Dissertations / Theses on the topic 'Solar Photon'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Solar Photon.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Meyer, Thomas J. J. "Photon transport in fluorescent solar collectors." Thesis, University of Southampton, 2010. https://eprints.soton.ac.uk/185075/.
Full textHu, Lu. "Photon management in thermal and solar photovoltaics." Thesis, Massachusetts Institute of Technology, 2008. http://hdl.handle.net/1721.1/46496.
Full textIncludes bibliographical references (p. 150-161).
Photovoltaics is a technology that directly converts photon energy into electrical energy. Depending on the photon source, photovoltaic systems can be categorized into two groups: solar photovoltaics (PV) and thermophotovoltaics (TPV). In solar photovoltaic systems, the photon source is the sun, whereas in thermophotovoltaic systems the photons are from artificially designed thermal emitters that operate at a lower temperature. The differences in the photon sources lead to different research emphases on the two photovoltaic systems in this work. This thesis investigates ways to control photon emission and absorption for solar energy and TPV applications. Several topics are discussed, including photon transport in multilayer structures, measurement of near-field thermal radiation, optical absorption in silicon nanowire structures, surface-plasmon enhanced near-bandgap optical absorption in silicon, and selective absorber surface for solar thermal applications. For thermophotovoltaic systems, the work is focused on thermal emission and photon transport. The study of photon transport in multilayer structures is presented. Results based on wave-optics and ray tracing methods are compared. The analysis shows that for structures contain a large number of layers, the coherence length of the emitting source is no longer a valid criterion to indicate whether ray tracing method is valid. Instead, wave inference effects always play a role. The effects of photon localization are also discussed. Surface-mode enhanced near-field thermal radiation is explored in this work as an effective way to tailor the thermal emission for TPV systems. Calculations based on fluctuation-dissipation theorem and Maxwell's equations are presented to study radiative heat transfer between two closely-spaced glass plates. The theoretical analysis shows that the radiative heat transfer between closely-spaced glass plates is enhanced by surface phonon polaritions and the flux can exceed the far-field upper-limit imposed by Planck's law of blackbody radiation.
(cont.) An experimental system was built to test near-field radiative heat transfer between two parallel glass plates, and the experimental results show good agreement with the theoretical predictions. For solar photovoltaics, the emphasis in this work is on improving optical absorption in silicon-based cells. Two nanostructures, silicon nanowire arrays and silicon embedded with small silver particles, have been analyzed as potential candidates for solar energy harvesting. The study on silicon nanowire structures reveals that nanowires have desirable antireflection characteristics. Several parameters, such as the length and diameter of the nanowires as well as the spacing between the wires, have been studied to provide the basis for the optimization of nanowire based solar cells. The study shows that nanowire structures have low reflectance over a broad spectrum and can absorb shortwavelength photons efficiently. However, the analysis also indicates that silicon nanowire is not efficient in absorbing long-wavelength photons. Longer wires in comparison to the thickness of dense films are generally required to compensate low absorption of the near-bandgap photons. The analysis of surface-plasmon assisted photon absorption is presented to address the problem of inadequate absorption of near-bandgap photons in silicon. Instead of increasing the optical path of photons for more absorption, surface plasmons are explored to enhance the local electromagnetic field and thus the optical absorption. An extended Mie scattering formulation is used to calculate the optical absorption around spherical silver particles embedded in silicon. It is found that local field enhancement by surface plasmon can lead to 50 times more absorption near the bandgap of silicon. An analytical model is developed to study the concentration effects of the surface plasmon field. It is shown that the net absorption gain reaches maximum when the spherical shell surrounding the particle has an outer diameter of 1.26 times of the particle diameter. The absorption loss in the metallic sphere, however, is a main obstacle to overcome.
(cont.) Finally, a different approach of solar energy utilization is discussed in this work. Selective absorber surfaces are studied for solar thermal energy harvesting. The surfaces consist of subwavelength periodic metallic structures. Finite-Difference-Time-Domain (FDTD) analysis is conducted on the metallic structures. The effects of lattice spacing and structure thickness are presented. The numerical simulation indicates that the metallic structures have good spectral selectivity: high absorptance in visible range and low emittance in infrared. Fabrication of the selective absorber surface is attempted. Preliminary experimental results are given in this work. As a proof of concept, nickel is plated in porous anodic aluminum. The resultant structure shows good spectral selectivity which is not found in bulk nickel or aluminum.
by Lu Hu.
Ph.D.
Steinfeld, Jeffrey I. "High-flux solar photon processes: opportunities for applications." MIT Energy Lab, 1992. http://hdl.handle.net/1721.1/27220.
Full textMuncey, Roderick John. "Polymers for photon-harvesting and solar energy conversion." Thesis, University of Sheffield, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.434542.
Full textJohnson, David C. "Photon Recycling in strain-balanced quantum well solar cells." Thesis, Imperial College London, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.501136.
Full textELSEHRAWY, FARID KHALED MOHAMED FARID. "Photon Management for Thin-Film Quantum Dot Solar Cells." Doctoral thesis, Politecnico di Torino, 2020. http://hdl.handle.net/11583/2843974.
Full textKang, Ji-Hwan. "Energy transfer enhancement of photon upconversion systems for solar energy harvesting." Thesis, Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/45846.
Full textHassan, Safaa. "Optical Property Study of 2D Graded Photonic Super-Crystals for Photon Management." Thesis, University of North Texas, 2020. https://digital.library.unt.edu/ark:/67531/metadc1703318/.
Full textHsu, Wei-Chun. "Harvesting photon energy : ultra-thin crystalline silicon solar cell & near-field thermoradiative cells." Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/104252.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 134-148).
