Academic literature on the topic 'Solar Mirrors'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Solar Mirrors.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Solar Mirrors"
Liu, Xueqing, Song Yue, Luyi Lu, and Jianlan Li. "Study on Dust Deposition Mechanics on Solar Mirrors in a Solar Power Plant." Energies 12, no. 23 (November 29, 2019): 4550. http://dx.doi.org/10.3390/en12234550.
Full textMardwianta, Benedictus, Abdul Haris Subarjo, and Rivaldi Dwi Cahyadi. "Studi Ekperimental Penambahan Reflektor Datar Pada Kompor Tenaga Surya Tipe Parabolic." JURNAL SURYA ENERGY 6, no. 1 (April 11, 2022): 31. http://dx.doi.org/10.32502/jse.v6i1.3753.
Full textDiver, Richard B., and Timothy A. Moss. "Practical Field Alignment of Parabolic Trough Solar Concentrators." Journal of Solar Energy Engineering 129, no. 2 (June 5, 2006): 153–59. http://dx.doi.org/10.1115/1.2710496.
Full textGroulx, Dominic, and Benjamin Sponagle. "RAY-TRACING ANALYSIS OF A TWO-STAGE SOLAR CONCENTRATOR." Transactions of the Canadian Society for Mechanical Engineering 34, no. 2 (June 2010): 263–75. http://dx.doi.org/10.1139/tcsme-2010-0016.
Full textCano-Nogueras, Javier, Javier Muñoz-Antón, and José M. Martinez-Val. "A New Thermal-Solar Field Configuration: The Rotatory Fresnel Collector or Sundial." Energies 14, no. 14 (July 8, 2021): 4139. http://dx.doi.org/10.3390/en14144139.
Full textAlpert, D. J., and R. M. Houser. "Evaluation of the Optical Perfomance of a Prototype Stretched-Membrane Mirror Module for Solar Central Receivers." Journal of Solar Energy Engineering 111, no. 1 (February 1, 1989): 37–43. http://dx.doi.org/10.1115/1.3268285.
Full textRinco´n, Eduardo A., and Fidel A. Osorio. "A New Troughlike Nonimaging Solar Concentrator." Journal of Solar Energy Engineering 124, no. 1 (June 1, 2001): 51–54. http://dx.doi.org/10.1115/1.1435650.
Full textCheng, Ying, Feng Zhou Fang, Xiao Dong Zhang, and Xiao Tang Hu. "Design and Fabrication of Composite Solar Concentrator." Key Engineering Materials 447-448 (September 2010): 366–70. http://dx.doi.org/10.4028/www.scientific.net/kem.447-448.366.
Full textKisara, Katsuto, Kazuyuki Suzuki, Toichiro Ishikawa, Kazuhisa Fujita, and Hiroshi Masumoto. "Prototype Design and Evaluation of Lightweight Mirror and Wavelength Selective Filter for Space Solar Power Systems." Materials Science Forum 631-632 (October 2009): 519–24. http://dx.doi.org/10.4028/www.scientific.net/msf.631-632.519.
Full textGomaa, Mohamed, Ramadan Mustafa, Hegazy Rezk, Mujahed Al-Dhaifallah, and A. Al-Salaymeh. "Sizing Methodology of a Multi-Mirror Solar Concentrated Hybrid PV/Thermal System." Energies 11, no. 12 (November 23, 2018): 3276. http://dx.doi.org/10.3390/en11123276.
Full textDissertations / Theses on the topic "Solar Mirrors"
Gomez, Teresa M. "Binary actuation of solar mirrors." Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/68528.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 42).
