Photovoltaic Array through Voltage Clamping." University of Toledo / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1333654173.
Full textSamadi, Afshin. "Large Scale Solar Power Integration in Distribution Grids : PV Modelling, Voltage Support and Aggregation Studies." Doctoral thesis, KTH, Elektriska energisystem, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-154602.
Full textThe Doctoral Degrees issued upon completion of the programme are issued by Comillas Pontifical University, Delft University of Technology and KTH Royal Institute of Technology. The invested degrees are official in Spain, the Netherlands and Sweden, respectively. QC 20141028
Simiyu, Donah Sheila Nasipwondi. "Optimal cleaning strategy of large-scale solar PV arrays considering non-uniform dust deposition." Diss., University of Pretoria, 2020. http://hdl.handle.net/2263/79656.
Full textDissertation (MEng)--University of Pretoria, 2020.
Electrical, Electronic and Computer Engineering
MEng
Unrestricted
"A Simulator for Solar Array Monitoring." Master's thesis, 2016. http://hdl.handle.net/2286/R.I.39460.
Full textDissertation/Thesis
Masters Thesis Electrical Engineering 2016
"Reconfigurable Solar Array Interface for Maximum Power Extraction in Spacecrafts." Master's thesis, 2019. http://hdl.handle.net/2286/R.I.55652.
Full textDissertation/Thesis
Masters Thesis Electrical Engineering 2019
"26+ Year Old Photovoltaic Power Plant: Degradation and Reliability Evaluation of Crystalline Silicon Modules - North Array." Master's thesis, 2013. http://hdl.handle.net/2286/R.I.18002.
Full textDissertation/Thesis
M.S.Tech Electrical Engineering 2013
Jansen, van Rensburg Neil. "Technology development of a maximum power point tracker for regenerative fuel cells." Thesis, 2015. http://hdl.handle.net/10352/317.
Full textGlobal warming is of increasing concern due to several greenhouse gases. The combustion of fossil fuels is the major contributor to the greenhouse effect. To minimalise this effect, alternative energy sources have to be considered. Alternative energy sources should not only be environmentally friendly, but also renewable and/or sustainable. Two such alternative energy sources are hydrogen and solar energy. The regenerative fuel cell, commonly known as a hydrogen generator, is used to produce hydrogen. The current solar/hydrogen system at the Vaal University of Technology’s Telkom Centre of Excellence makes use of PV array to supply power to an inverter and the inverter is connected to the hydrogen generator. The inverter provides the hydrogen generator with 220VAC. The hydrogen generator has its own power supply unit to convert the AC power back to DC power. This reduces the efficiency of the system because there will be power loss when converting DC power to AC power and back to DC power. The hydrogen generator, however, could be powered directly from a PV array. However, the hydrogen generator needs specific input parameters in order to operate. Three different input voltages with their own current rating are required by the hydrogen generator to operate properly. Thus, a DC-DC power supply unit needs to be designed to be able to output these parameters to the hydrogen generator. It is also important to note that current PV panel efficiency is very low; therefore, the DC-DC power supply unit also needs to extract the maximum available power from the PV array. In order for the DC-DC power supply unit to be able to extract this maximum power, a maximum power point tracking algorithm needs to be implemented into the design. The DC-DC power supply is designed as a switch mode power supply unit. The reason for this is that the efficiency of a switch mode power supply is higher than that of a linear power supply. To reach the objective the following methodology was followed. The first part of the research provided an introduction to PV energy, charge controllers and hydrogen generators. The problem statement is included as well as the purpose of this research and how this research was to be carried out. The second part is the literature review. This includes the background study of algorithms implemented in MPPT’s; it also explains in detail how to design the MPPT DC-DC SMPS. The third part was divided into two sections. The first section is the design, programming and manufacturing of the MPPT DC-DC SMPS. The second section is the simulation of the system as a whole which is the simulation of the PV array connected to the MPPT DC-DC SMPS and the hydrogen generator. The fourth part in the research compared the results obtained in the simulation and practical setup. The last part of the research provided a conclusion along with recommendation made for further research. The simulation results showed that the system works with an efficiency of 40,84%. This is lower than expected but the design can be optimised to increase efficiency. The practical results showed the efficiency to be 38%. The reason for the lower efficiency is the simulation used ideal components and parameters, whereas the practical design has power losses due to the components not being ideal. The design of the DC-DC switch mode power supply, however, indicated that the hydrogen generator could be powered from a PV array without using an inverter, with great success.
Books on the topic "Solar PV array"
Center, Lewis Research, ed. Design and optimization of a self-deploying single axis tracking PV array. Cleveland, Ohio: National Aeronautics and Space Administration, Lewis Research Center, 1992.
Find full textEconomic Optimization of PV Array Tilt Angle. academia.edu, 2017.
Find full textOptimization of PV Panels Spacing. academia.edu, 2017.
Find full textBook chapters on the topic "Solar PV array"
Kaushika, N. D., Anuradha Mishra, and Anil K. Rai. "Solar PV Module and Array Network." In Solar Photovoltaics, 81–92. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-72404-1_7.
Full textBraun, Henry, Santoshi T. Buddha, Venkatachalam Krishnan, Cihan Tepedelenlioglu, Andreas Spanias, Toru Takehara, Ted Yeider, Mahesh Banavar, and Shinichi Takada. "Monitoring of PV Systems." In Signal Processing for Solar Array Monitoring, Fault Detection, and Optimization, 57–66. Cham: Springer International Publishing, 2011. http://dx.doi.org/10.1007/978-3-031-02497-9_6.