Photons from the sun and terrestrial sources have great potential to satisfy the energy demand of humans. This thesis studies two types of energy conversion technologies, photovoltaic solar cells based on crystalline silicon thin films and thermal-radiative cells using terrestrial heat sources, focusing on managing photons but also concurrently considering electron transport and entropy generation. Photovoltaic technology has been widely adopted to convert solar energy into electricity. Crystalline silicon material occupies ~90% of the photovoltaic market. However, the silicon material in a photovoltaic module with ~180-pm-thick silicon material contributes more than 30% of the overall cost, giving rise to an obstacle to compete with fossil fuel energy. One promising solution to break this barrier is the technology of thin-film crystalline silicon solar cells if the weak absorption of silicon can be overcome. To maintain its high energy conversion efficiency, nanostructure is designed considering both light trapping and electron collection. This design guided the fabrication of 10-pm-thick crystalline silicon photovoltaic cells with efficiencies as high as 15.7%. To reach efficiency >20% in industry, multiple strategies have been investigated to further improve the performance including the least-common-multiple rule for the double gratings structure, external optical cavity, high quality silicon in bulk material and interfaces, and optimal contact spacing and doping. For the energy conversion of terrestrial heat source, a direct bandgap solar cell can work in the reverse bias mode to convert energy into electricity companied by emission of photons as entropy carriers. Photon spectral entropy and fluxes are used to develop strategies for improving the heat to electricity conversion efficiency. Near-field radiative transfer, especially using phonon polariton material to couple out emitted photons from electron-hole recombination, is proposed to enhance energy conversion efficiency as well as the power density. We predict that the InSb thermoradiative cell can achieve the efficiency and power density up to 20.4 % and 327 Wm-2, respectively, between a hot source at 500K and a cold sink at 300K, if the sub-bandgap and non-radiative losses could be avoided.
by Wei-Chun Hsu.
Ph. D.
Lee, Kan-Hua. "Photon coupling effects and advanced characterisations of multiple-quantum-well multi-junction solar cells." Thesis, Imperial College London, 2014. http://hdl.handle.net/10044/1/24747.
Full textLissau, Jonas Sandby. "Non-Coherent Photon Upconversion on Dye-Sensitized Nanostructured ZrO2 Films for Efficient Solar Light Harvesting." Doctoral thesis, Uppsala universitet, Fysikalisk kemi, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-229831.
Full textLozza, Valentina. "Low energy low background photon counter for wisp search experiments." Doctoral thesis, Università degli studi di Trieste, 2010. http://hdl.handle.net/10077/3719.
Full textRemarkable interest has recently arisen about the search for Weakly Inter- acting Sub-eV Particles (WISPs), such as axions, Axion Like Particles (ALPs), Minicharged and chameleon particles, all of which are not included in the Stan- dard Model. Precision experiments searching for WISPs probe energy scales as high as 10^6 TeV and are complementary to accelerator experiments, where the energy scale is a few TeV. The axion, in particular, is the oldest studied and has the strongest theoretical motivation, having its origin in Quantum Chromodynamics. It was introduced for the first time in 1973 by Peccei and Quinn to solve the strong CP problem, while later on the cosmological implications of its postulated existence also became clear: it is a good candidate for the cold dark matter, and it is necessary to fully explain the evolution of galaxies. Among the different interactions of axions, the most promising for its detection, from an experimental point of view, is the coupling to two photons (Primakoff effect). Using this coupling, several bounds on the axion mass and energy scale have been set by astrophysical observations, by laboratory experiments and by the direct observation of celestial bodies, such as the Sun. Most of these considerations, as was recently recognized, not only constrain the mass and coupling of the axion, but are more generally applicable to all ALPs. The current best limits on the coupling, over a wide range of ALP masses, come from the the CAST (Cern Axion Solar Telescope) experiment at Cern, which looks for ALPs produced in the solar core. The experiment is based on the Primakoff effect in a high magnetic field, where solar ALPs can be reconverted in photons. The CAST magnet, a 10 T, 10 m long LHC superconducting dipole, is placed on a mobile platform in order to follow the Sun twice a day, during sunrise and sunset, and has two straight bores instrumented with X-ray detectors at each end. The re- generated photon flux is, in fact, expected to be peaked at a few keV. On the other hand, there are suggestions that the problem of the anomalous temperature profile of the solar corona could be solved by a mechanism which could enhance the low energy tail of the regenerated photon spectrum. A low energy photon counter has, for this reason, been designed and built to cover one of the CAST ports, at least temporarily. Low energy, low background photon counters such as the one just mentioned, are also crucial for most experiments searching for WISPs. The low energy photon counting system initially developed to be coupled to CAST will be applicable, with proper upgrades, to other WISPs search experiments. It consists of a Galilean telescope to match the CAST magnet bore cross section to an optical fiber leading photons to the sensors, passing first through an optical switch. This last device allows one to share input photons between two different detectors, and to acquire light and background data simultaneously. The sensors at the end of this chain are a photomultiplier tube and an avalanche photodiode operated in Geiger mode. Each detector was preliminary characterized on a test bench, then it was coupled to the optical system. The final integrated setup was subsequently mounted on one of the CAST magnet bores. A set of measurements, including live sun tracking, was carried out at Cern during 2007-2008. The background ob- tained there was the same measured in the test bench measurements, around 0.4 Hz, but it is clear that to progress from these preliminary measurements a lower background sensor is needed. Different types of detectors were considered and the final choice fell on a Geiger mode avalanche photodiode (G-APD) cooled at liquid nitrogen temperature. The aim is to drastically reduce the dark count rate, al- though an increase in the afterpulsing phenomenon is expected. Since the detector is designed to be operated in a scenario where a very low rate of signal photons is predicted, the afterpulsing effect can be accepted and corrected by an increase in the detector dead time. First results show that a reduction in background of a factor better than 10^4 is obtained, with no loss in quantum e ciency. In addition, an optical system based on a semitransparent mirror (transparent to X-rays and re ective for 1-2 eV photons) has been built. This setup, covering the low energy spectrum of solar ALPs, will be installed permanently on the CAST beamline. Current work is centered on further tests on the liquid nitrogen cooled G-APD concept involving different types of sensors and different layouts of the front-end read-out electronics, with a particular attention to the quenching cir- cuit, whether active or passive. Once these detector studies are completed, the final low background sensor will be installed on the CAST experiment. It is important to note that the use of a single photon counter for low energy photons having a good enough background (<1 Hz at least) is not limited to the CAST case, but is of great importance for most WISPs experimental searches, with special regard for photon regeneration experi- ments, and, in general, for the field of precision experiments in particle physics.