This thesis explores the use of binary actuators to adjust the shape of an array of mirrors. To explore this concept, an experimental system was refurbished and recalibrated. This experimental system was used to explore the range of possible configurations that could be reached by a simple binary actuated system. System models are required for accurate control of these binary actuated structures. This thesis develops and tests the accuracy of two different modeling approaches, linear and iterative. The linear model assumes that each actuator contributes a constant value to the angle of the center mirror, and that this value is not dependent on the other actuator positions. The actuator contributions are summed to find the angle of the center mirror. These contributions are found two ways: by taking a relevant single data point for each actuator, and by using a least squares fitting of a large subset of data. The iterative model assumes that each actuator adds some constant value, similar to the previous model, and that it also adds some portion of the current angle. A multiplication and shift are therefore found for each actuator, and these multiplications and shifts successively applied, starting with the initial angles, to find the final angular position. While the linear model with measured values for the actuator contributions predicted the data poorly, the linear model with the least squares fitted values performed much better. The iterative model initially produced large errors, but these errors were found to be readily correctable and once removed, the iterative model predicted the data better than the linear model.
by Teresa M. Gomez.
S.B.
Contino, Alessandro Patrizio. "Solar mirrors characterization for concentrating solar power technology." Doctoral thesis, Università di Catania, 2012. http://hdl.handle.net/10761/993.
Full textForhan, Elizabeth Michelle. "Production of Paraboloidal Silver-Coated Mirrors from Float Glass for Solar Application." Thesis, The University of Arizona, 2014. http://hdl.handle.net/10150/320099.
Full textIslam, Md Safatul. "Production of Paraboloidal Silver-Coated Mirrors from Float Glass for Solar Application." Thesis, The University of Arizona, 2014. http://hdl.handle.net/10150/320141.
Full textMessina, Cassandra Aileen. "Production of Paraboloidal Silver-Coated Mirrors from Float Glass for Solar Application." Thesis, The University of Arizona, 2014. http://hdl.handle.net/10150/321897.
Full textZavada, Thomas Joseph. "Production of Paraboloidal Silver-Coated Mirrors from Float Glass for Solar Application." Thesis, The University of Arizona, 2014. http://hdl.handle.net/10150/322098.
Full textLampkowski, Marcelo [UNESP]. "Dispositivo automatizado para a limpeza da superfície refletora de heliostato em sistemas de energia solar concentrada – CSP." Universidade Estadual Paulista (UNESP), 2017. http://hdl.handle.net/11449/151055.
Full textApproved for entry into archive by LUIZA DE MENEZES ROMANETTO (luizamenezes@reitoria.unesp.br) on 2017-07-06T18:56:26Z (GMT) No. of bitstreams: 1 lampkowski_m_dr_bot.pdf: 6540212 bytes, checksum: bbd4ca237af5c08ca2fd14eed4fdef30 (MD5)
Made available in DSpace on 2017-07-06T18:56:26Z (GMT). No. of bitstreams: 1 lampkowski_m_dr_bot.pdf: 6540212 bytes, checksum: bbd4ca237af5c08ca2fd14eed4fdef30 (MD5) Previous issue date: 2017-05-19
A possibilidade de redução na oferta de combustíveis convencionais aliada ao crescimento da demanda por energia e a crescente preocupação com o meio ambiente impulsionam a pesquisa e desenvolvimento de fontes alternativas de energia menos poluentes, renováveis e que produzam menor impacto ambiental. Dentre estas alternativas, destaca-se a energia solar, fonte disponível e passível de ser explorada a partir de todas as suas potencialidades. Atualmente, uma das vias tecnológicas de aproveitamento da fonte solar para geração de energia é a heliotermia, também conhecida como energia solar concentrada ou Concentrated Solar Power (CSP), baseada na utilização de superfícies espelhadas que refletem e concentram a radiação solar direta com o objetivo de convertê-la em energia térmica, a partir da qual se gera vapor d’água que irá acionar um ciclo termodinâmico reversível que converte calor em trabalho, conhecido como Rankine. O soiling consiste no depósito de diferentes tipos de sujeiras em uma superfície exposta em um dado