Full textVerma, Pallavi, Priya Mahajan, and Rachana Garg. "Sensitivity Analysis of Solar PV System for Different PV Array Configurations." In Communications in Computer and Information Science, 393–403. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-91244-4_31.
Full textDas, Gourab, M. De, S. Mandal, and K. K. Mandal. "Characteristics of Solar PV Array Implemented in Matlab Software." In Lecture Notes in Networks and Systems, 11–19. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-3953-9_2.
Full textPalawat, Karni Pratap, Vinod K. Yadav, and R. L. Meena. "Performance Evaluation of Solar PV Array Under Various Partial Shading Conditions." In Lecture Notes in Electrical Engineering, 445–52. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-7994-3_41.
Full textNallapaneni, Shreya, Kairavi Shah, and Harsh S. Dhiman. "Automated Solar PV Array Cleaning Based on Aerial Computer Vision Framework." In Soft Computing: Theories and Applications, 563–71. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-9858-4_48.
Full textPalawat, Karni Pratap, Vinod Kumar Yadav, R. L. Meena, and Santosh Ghosh. "Experimental Investigation of Performance of PV Array Topologies under Simulated PSCs." In Applied Soft Computing and Embedded System Applications in Solar Energy, 47–64. First edition. | Boca Raton, FL : CRC Press, 2021. |: CRC Press, 2021. http://dx.doi.org/10.1201/9781003121237-3.
Full textTakahashi, Masahide, Shoji Miki, Seiji Wakamatsu, and Junji Matsumoto. "Construction, Research and Development of Pv Power Generation System for Centralized Array Location (1MW)." In Seventh E.C. Photovoltaic Solar Energy Conference, 369–73. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3817-5_67.
Full textRawat, Sandeep, Reetu Naudiyal, and Rupendra Kumar Pachauri. "Experimental Study on Solar PV Array Configurations Under Non-uniform Irradiation Conditions." In Advances in Sustainable Development, 171–83. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-4400-9_13.
Full textNihanth, Malisetty Siva Sai, N. Rajasekar, Dhanup S. Pillai, and J. Prasanth Ram. "A New Array Reconfiguration Scheme for Solar PV Systems Under Partial Shading Conditions." In Intelligent Computing Techniques for Smart Energy Systems, 387–96. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-0214-9_43.
Full textConference papers on the topic "Solar PV array"
Barkaszi, Stephen F., and James P. Dunlop. "Discussion of Strategies for Mounting Photovoltaic Arrays on Rooftops." In ASME 2001 Solar Engineering: International Solar Energy Conference (FORUM 2001: Solar Energy — The Power to Choose). American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/sed2001-142.
Full textEl-Shatter, Thanaa F., Mona N. Eskandar, and Mohsen T. El-Hagry. "Hybrid PV/Fuel Cell System Design and Simulation." In ASME 2001 Solar Engineering: International Solar Energy Conference (FORUM 2001: Solar Energy — The Power to Choose). American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/sed2001-134.
Full textYoshioka, Kazuya, Tadashi Saitoh, and Satoru Yatabe. "Performance Assessment and Prediction of a PV Array Installed Vertically on Building Walls." In ASME 2003 International Solar Energy Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/isec2003-44225.
Full textPeña, R. A. S., Erees Queen B. Macabebe, and Davide Del Col. "Electrical PV Array Reconfiguration Strategy Against Partial Shading." In ISES Solar World Congress 2015. Freiburg, Germany: International Solar Energy Society, 2016. http://dx.doi.org/10.18086/swc.2015.05.14.
Full textSchripsema, Jason, and Jerry Culik. "A Simple Technique for Evaluating the Performance of Grid Connected Inverters." In ASME Solar 2002: International Solar Energy Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/sed2002-1044.
Full textStone, Kenneth W., Vahan Garboushian, and Herb Hayden. "Design and Performance of the Amonix High Concentration Solar PV System." In ASME Solar 2002: International Solar Energy Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/sed2002-1047.
Full textDunlop, James P., and Brian N. Farhi. "Recommendations for Maximizing Battery Life in Photovoltaic Systems: A Review of Lessons Learned." In ASME 2001 Solar Engineering: International Solar Energy Conference (FORUM 2001: Solar Energy — The Power to Choose). American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/sed2001-135.
Full textLynn, Kevin. "Outdoor Performance Characterization of Grid-Connected Inverters." In ASME 2004 International Solar Energy Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/isec2004-65114.
Full textLynn, Kevin, and William Wilson. "Early Results From the Long-Term Testing of Inverters." In ASME 2006 International Solar Energy Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/isec2006-99111.
Full textTorrey, David A., and James M. Kokernak. "Increasing the Productivity of Solar Photovoltaic Systems." In ASME 2006 International Solar Energy Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/isec2006-99096.
Full textReports on the topic "Solar PV array"
Beatty, Brenda, Jordan Macknick, James McCall, Genevieve Braus, and David Buckner. Native Vegetation Performance under a Solar PV Array at the National Wind Technology Center. Office of Scientific and Technical Information (OSTI), May 2017. http://dx.doi.org/10.2172/1357887.
Full textRamos, Jaime. Operation of Grid-tied 5 kWDC solar array to develop Laboratory Experiments for Solar PV Energy System courses. Office of Scientific and Technical Information (OSTI), December 2012. http://dx.doi.org/10.2172/1061479.
Full textStern, M., R. West, G. Fourer, W. Whalen, M. Van Loo, and G. Duran. Development of a low-cost integrated 20-kW ac solar tracking sub- array for grid-connected PV power system applications. Phase 1, Annual technical report, 11 July 1995--31 July 1996. Office of Scientific and Technical Information (OSTI), June 1997. http://dx.doi.org/10.2172/549670.
Full text