Negli ultimi tempi è riemerso un notevole interesse nel campo della ricerca di particelle leggere debolmenti interagenti (Weakly Interacting Sub-eV Particles - WISPs), come ad esempio assioni, particelle con comportamenti simili agli assioni (Axion Like Particles - ALPs), particelle con carica frazionaria e particelle camaleonte; tutti tipi di particelle non inclusi nel Modello Standard. Vista la loro natura debolmente interagente, la scala di energia coinvolta è dell'ordine dei 10^6 TeV, queste particelle non sono visibili nelle collisioni realizzabili negli attuali acceleratori e possono invece essere studiate in esperimenti di precisione, che, sotto questo punto di vista, diventano complementari agli esperimenti su acceleratori. L'assione in particolare è la prima particella, da un punto di vista cronologico, ad essere stata ipotizzata, ed inoltre la sua esistenza è supportata da forti basi teoriche: la sua origine va infatti ricercata all'interno della Cromodinamica Quantistica (QCD). L'assione fu introdotto per la prima volta nel 1973 da Peccei e Quinn come soluzione del problema di violazione di CP nelle interazioni forti, mentre le sue implicazioni cosmologiche risultarono chiare solo in seguito. L'assione infatti può essere considerato un buon candidato per la materia oscura fredda e la sua introduzione è necessaria per spiegare l'evoluzione delle galassie. Tra le diverse interazione degli assioni con la materia e la radiazione, la più interessante da un punto di vista sperimentale è l'accoppiamento con due fotoni (effetto Primakoff). Usando questo tipo di accoppiamento numerosi limiti, sia sulla massa dell'assione che sulle scale di energia coinvolte, possono essere ottenuti da osservazioni astrofisiche e da esperimenti di laboratorio così come dalla diretta osservazione di oggetti celesti tipo il Sole. Queste considerazioni possono essere applicate non solo all'assione ma più in generale a tutte le ALPs. Attualmente i limiti migliori sulla costante di accoppiamento, su un largo spettro di masse di ALPs, si sono ottenuti dall'esperimento CAST (Cern Axion Solar Tele- scope) al Cern, che guarda agli ALPs prodotti nel Sole. L'esperimento è basato sull'effetto Primakoff in un campo magnetico elevato, dove gli ALPs solari sono riconvertiti in fotoni. Il magnete dell'esperimento CAST è costituito da un prototipo per un dipolo superconduttore di LHC, lungo 10 m e con un campo magnetico totale di 10 T. Il magnete è posto su di un affusto mobile per poter seguire il sole durante le fasi di alba e tramonto. Alle due estremità del magnete sono disposti quattro rivelatori sensibili nel campo degli X molli. Il picco del usso di fotoni rigenerato è infatti atteso a pochi keV. Tuttavia, ci sono suggerimenti che il prob- lema ancora aperto del profilo di temperatura della corona solare può essere risolto tramite un meccanismo che contemporaneamente incrementerebbe le code a bassa energia dell'atteso usso di fotoni rigenerati. A questo scopo un contatore di fotoni sensibile nell'intervallo del visibile è stato progettato ed assemblato per coprire una delle quattro porte del magnete di CAST, almeno temporaneamente. I contatori di fotoni studiati hanno un largo campo di applicazione e possono essere usati in altri tipi di esperimenti per la ricerca di WISPs. Il sistema inizialmente sviluppato per CAST consiste in un telescopio Galileiano per accoppiare una fibra ottica all'apertura del magnete di CAST, la fibra ottica è quindi collegata ad un interruttore ottico che permette di utilizzare due rivelatori contemporaneamente. La fibra in ingresso è infatti collegata alternativamente a due fibre in uscita, in questo modo ciascun rivelatore acquisisce per metà del tempo segnale e per metà del tempo fondo, lasciando inalterato il tempo totale di integrazione. I sensori utilizzati fino ad ora al termine della catena ottica sono un tubo fotomoltiplicatore e un avalanche photodiode operato in modalità Geiger. Ciascun rivelatore è stato preliminarmente caratterizzato su un banco di prova e quindi collegato al sistema ottico. Il sistema finale è stato quindi installato su CAST. Una serie di misure, che includono reali prese dati, sono state condotte al Cern durante il 2007-2008. La misura del fondo ottenuta a CAST è stata la stessa misurata durante i test di prova a Trieste, circa 0.4 Hz, ma risulta chiaro che il vero sviluppo futuro è basato su un sensore a fondo molto più basso. A questo scopo sono stati considerati diversi tipi di sensore e la scelta finale è ricaduta su di un avalanche photodiode operato in modalità Geiger e raffreddato all'azoto liquido. Lo scopo è quello di ridurre drasticamente i conteggi di fondo, sebbene a queste temperature sia atteso un incremento del rateo di afterpulses. Tuttavia il rivelatore è pensato per essere utilizzato in un applicazione a basso rateo e quindi il fenomeno degli afterpulses può essere ridotto agendo direttamente sul tempo morto del rivelatore, cioè aumentandolo. I primi test condotti sul rivelatore mostrano un decremento del fondo pari ad un fattore meglio di 10^4, senza rilevabili variazioni in efficienza. In aggiunta a questo sistema, per ottenere un'installazione permanente sul fascio di CAST, è stato realizzato uno specchio semitrasparente, che lascia pressocchè inalterato il fascio di raggi X e invece de ette il fascio di fotoni con energia nel visibile. Il lavoro attuale è incentrato sullo sviluppo del rivelatore a basso fondo raffreddato all'azoto liquido, includendo anche lo studio di diversi tipi di sensore e diversi tipi di elettronica di lettura, con particolare attenzione all'elettronica di quenching del circuito con le varianti attiva e passiva. Una volta terminati gli studi sui diversi tipi di rivelatori, l'apparato finale sarà installato su CAST. E' comunque importante notare che l'uso di un rivelatore a singolo fotone sensibile tra 1-2 eV con un fondo sufficientemente basso (<1 Hz almeno) non è limitato all'uso su CAST ma in tutti gli altri esperimenti per la ricerca di WISPs, con particolare riguardo agli esperimenti di rigenerazione risonante, e in generale, nel campo di applicazione degli esperimenti di precisione alla fisica delle particelle.