ambiente. No caso de usinas CSP de torre central, o acúmulo gradativo de poeira, sujeira ou até mesmo de excremento de pássaros nas superfícies refletoras dos heliostatos causa uma redução significativa na quantidade de radiação solar que atinge o receptor posicionado no alto da torre e diminuição da eficiência de todo o sistema. Assim, faz-se necessário manter um alto fator de refletividade nas superfícies espelhadas dos heliostatos por meio de uma limpeza regular. Este trabalho apresenta a proposta de um mecanismo automatizado para efetuar a limpeza de superfícies refletoras de heliostatos. O desenvolvimento deste dispositivo, desde sua concepção, passando pelas fases de construção, instalação e funcionamento, respeita padrões de eficiência da limpeza, visa o baixo custo de produção, facilidade de instalação e minimização dos impactos ambientais pertinentes, como, por exemplo, baixo consumo de água na operação. Por meio de experimentos realizados em situações reais de aplicação, utilizando para tal um heliostato de 8 m2 localizado no Departamento de Engenharia Rural da Faculdade de Ciências Agronômicas da UNESP, campus de Botucatu, constatou-se que o dispositivo proposto é uma opção operacionalmente e economicamente viável de solução ao soiling quando aplicado na região de Botucatu, principalmente se comparado a outras propostas de métodos de limpeza de heliostatos apresentadas nos cenários internacional e nacional. Além disso, por meio de estudos sobre os impactos ambientais de usinas heliotérmicas, foi possível sugerir melhorias no processo de licenciamento ambiental de usinas CSP no Brasil.
The possibility of reduction in the supply of conventional fuels, the continuous growing demand for energy and the current concern with the environmental scenario influence the development of researches regarding alternative, renewable and less polluting energy sources, which produces less environmental impact. Among these alternatives, it is worth mentioning the solar energy, available source and that can be explored from all its potentialities. Nowadays, one of many the technological process that uses solar energy for electricity generation is the solar thermal one, also known as Concentrated Solar Power (CSP), based on the use of mirrored surfaces that reflect and concentrate the direct sunlight in order to convert it into thermal energy, from which it generates water vapor that will initiate a reversible thermodynamic cycle which converts heat into energy (Rankine cicle). The phenomenon known as soiling consists in the depositing of different types of dirt on a surface exposed in a given environment. In the case of power tower CSP plants, the gradual accumulation of dust, dirt or even bird's excrements on the reflective surfaces of heliostats causes a significant reduction in the amount of solar radiation that reaches the receiver located at the top of the tower and decreases the efficiency of the entire system. Thus, it is necessary to maintain a high reflectivity factor in the mirrored surfaces of the heliostats through a regular cleaning. This work presents a proposal of an automated mechanism to clean up the reflective surfaces of heliostats. The development of this device, from its conception, through the stages of construction, installation and operation, regarding the cleaning efficiency standards, aimed at low production cost, ease of installation and minimizing the relevant environmental impacts, such as, low consumption of water during its operation. Through experiments in real situations, using a 8 m2 heliostat located in the Department of Rural Engineering of UNESP's Faculty of Agronomic Sciences, Botucatu campus, it was verified that the proposed device is an operationally and economically option for the solution to soiling when applied at Botucatu's region, especially if compared to other proposed methods of heliostats cleaning presented in the international and national scenarios. In addition, through studies on the environmental impacts of heliothermic plants, it was possible to suggest improvements in the environmental licensing process of CSP plants in Brazil.
Nardello, Marco. "Optical subsystems of metis (multi element telescope for imaging and spectroscopy) on board of the solar orbiter mission." Doctoral thesis, Università degli studi di Padova, 2016. http://hdl.handle.net/11577/3426761.
Full textLa linea spettrale Lyman-, a 121.6 nm, è una lunghezza d'onda di grande interesse per l'esplorazione dell'ambiente solare e per l'astrosica. È un'importante linea di emissione dell'idrogeno e può dare informazioni sulle dinamiche di regioni calde dello spazio come la fotosfera solare e la corona. Lo strumento METIS (Multi Element Telescope for Imaging and Spectroscopy) sarà a bordo della missione Solar Orbiter, una missione dell'ESA in collaborazione con la NASA che dal 2018 intraprenderà un viaggio verso il Sole per esplorare le dinamiche della dinamo solare e la sua connessione con la corona e l'eliosfera. METIS acquisirà immagini nel visibile e alla lunghezza d'onda Lyman-, studiando la forma e l'evoluzione dei processi in espansione dal Sole verso l'eliosfera. Nei laboratori del CNR-IFN UOS Padova ho utilizato facility di deposizione e caratterizzazione per studiare le caratteristiche di materiali e dispositivi utilizzabili come elementi ottici per la lunghezza d'onda Lyman-. Grazie ad un microscopio a forza atomica (AFM) è stata realizzata una caratterizzazione di tipo morfologico mentre una caratterizzazione ottica ha rivelato le performance di materiali e dispositivi. Le variazioni di tali performance sono state ricondotte a modiche delle condizioni sperimentali e le conoscenze acquisite sono state utilizzate per ottimizzare le performance del prodotto nito. L'annealing è un aproccio che non è mai stato completamente esplorato e che può aumentare le qualità ottiche dei lm sottili di uoruro di magnesio, e di conseguenza aumentare la riettività degli elementi ottici per il range VUV. Io ho condotto uno studio dei fenomeni coinvolti nel processo e applicato la procedura alla realizzazione di migliori specchi per questa regione spettrale. In questo lavoro sono presentati tutti i passaggi sperimentali che hanno condotto alla realizzazione dei dispositivi ultimati e sono descritte le caratteristiche del nuovo approccio dell'annealing.
Kmeť, Jozef. "Problematika snižování tepelné odrazivosti zrcadel solární elektrárny se Stirlingovým motorem." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2015. http://www.nusl.cz/ntk/nusl-231827.
Full textAvenel, Coralie. "Durabilité des miroirs pour l'énergie solaire à concentration : étude des modes de vieillissement." Thesis, Université Clermont Auvergne (2017-2020), 2018. http://www.theses.fr/2018CLFAC035/document.
Full textDurability of solar mirrors is a key point for the development of concentrating solar power plants, because of the large investment, the goal of 30 years lifetime and of the implantations areas with hostile climates. This research work concerns the study of degradation modes and of monolithic or laminated glass solar mirrors durability. This thesis allows to successfully apply to CSP a lifetime prediction method already developed in more mature fields. Correlations between accelerated ageing tests and natural outdoor exposures performed on three sites evidence the predominant role of water and irradiance in protection paints of monolithic mirrors degradation. Damp heat tests were evaluated too aggressive for mirrors, considering thus the climatic conditions of potential application sites. Experimental results of accelerated ageing tests lead to the determination of kinetic parameters included in mathematical relationships modelling the main stress factors previously identified. Acceleration factors were then calculated for standard tests compared to sites with operational CSP plants. This work finally allows to estimate lifetimes of mirrors on specific sites, assuming that only the studied stress factors take part in degradation
Books on the topic "Solar Mirrors"
Perers, Bengt. Flat plate collectors with booster mirrors. Stockholm: Swedish Council for Building Research, 1993.
Find full textShabbar, Salfee, Lammert Luke, and United States. National Aeronautics and Space Administration., eds. Development of an improved mirror facet for space applications. [Washington, DC: National Aeronautics and Space Administration, 1991.
Find full textHeggen, Philip M. Solar concentrating mirrors: A technology coming of age. Menlo Park, Calif: Energy General Press, 1988.
Find full textM, Dever Therese, Banholzer William Frank 1957-, and United States. National Aeronautics and Space Administration., eds. Chemical vapor deposited silica coatings for solar mirror protection. [Washington, DC]: National Aeronautics and Space Administration, 1988.
Find full textLee, Jinsuk. Lifetime prediction for degradation of solar mirrors using step-stress accelerated testing. Golden, Colo.]: National Renewable Energy Laboratory, 2011.
Find full textKohne, Raner. Zur Leistung hochkonzentrierender Spiegelkonzentratoren und Spiegelsysteme. Koln: DFVLR, 1987.