1982
Bouras, Karima. "Re-doped SnO2 oxides for efficient UV-Vis to infrared photon conversion : application to solar cells." Thesis, Strasbourg, 2016. http://www.theses.fr/2016STRAD011/document.
Full textSpectral conversion using lanthanide doped materials with excellent performances is a great challenging topic and of particular interest for photovoltaic. This work aims at functionalizing transparent conductive oxide materials with rare earth elements for photons conversion purpose without affecting transparency and transport properties of the TCO. The spectral conversion targeted in this thesis is of type “down”, in other words, we aim at converting high energy UV photons into low energy visible or NIR photons useful to solar cells. For this purpose we investigated the doping process of SnO2 as a host material with different rare earths such as Nd, Tb, Pr, and Yb. To understand the insertion process and the optical activation of the rare earth, RE-doped SnO2 nanoparticles (powders) have been synthesised by two chemical methods: co-precipitation and sol-gel. The results have shown an efficient insertion of the RE into the SnO2 structure with excellent emission properties. In view of application of RE-doped SnOx thin films to solar cells, studies concerning NIR emitting RE have been conducted (Nd, Yb, and co-doping with Yb and Nd) using sputtering. Several deposition parameters and post deposition treatments have been done in order to find the best chemical environment favourable to the RE emission. We have precisely identified the region of the UV light converted into NIR photons and proposed several energy transfer mechanisms occurring between the host SnOx and the REs. In case of co-doping, a second spectral conversion process has been identified; visible photons can be efficiently converted into NIR photons through energy transfer from Nd3+ to Yb3+ ions. Finally, application of these conversion layers to solar cells such as CIGS and Si based have shown an improvement of the cells characteristics, among others the Field factor, the cell efficiency and the increase of the spectral response of the cell in the UV region, thanks to the conversion of the UV photons into NIR photons. The good electrical properties of the RE-doped SnOx layers have been highlighted as well. We believe that these conversion layers will provide a step ahead towards better solar cells performances
Shi, Yanrong. "Squaraine dyes for non-linear optics and organic electronics." Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/44720.
Full textGao, Lei. "Functionalized Organogold(I) Complexes from Base-Promoted Auration, Copper(I)-Catalyzed Huisgen 1,3-Dipolar Cycloaddition, and Horner-Wadsworth-Emmons Reactions and Metallo-Azadipyrromethene Complexes for Solar Energy Conversion and Oxygen Evolution." Case Western Reserve University School of Graduate Studies / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=case1274970376.
Full textDhital, Bharat. "Single-molecule interfacial electron transfer dynamics in solar energy conversion." Bowling Green State University / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1477997482545831.
Full textBoostandoost, Mahyar [Verfasser], and Christian [Akademischer Betreuer] Boit. "Signature of Photon Emission and Laser Stimulation for Failure Analysis of Semiconductor Devices with respect to Thin-Film Solar Cells / Mahyar Boostandoost. Betreuer: Christian Boit." Berlin : Technische Universität Berlin, 2013. http://d-nb.info/1065148127/34.
Full textGiraud-berbezier, Aude. "Transport quantique en formalisme des fonctions de Green et interaction électron-photon pour la modélisation de cellules photovoltaïques." Thesis, Aix-Marseille, 2013. http://www.theses.fr/2013AIXM4781.
Full textThis document present our work on the modeling of quantum transport coupled to electron-photon interaction in a solar cell composed of one quantum dot connected to two semi-infinite quantum wires. The proposed cell based on a dot in a wire, is a concept imagined in order to investigate quantum effects inside 1D structures in contact with 0D ones. The numerical simulation powered on the Merlin cluster (IM2NP) relies on Green’s function formalism. The philosophy of Green’s function formalism is introduced and then applied to the photovoltaic cell. An overview of the functioning of the cell is given. Results on the cell are presented in the wide band limit (approximation that simplifies the contact to wires). We observe an interlinked impact of the tunneling coupling (dot-wires coupling) and the optical coupling (to light) on the current. In the strong tunneling regime, an increase of the tunneling coupling decreases the current and similarly in the strong optical coupling regime, an increase of the optical coupling decreases the current. We investigate the counter-intuitive impact of the tunneling coupling in the strong tunneling regime through analytical calculations, considering only the first loop of the numerical code instead of the whole self-consistent process. We observe a transition in the current creation process while switching from the strong tunneling regime to the strong optical coupling regime. Results on the cell beyond the wide band limit approximation are presented in which the system exhibits another atypical response to illumination: I-V curve exhibits a negative shunt conductance! Finally, a realization proposal for the concept cell is described
Sukki, Firdaus Muhammad. "Optimised solar concentrator for the soar photonic optoelectronic transformer system." Thesis, Glasgow Caledonian University, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.601455.
Full textKhaengraeng, Rungpetch. "Characterisation of solar photo-oxidative disinfection." Thesis, Northumbria University, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.402247.
Full textLiu, Li. "Propriétés photo-physiques de nouveaux matériaux moléculaires pour la conversion de photons en énergie." Thesis, Strasbourg, 2017. http://www.theses.fr/2017STRAE010/document.
Full textVarious photo-induced energy and energy transfer processes were investigated in solution and in the film by transient absorption and fluorescence spectroscopies for two types of solar cells. Combined with other experiments and through a global analysis, those ultrafast phenomena with their lifetimes were observed and the photo-induced scenarios were determined. The insight understanding of molecular materials could help chemists to design efficient solar cells.The first study about the influence of chemical designs on charge formation and separation involves different donor moieties and different solvents and the results were explained by Marcus-Jortner theory combined with quantum calculationThe second investigation is about Fe(II) complexes as photosensitizers for dye-sensitized solar cells. A series of homo- and heteroleptic Fe(II) complexes with carbene and terpyridine ligands have been studied in solution and in the film. The record triplet metal-to-ligand charge transfer state lifetime of Fe(II) complex is achieved in solution. The further understanding in the film is in progress
Quinton, Cassandre. "Dérivés de s-tétrazine et de triphénylamine : du design aux applications." Phd thesis, École normale supérieure de Cachan - ENS Cachan, 2013. http://tel.archives-ouvertes.fr/tel-00957915.
Full textCárdenas, Morcoso Drialys. "Advanced semiconductors for photo-electrocatalytic solar fuel production." Doctoral thesis, Universitat Jaume I, 2020. http://dx.doi.org/10.6035/14104.2020.679916.
Full textThe development and use of clean, sustainable and safe energy sources, in order to substitute the use of fossil fuels, is a current challenge of science and technology. Solar energy, the only viable alternative, can be converted and stored in the form of molecular bonds, mimicking the photosynthesis process in green plants, to obtain fuels or other added-value products. This process requires semiconductor materials that can efficiently harvest and transform solar into chemical energy. In the present doctoral thesis, the study of semiconductor materials for photo-electrocatalytic applications was addressed from different approaches. That includes: the modification of photoelectrodes with catalytic coatings, obtained from a metal-organic framework; the implementation of a new method for the understanding of the photoelectrodes operating mechanisms; the integration of electrocatalytic and photovoltaic devices from Earth-abundant materials; and, finally, the investigation of new systems with potential application in photo-electrocatalytic processes. (Signatura
Programa de Doctorat en Ciències
Marronnier, Arthur. "Anharmonicity and Instabilities in Halide Perovskites for Last Generation Solar Cells." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLX031/document.
Full textHybrid halide perovskites (ABX3) have emerged over the past five years as absorber layers for novel high-efficiency low-cost solar cells combining the advantages of organic (molecule A) and inorganic (metal B, halogen X) materials. Very recently, fully inorganic perovskite quantum dots also shown promising efficiencies, making them a potentially stable and efficient alternative to their hybrid cousins.The aim of this PhD thesis is to study and better understand both the structural and thermodynamic instabilities of these halide perovskites, with a specific focus on purely inorganic CsPbI3 structures.We first use various ab-initio techniques, the majority of which are based on Density Functional Theory (DFT) and its linear-response approach (DFPT), to investigate the vibrational and electronic properties of the different phases of CsPbI3. While the black γ-phase, crucial for photovoltaic applications, is shown to behave harmonically around equilibrium, for the other three phases frozen phonon calculations reveal a Brillouin zone center double-well instability. We also show that avoiding the order-disorder entropy term arising from these double-well instabilities is key in order to prevent the formation of the yellow perovskitoid phase, and evidence a Rashba effect when using the symmetry breaking structures obtained through frozen phonon calculations. We then analyze the structural changes and the dynamical Rashba splitting along molecular dynamics trajectories in the light of our findings.In a second phase, we investigate the thermodynamical stability of hybrid perovskite MAPbI3. Our experimental ellipsometry-based study brings better understanding of the chemical decomposition of MAPbI3 into its two precursors, methylammonium and lead iodides, which we predicted using DFT stability diagram calculations and which we confirm by X-Ray diffraction. Last, we prove that hybrid perovskite structure MAPbI3 behaves more like inorganic compounds (high dielectric constant, low exciton binding energy) than like organic materials (low dielectric constant, high exciton binding energy)
Fischer, Stefan [Verfasser], and Eicke [Akademischer Betreuer] Weber. "Upconversion of sub-band-gap photons for silicon solar cells = Hochkonversion von sub-band-gap Photonen zur Effizienzsteigerung von Silicium-Solarzellen." Freiburg : Universität, 2014. http://d-nb.info/1123480982/34.
Full textSALAMANDRA, LUIGI. "Organic photo-voltaic cells and photo-detectors based on polymer bulk-heterojunctions." Doctoral thesis, Università degli Studi di Roma "Tor Vergata", 2010. http://hdl.handle.net/2108/1294.
Full textIn the last few decades, the use of organic materials for the realization of electronic devices has gained the attention of many research groups. This is mainly due to the possibility to use low-cost techniques for fabrication as solution-processing, suitable also to flexible substrates, and to tailor the material properties for specific applications. In the field of optoelectronics, the use of such materials for the realization of light sources (OLED, Organic Light-Emitting Diode, or OTFL, Organic Thin-Film Lasers), photo-diodes and solar cells has already been demonstrated. In this context, the combination of different organic devices for integrated optical systems, can pave the way to new applications in the field of data communication, sensing application, imaging and solar energy. Conjugated polymer bulk-heterojunction photo-voltaic device made from blend solution could be a good promise for solar energy conversion and data communication purpose, with its solar conversion efficiencies up to ~5% and a time-resolved response of ~200KHz to an optical source.
Schneider, Kenneth. "Photo-microbial fuel cells." Thesis, University of Bath, 2014. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.675704.
Full textRioult, Maxime. "Hematite-based epitaxial thin films as photoanodes for solar water splitting." Palaiseau, Ecole polytechnique, 2015. https://theses.hal.science/tel-01220396/document.