Find full textChau-Lyan, Chang, Merkle C. L, and Lewis Research Center, eds. Solar rocket plume/mirror interactions. [Washington, D.C.]: National Aeronautics and Space Administration, 1991.
Find full textGuardians of the Solar Shield: Earth's Climate Mirrors Under Attack 2029-37. Strategic Path Press, 2021.
Find full textSolar rocket plume/mirror interactions. [Washington, D.C.]: National Aeronautics and Space Administration, 1991.
Find full textLemonick, Michael D. Mirror Earth: The Search for Our Planet's Twin. Bloomsbury Publishing USA, 2014.
Find full textBook chapters on the topic "Solar Mirrors"
Baydyk, Tetyana, Ernst Kussul, and Donald C. Wunsch II. "Solar Concentrators with Flat Mirrors." In Computational Intelligence Methods and Applications, 23–43. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-02236-5_3.
Full textLeutz, Ralf, and Akio Suzuki. "Lenses and Mirrors for Solar Energy." In Springer Series in OPTICAL SCIENCES, 3–14. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-540-45290-4_2.
Full textFraas, Lewis M. "Sunbeams from Space Mirrors for Terrestrial PV." In Low-Cost Solar Electric Power, 159–73. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-07530-3_12.
Full textFraas, Lewis M., and Mark J. O’Neill. "Sunbeams from Space Mirrors for Terrestrial PV." In Low-Cost Solar Electric Power, 163–76. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-30812-3_12.
Full textLiu, C. K., and C. L. Tien. "Cryocontamination of Optical Solar Reflectors and Mirrors." In Advances in Cryogenic Engineering, 474–81. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4613-9847-9_56.
Full textAnton, R., G. Lensch, W. Rudolph, and R. Ueth. "Investigations of Hard Coating and Heat Mirrors for Simultaneous Energy Conservation in a Photovoltaic/Solarthermic Hybrid System or for Use in a Secondary Reflector." In Solar Thermal Energy Utilization, 59–108. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-52342-7_2.
Full textBilton, Amy M., and Steven Dubowsky. "Inverse Kinematics for the Control of Hyper-Redundant Binary Mechanisms with Application to Solar Concentrator Mirrors." In Latest Advances in Robot Kinematics, 421–28. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-4620-6_53.
Full textOrvos, John. "Solar Corona Looks in the Mirror." In Achieving Business Agility, 147–66. Berkeley, CA: Apress, 2018. http://dx.doi.org/10.1007/978-1-4842-3855-4_7.
Full textStenborg, G., R. Schwenn, N. Srivastava, B. Inhester, B. Podlipnik, M. Rovira, and C. Francile. "MICA: The Mirror Coronagraph for Argentina." In Coronal Holes and Solar Wind Acceleration, 307–10. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-015-9167-6_51.
Full textJacob, J. W., G. Mertens, and J. Declerk. "Mirror Delamination." In The IEA/SSPS Solar Thermal Power Plants — Facts and Figures— Final Report of the International Test and Evaluation Team (ITET), 112–13. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82684-9_49.
Full textConference papers on the topic "Solar Mirrors"
Kennedy, C. E., K. Terwilliger, and G. J. Jorgensen. "Analysis of Accelerated Exposure Testing of Thin-Glass Mirror Matrix." In ASME 2005 International Solar Energy Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/isec2005-76040.
Full textDiver, Richard B., and Timothy A. Moss. "Practical Field Alignment of Parabolic Trough Solar Concentrators." In ASME 2006 International Solar Energy Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/isec2006-99146.
Full textBarr, Lawrence D., and William C. Livingston. "Mirror seeing control in thick solid mirrors and the planned upgrade of the McMath-Pierce Solar Telescope." In Metal Mirrors, edited by Richard G. Bingham and David D. Walker. SPIE, 1993. http://dx.doi.org/10.1117/12.158744.
Full textWells, David N. "Low-Cost Solar Mirror Substrates and Geometries for Solar Thermal and Photovoltaic Concentrator Applications." In ASME 2001 Solar Engineering: International Solar Energy Conference (FORUM 2001: Solar Energy — The Power to Choose). American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/sed2001-102.
Full textEnglish, Jeffrey D. "Thin Glass CSP Mirrors: “From Reflection to Concentration”." In ASME 2007 Energy Sustainability Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/es2007-36173.
Full textLee, Seung J., Amy M. Bilton, and Steven Dubowsky. "On the Kinematics of Solar Mirrors Using Massively Parallel Binary Actuation." In ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/detc2010-28875.
Full textMurray, Myles P., Laura S. Bruckman, Devin Gordon, Samuel Richardson, Greg Reinbolt, Mark Schuetz, and Roger H. French. "Degradation of back surface acrylic mirrors for low concentration and mirror-augmented photovoltaics." In SPIE Solar Energy + Technology, edited by Neelkanth G. Dhere and John H. Wohlgemuth. SPIE, 2012. http://dx.doi.org/10.1117/12.930102.
Full textAlon, Lital, Gregory Ravikovich, Matan Mandelbrod, Udi Eilat, Zafrir Schop, and Dror Tamari. "Computer-Based Management of Mirror-Washing in Utility-Scale Solar Thermal Plants." In ASME 2014 8th International Conference on Energy Sustainability collocated with the ASME 2014 12th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/es2014-6562.
Full textPujol-Nadal, Ramon, Víctor Martínez-Moll, and Andreu Moià-Pol. "Comparison Between Curved-mirrors and Flat-mirrors of the Fixed Mirror Solar Concentrator Geometry." In EuroSun 2014. Freiburg, Germany: International Solar Energy Society, 2015. http://dx.doi.org/10.18086/eurosun.2014.16.17.
Full textAngel, Roger, Thomas Stalcup, Brian Wheelwright, Stephen Warner, Kimberly Hammer, and Mira Frenkel. "Shaping solar concentrator mirrors by radiative heating." In SPIE Solar Energy + Technology, edited by Adam P. Plesniak and Candace Pfefferkorn. SPIE, 2014. http://dx.doi.org/10.1117/12.2062394.
Full textReports on the topic "Solar Mirrors"
Jorgensen, G., C. Kennedy, D. King, and K. Terwilliger. Optical durability testing of candidate solar mirrors. Office of Scientific and Technical Information (OSTI), March 2000. http://dx.doi.org/10.2172/754064.
Full textDiver, R. Mirror alignment techniques for point-focus solar concentrators. Office of Scientific and Technical Information (OSTI), June 1992. http://dx.doi.org/10.2172/7233191.
Full textDecker, E., C. Lopez, C. Mavis, and J. Noring. 10 MWe Solar Thermal Central Receiver Pilot Plant mirror module corrosion, torque tube damage, and mirror reflectance survey, July 1984. Office of Scientific and Technical Information (OSTI), July 1985. http://dx.doi.org/10.2172/5464338.
Full textHouser, R., and J. Strachan. Optical performance of the TBC-2 solar collector before and after the 1993 mirror lustering. Office of Scientific and Technical Information (OSTI), February 1995. http://dx.doi.org/10.2172/41349.
Full textFarrell, Tucker, Frank Burkholder, and Guangdong Zhu. Measurement and Reporting Guidelines for Solar Mirror Aging Tests Using Xenon Arc Lamp Exposure (XALE). Office of Scientific and Technical Information (OSTI), April 2023. http://dx.doi.org/10.2172/1971888.
Full textStettenheim, Joel. Second Generation Novel High Temperature Commercial Receiver & Low Cost High Performance Mirror Collector for Parabolic Solar Trough. Office of Scientific and Technical Information (OSTI), February 2016. http://dx.doi.org/10.2172/1332248.
Full textDanzo, M., R. Velazquez, and C. Mavis. 10 MW/sub e/ Solar Thermal Central Receiver Pilot Plant mirror module corrosion torque tube damage and vent tube assessment survey, July 1985 and July 1986. Office of Scientific and Technical Information (OSTI), September 1987. http://dx.doi.org/10.2172/5996953.
Full text