Full textUsing hydrogen as an energy carrier for solar energy storage and/or fuel alternative to oil is very appealing, especially as it can be cleanly produced by solar water splitting. In this process, electron-hole pairs, generated in illuminated semiconductors dipped in an aqueous solution, realize the water oxidoreduction reactions (oxygen production at the photoanode and hydrogen production at the photocathode). Transition metal oxides, in particular hematite (α-Fe2O3) which features a quasi ideal band-gap for this application, are the most promising photoanodes materials. Hematite thin films were deposited on single crystals by oxygen plasma assisted molecular beam epitaxy. These model samples along with the use of high-end techniques, in particular using synchrotron radiation, make possible the identification of the relevant parameters affecting the photoelectrochemical properties. I firstly focused on the impact of the crystallographic structure, the stoichiometry and the surface morphology. Then the effects of doping with titanium were investigated, demonstrating the existence of an optimal doping level and an increase of the charges diffusion length inducing a high photocurrent gain. In addition, I studied the electronic structure and the surface recombinations dynamics of TiO2 - Ti-doped hematite heterojunctions, revealing a diffuse interface. Lastly, the internal electric field created by a ferroelectric thin film of BaTiO3/Nb:SrTiO3 was considered in order to enhance the performances of photoanodes. A first step toward the comprehension of the link between ferroelectric polarization and photocurrent was achieved through the evidence of an internal electric field favourable for the separation of charges
Leblois, Richard. "Solar Impulse - Around the World in a Solar Airplane." Universitätsbibliothek Chemnitz, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-86938.
Full textTucher, Nico [Verfasser], Claas [Verfasser] Müller, and Stefan [Verfasser] Glunz. "Analysis of photonic structures for silicon solar cells." Freiburg : Universität, 2016. http://d-nb.info/1136567186/34.
Full textNateq, Mohammad Hosein. "Enhancing the Photo-electrode Features to Improve the Solar Conversion Efficiency in the Dye-Sensitized Solar Cell." Doctoral thesis, Università degli studi di Trento, 2019. http://hdl.handle.net/11572/243450.
Full textNateq, Mohammad Hosein. "Enhancing the Photo-electrode Features to Improve the Solar Conversion Efficiency in the Dye-Sensitized Solar Cell." Doctoral thesis, Università degli studi di Trento, 2019. http://hdl.handle.net/11572/243450.
Full textAlbero, Sancho Josep. "Photo-induced charge transfer reactions in quantum dot based solar cells." Doctoral thesis, Universitat Rovira i Virgili, 2012. http://hdl.handle.net/10803/81717.
Full textThe fundamental processes of the charge transfer reactions between titania dioxide mesoporous films and quantum dots, in blend films of the semiconductor polymer P3HT and CdSe quantum dots and in complete devices fabricated with the polymer PDPCTBT and CdSe quantum dots in working conditions have been studied in this doctoral thesis. The obtained results allow the fabrication of photovoltaic devices with a deeper and wider knowledge of the recombination processes that limit the device efficiency. Therefore, it is demonstrated the possibility of fabrication of quantum dot based solar cells with efficiencies similar or higher than the organic photovoltaic devices.
Adams, Jessica G. J. "Photonic properties of strain-balanced quantum well solar cells." Thesis, Imperial College London, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.540681.
Full textParel, T. S. "Application of fluorescent and photonic concentrators to solar cells." Thesis, University of Southampton, 2015. https://eprints.soton.ac.uk/375080/.
Full textZAFFALON, MATTEO LUCA. "Advanced Spectroscopic Investigations of Colloidal Semiconductor Nanostructures for Photon Management and Radiation Detection Schemes." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2022. http://hdl.handle.net/10281/366215.
Full textDuring my PhD I investigated excitonic recombination mechanisms in colloidal semiconductor nanocrystals (NCs), promoting the development of new paradigms for the manipulation of optical and scintillation properties. Thanks to the wide range of spectroscopic techniques and the valuable collaborations undertaken, my conclusions have been published in prestigious scientific journals, contributing to the advancement of the community of nanomaterials scientists. My research mainly dealt with two topics of current technological importance: i) the origin of photoluminescence in NC of Cd-free ternary I-III-VI2 chalcogenides such as CuInS2 and AgInS2 ii) the use of perovskite nanostructures in detection schemes and/or energy conversion of ionizing radiation. Specifically, the use of complementary spectroscopic techniques in a controlled temperature regime has validated the presence of intrinsic sublevels, with different parity, in the valence band of the stoichiometric CuInS2 NCs responsible for the optical properties of this class of NC. My results, supported by Monte Carlo ray-tracing simulations, led to the fabrication of a luminescent solar concentrator - with record efficiency - based on CuInS2 NCs with optimal size. The study was then extended to AgInS2 NCs, a less investigates material so far, but very promising for bioimaging applications thanks to the absence of toxic elements. Then, I investigated the detection of ionizing radiation through high atomic number nanostructures such as lead halide perovskites (LHP), and in particular CsPbBr3. Through the detailed study of photo- and radio-luminescence properties, I highlighted the effects of the interaction between band edge exciton and shallow/deep defect states in CsPbBr3 nanostructures with different dimensionality. This fundamental study offered a platform to develop novel synthetic strategies to passivate trap sites on NC surfaces that led to a 500% enhancement of scintillation yield. The stability of CsPbBr3 NCs was finally verified in terms of radiation hardness, up to extreme gamma doses of 1 MGy. Furthermore, to extend their application to radiation detection with waveguiding devices, I studied the sensitization of an organic dye coupled to CsPbBr3 NCs, creating the first example of a plastic scintillator with wide Stokes-shift and fast luminescence based on LHP. To overcome the limitations imposed by the presence of Pb in LHPs, I finally explored the optical and scintillation properties of new emerging classes of green double perovskites. The information gathered encourages the continuation of this line of research, indicating surface passivation as the most promising strategy for achieving performance similar to the Pb-based counterparts.
Robinson, Mark. "Performance comparison of photo-voltaic & closed circuit thermal solar water heaters." Thesis, Robinson, Mark (2018) Performance comparison of photo-voltaic & closed circuit thermal solar water heaters. Honours thesis, Murdoch University, 2018. https://researchrepository.murdoch.edu.au/id/eprint/44766/.
Full textLian, Zichao. "Photo-Induced Carrier Transfer in Heterostructured Semiconductor Nanocrystals for Solar Energy Conversion." Kyoto University, 2018. http://hdl.handle.net/2433/235053.
Full textZhang, Jinqiang. "Development of nanostructured photocatalysts for solar fuels production." Thesis, Edith Cowan University, Research Online, Perth, Western Australia, 2021. https://ro.ecu.edu.au/theses/2403.
Full textLewis, Jason Erik. "Device Physics of Solution Processable Solar Cells." Scholar Commons, 2011. http://scholarcommons.usf.edu/etd/3205.
Full textKempa, Thomas Jan. "Nanowire Architectures for Next-Generation Solar Cells and Photonic Devices." Thesis, Harvard University, 2012. http://dissertations.umi.com/gsas.harvard:10476.
Full textChemistry and Chemical Biology
Sheng, Xing Ph D. Massachusetts Institute of Technology. "Thin-film silicon solar cells : photonic design, process and fundamentals." Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/105936.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 153-159).
The photovoltaic technology has been attracting widespread attention because of its effective energy harvest by directly converting solar energy into electricity. Thin-film silicon solar cells are believed to be a promising candidate for further scaled-up production and cost reduction while maintaining the advantages of bulk silicon. The efficiency of thin-film Si solar cells critically depends on optical absorption in the silicon layer since silicon has low absorption coefficient in the red and near-infrared (IR) wavelength ranges due to its indirect bandgap nature. This thesis aims at understanding, designing, and fabricating novel photonic structures for efficiency enhancement in thin-film Si solar cells. We have explored a previously reported a photonic crystal (PC) based structure to improve light absorption in thin-film Si solar cells. The PC structure combines a dielectric grating layer and a distributed Bragg reflector (DBR) for effcient light scattering and reflection, increasing light path length in the thin-film cell. We have understood the operation principles for this design by using photonic band theories and electromagnetic wave simulations. we discover that this DBR with gratings exhibit unusual light trapping in a way different from metal reflectors and photonic crystals. The light trapping effects for the DBR with and without reflector are numerically investigated. The self-assembled anodic aluminum oxide (AAO) technique is introduced to non- lithographically fabricate the grating structure. We adjust the AAO structural parameters by using different anodization voltages, times and electrolytes. Two-step anodization is employed to obtain nearly hexagonal AAO pattern. The interpore periods of the fabricated AAO are calculated by fast Fourier transform (FFT) analysis. We have also demonstrated the fabrication of ordered patterns made of other materials like amorphous Si (a-Si) and silver by using the AAO membrane as a deposition mask. Numerical simulations predict that the fabricated AAO pattern exhibits light trapping performance comparable to the perfectly periodic grating layer. We have implemented the light trapping concepts combining the self-assembled AAO layer and the DBR in the backside of crystalline Si wafers. Photoconductivity measurements suggest that the light absorption is improved in the near-IR spectral range near the band edge of Si. Furthermore, different types of thin-film Si solar cells, including a-Si, mi- crocrystalline Si ([mu]-Si) and micromorph Si solar cells, are investigated. For demonstration, the designed structure is integrated into a 1:5 [mu]m thick [mu]c-Si solar cell. We use numerical simulations to obtain the optimal structure parameters for the grating and the DBR, and then we fabricate the optimized structures using the AAO membrane as a template. The prototype devices integrating our proposed backside structure yield a 21% improvement in efficiency. This is further verified by quantum efficiency measurements, which clearly indicate stronger light absorption in the red and near-IR spectral ranges. Lastly, we have explored the fundamental light trapping limits for thin-film Si solar cells in the wave optics regime. We develop a deterministic method to optimize periodic textures for light trapping. Deep and high-index-contrast textures exhibit strong anisotropic scattering that is outside the regime of validity of the Lambertian models commonly used to describe texture-induced absorption enhancement for normal incidence. In the weak ab- sorption regime, our optimized surface texture in two dimensions (2D) enhances absorption by a factor of 2.7[pi]n, considerably larger than the classical [pi]n Lambertian result and exceeding by almost 50% a recent generalization of Lambertian model for periodic structures in finite spectral range. Since the [pi]n Lambertian limit still applies for isotropic incident light, our optimization methodology can be thought of optimizing the angle/enhancement tradeoff for periodic textures. Based on a modified Shockley-Queisser theory, we conclude that it is possible to achieve more than 20% efficiency in a 1:5 [mu]m thick crystalline Si cell if advanced light trapping schemes can be realized.
by Xing Sheng.
Ph. D.
RONCHI, ALESSANDRA. "Hybrid and Nanostructured materials for low power photon upconversion based on triplet-triplet annihilation." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2022. http://hdl.handle.net/10281/370864.
Full textIn my PhD project, I investigated the photophysical process of photon upconversion assisted by triplet-triplet annihilation (sTTA-UC) through spectroscopy studies in a variety of systems, profoundly different on many levels. In sTTA-UC high energy radiation is emitted from the fluorescent recombination of the excited singlet of an emitter molecule, previously populated via annihilation of the metastable triplet states of two emitters. This is a sensitized process since a sensitizer is necessary to harvest the low energy incident light and to transfer the stored energy to the emitters via Dexter energy transfer. Because its functioning relies on long-lived metastable triplets, this process can be highly efficient also under low power, noncoherent light. As such, sTTA-UC is particularly suited for solar applications as it can increase the conversion efficiency by reducing transmission losses. During my studies, I focused on addressing two crucial issues that still limit the application of upconverters in solar technologies, i.e. the limited storage ability of common organic sensitizers and the poor sTTA-UC performance in solid-state upconverters, which are intrinsically better suited than liquid solutions for technological applications. To solve the first problem, I investigated hybrid sensitizers, composed of semiconductor nanostructures decorated with conjugated organic ligands characterized by broadband absorption. CdSe nanocrystals (NCs) doped with gold cations and decorated with 9-anthracene carboxylic acid demonstrated to be efficient innovative broadband hybrid sensitizers. The doping strategy inserts into the NCs energy gap localized hole-accepting states where the holes localize on the picosecond timescale, outpacing hole transfer to the ligand HOMO. With this strategy, I achieved the UC efficiency of 12%, the record performance obtained so far for hybrid upconverters. I then discussed how the CdSe nanoplatelets surface and photophysical properties make them potential optimal light harvesters. My studies on the nanoplatelets-to-ligands energy transfer dependency on the surface ligand density revealed that the surface coverage is not homogeneous but proceeds in an island-like way promoted by π- π stacking and results in the formation of ligands aggregates on the nanoplatelets surfaces, which causes a redshift of the ligand triplet energy with critical repercussions on the sTTA-UC performance and on the emitter selection. To address the second issue, I investigated two solid-state upconverters, i.e. nanostructured glassy polymers that show similar macroscopic properties but fabricated via different approaches. They both feature liquid droplets of mean size less than 50 nm where the upconverting dyes accumulate, embedded in a rigid polymer matrix that grants excellent oxygen protection and optical quality and long-term stability. The dyes confinement allows to increase the effective local excitons density resulting in an enhanced UC efficiency at low excitation intensities, thanks to the reduced intermolecular distances and the activation of the confined sTTA-UC regime. I also introduced a new perylene derivative as emitter, specifically designed to prevent molecular aggregation to maximize its fluorescence efficiency. By employing this emitter, I achieved the record UC efficiency of 42%, which directly stems from the emitter molecular structure, as it limits the formation of aggregates, while guaranteeing excellent singlet generation efficiency upon TTA. I finally presented a perspective of the performances that can be achieved by combining the two topics considered, i.e. loading broadband sensitizers in nanostructured polymers. I highlighted that if the best trade-off between nanostructure size and energy distribution is met the maximum UC efficiency can be achieved at excitation powers orders of magnitude lower that the solar irradiance, therefore promoting the development of real-world solid-state upconverters.
Kalapala, Sreevani. "Removal of Hydrogen Sulfide from Landfill Gas Using a Solar Regenerable Adsorbent." Youngstown State University / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=ysu1403006045.
Full textRazzell, Hollis Joseph. "Understanding morphology and photo-stability of organic solar cells via advanced structural probes." Thesis, Imperial College London, 2016. http://hdl.handle.net/10044/1/32271.
Full textGutmann, Johannes [Verfasser], and Hans [Akademischer Betreuer] Zappe. "Photonic luminescent solar concentrators : : how photonic crystals affect the emission and guiding of light = Photonische Fluoreszenzkonzentratoren." Freiburg : Universität, 2014. http://d-nb.info/1123484880/34.
Full textXiong, Wanshu. "Novel optically tunable materials for photonic applications : lasers and solar cells." Thesis, University of Bristol, 2018. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.761237.
Full textZhou, Dayu. "Light-trapping enhancement in thin film solar cells with photonic crystals." [Ames, Iowa : Iowa State University], 2008.
Find full textChang, Hung-Chih, and 張閎智. "Photon Management in Si-Based Solar Cells." Thesis, 2011. http://ndltd.ncl.edu.tw/handle/32878939324121539000.
Full text國立臺灣大學
光電工程學研究所
99
In this thesis, first, the nanowire array (NWA) layers with controlled structure profiles fabricated by maskless galvanic wet etching on Si substrates are found to exhibit extremely low specular reflectance (< 0.1 %) in the wavelengths of 200-850 nm. The significantly suppressed reflection is accompanied with other favorable antireflection (AR) properties, including omnidirectionality and polarization-insensitivity. The NWA layers are also effective in suppressing the undesired diffuse reflection. These excellent AR performances benefit from the rough interfaces between air/NWA layers and NWA layers/substrate and the decreased nanowire densities, providing the gradient of effective refractive indices. The Raman intensities of Si NWAs were enhanced by up to 400 times as compared with the signal of the polished Si, confirming that the NWA layers enhance both insertion and extraction efficiencies of light. This study provides an insight into the interaction between light and nanostrucutres, and should contribute to the structural optimization of various optoelectronic devices. Second, wafer-scale nanowire arrays (NWAs) with hierarchical structure, combined the nanowire and interface micro-roughness were fabricated by single process of costless wet etching. The NWA based solar cells with designed hierarchical structure demonstrate excellent light-harvesting characteristics, such as broadband working ranges and omnidirectionality in external quantum efficiency and reflectance measurement. Compared to the polished Si and conventional NWAs, the solar cell with hierarchical structure exhibits significantly superior photovoltaic characteristics, i.e., short-circuit current of 32.7 mA/cm2 and conversion efficiency of 11.25 %. The enhanced photovoltaic performances agree with the theoretical analysis based on a finite-difference time-domain method. A viable scheme for light harvesting using the hierarchical structure employing micro-roughness/nanoscale surface textures on single crystalline Si solar cells has been demonstrated. Third, antireflective Si/oxide core-shell nanowire arrays (NWAs) were fabricated by galvanic etching and subsequent annealing process. The excellent light-harvesting characteristics of the core-shell NWAs, such as broadband working ranges, omnidirectionality, and polarization-insensitivity, ascribed to the smooth index transition from air to the substrates, have been demonstrated. By tuning core-shell volume ratios, we obtained enhanced light trapping regions implemented in either the planar Si underneath NWAs or the core regions of NWAs, greatly benefiting the geometry design of planar and radial p-n junction cell structures, respectively. This photon management scheme indicates the potential use in nanostructured photovoltaic applications. Finally, rough AZO films were employed to enhance the internal scattering and consequent optical absorption of thin film (amorphous/polycrystalline Si) tandem solar cells. Through the optimization work by simulations, the matched current densities from the top and the bottom cells were obtained with the device structure containing 1.5-μm roughened polycrystalline Si layer, which produces the efficiencies comparable to those of the 3.5-μm layer without roughening. The simulation results were supported by the device performances measured experimentally. The significantly enhanced light scattering in the thin rough active region was revealed by the calculation results based on finite-difference time-domain method. The concept and technique presented in this study should benefit the development of next generation of thin film solar cells.
PINO, TOMMASO. "High fidelity thrust model for solar photon sailing." Doctoral thesis, 2019. http://hdl.handle.net/11573/1237663.
Full text