Dissertations / Theses on the topic 'SOLAR ENERGY FORECASTING'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 26 dissertations / theses for your research on the topic 'SOLAR ENERGY FORECASTING.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Montornès, Torrecillas Alex. "A study of the shortwave schemes in the Weather Research and Forecasting model." Doctoral thesis, Universitat de Barcelona, 2017. http://hdl.handle.net/10803/401501.
Full textL’objectiu principal d’aquesta tesi ´es la identificaci´o i quantificaci´o de les fonts d’error que tenen una contribuci´o directa o indirecta en la precisi´o dels esquemes solars, particularment en aquells disponibles en el model Weather Research and Forecasting (WRF-ARW), `ampliament emprat en el sector de l’energia solar. Les fonts d’error s´on limitacions en la representaci´o del transport radiatiu com a consequ¨`encia del conjunt d’aproximacions assumides per cada esquema. En aquesta tesi hi ha tres fonts d’error que s´on analitzades: i) l’error degut a la discretitzaci´o vertical de l’atmosfera en un conjunt d’estrats que s’assumeixen homogenis (error de truncament, Etrun), ii) l’error com a resultat d’una repre- sentaci´o insuficient de l’estrat entre el cim del model (TOM) i el cim de l’atmosfera (TOA), anomenat error de TOM Etom, i iii) l’error degut a les simplificacions i a les parametritzacions f´ısiques de l’RTE, definit com a error físic, Ephys. Per tal d’evitar la incertesa introdu¨ıda pels altres components del model, el codi font de cadas- cun dels sis esquemes solars ha estat separat del model i adaptat per treballar amb perfils verticals 1-dimensionals. Mitjan¸cant aquest m`etode, les habilitats dels esquemes solars poden ´esser anal- itzades sota condicions d’entrada id`entiques. D’una banda l’error de TOM i el de truncament s’analitzen a partir de perfils ideals. De l’altra, l’error f´ısic s’evalua prenent dades de radiosondatge com a perfil vertical i comparant les sortides dels esquemes radiatius amb mesures en superf´ıcie. Els resultats d’aquesta tesi mostren que l’Etom esdev´e negligible per la majoria d’aplicacions de mesoscala. Per configuracions t´ıpiques del model, l’Etrun en condicions de cel ser`e es troba al voltant de l’1.1%, el 0.9% i el 4.9% per la GHI, DHI i DIF, respectivament. En el cas amb nu´vols augmenta de forma significativa. L’estudi de l’Ephys mostra una relaci´o significativa amb el contingut de vapor d’aigua i els aerosols.
Kim, Byungyu. "Solar Energy Generation Forecasting and Power Output Optimization of Utility Scale Solar Field." DigitalCommons@CalPoly, 2020. https://digitalcommons.calpoly.edu/theses/2149.
Full textD, Pepe. "New techniques for solar power forecasting and building energy management." Doctoral thesis, Università di Siena, 2019. http://hdl.handle.net/11365/1072873.
Full textRudd, Timothy Robert. "BENEFITS OF NEAR-TERM CLOUD LOCATION FORECASTING FOR LARGE SOLAR PV." DigitalCommons@CalPoly, 2011. https://digitalcommons.calpoly.edu/theses/597.
Full textUwamahoro, Jean. "Forecasting solar cycle 24 using neural networks." Thesis, Rhodes University, 2009. http://hdl.handle.net/10962/d1005253.
Full textSfetsos, Athanasios. "Time series forecasting of wind speed and solar radiation for renewable energy sources." Thesis, Imperial College London, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.313886.
Full textFerrer, Martínez Claudia. "Machine Learning for Solar Energy Prediction." Thesis, Högskolan i Gävle, Avdelningen för elektronik, matematik och naturvetenskap, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-27423.
Full textMohammed, Kadhim Nada. "Creating 3D city models from satellite imagery for integrated assessment and forecasting of solar energy." Thesis, Cardiff University, 2018. http://orca.cf.ac.uk/109232/.
Full textUppling, Hugo, and Adam Eriksson. "Single and multiple step forecasting of solar power production: applying and evaluating potential models." Thesis, Uppsala universitet, Institutionen för teknikvetenskaper, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-384340.
Full textDe, Jong Pieter. "Forecasting, integration, and storage of renewable energy generation in the Northeast of Brazil." Escola Politécnica, 2017. http://repositorio.ufba.br/ri/handle/ri/24167.
Full textApproved for entry into archive by Vanessa Reis (vanessa.jamile@ufba.br) on 2017-09-06T10:26:26Z (GMT) No. of bitstreams: 1 DE JONG, Pieter - Forecasting, integration, and storage of renewable energy generation in the Northeast of Brazil.pdf: 4104557 bytes, checksum: 286729716f48be77c37ddb6f4cf2c93d (MD5)
Made available in DSpace on 2017-09-06T10:26:26Z (GMT). No. of bitstreams: 1 DE JONG, Pieter - Forecasting, integration, and storage of renewable energy generation in the Northeast of Brazil.pdf: 4104557 bytes, checksum: 286729716f48be77c37ddb6f4cf2c93d (MD5)
CAPES e FAPESB.
As a result of global climate change, during the coming decades less rainfall and higher temperatures are projected for the Brazilian Northeast (NE). Consequently these regional climatic changes could severely impact hydroelectric generation in the NE as well as influence solar and wind power potential. The ongoing drought in the Brazilian NE region has caused hydroelectric generation to decline substantially during the last 5 years and in 2016 hydroelectricity only supplied 25% of the NE’s total demand. In contrast, wind power supplied 30% of demand and is expected to generate 55-60% of the NE’s electricity supply by 2020. Therefore, this paper is focused on both short term forecasting and long-term projections of renewable energy generation and resource availability. It also explores the economic, environmental and technical feasibility of renewable energy integration in the NE region of Brazil. First, the long-term impacts of climate change on the NE region’s hydroelectric and wind energy production are analysed. Particular attention is paid to the long-term projections of annual rainfall and streamflow in the São Francisco basin which could decline by approximately 47% and 80%, respectively, by 2050. On the other hand, wind energy potential is projected to increase substantially during the same period. This thesis also estimates the economic, social, and environmental viability of renewable and non-renewable generation technologies in Brazil. The Levelised Cost of Electricity (LCOE) including externalities is calculated for several different case study power plants, the majority of which are located in the Brazilian NE. It was found that wind power becomes the cheapest generation technology in the NE region, once all externality and transmission line costs are taken into consideration. The LCOE for the entire Northeast’s generation matrix is calculated for various configurations, including scenarios in which hydroelectric generation is restricted due to drought conditions. It was concluded that a generation mix in which wind power replaces all fossil fuel generation by 2020, could feasibly reduce the overall LCOE in the region by approximately 46% and substantially decrease CO2eq emissions. Two different methods are used to examine the limits of integrating high penetrations of variable renewable generation technologies into a power system with a large proportion of hydroelectric capacity. In the first method existing wind generation data from 16 wind farms is extrapolated in time and space, while the second method uses a numerical weather prediction model to simulate future wind energy generation in the NE region. Considering the minimum generation requirements of the São Francisco’s hydroelectric dams, the maximum wind energy penetration in the NE region is estimated to be approximately 50% before significant amounts of energy would need to be curtailed or exported to other Brazilian regions. Finally, this thesis reviews additional literature on energy storage and the impact of large scale variable renewable energy integration on grid stability and power quality. It was found that there are several existing technologies such as power factor and voltage regulation devices that can resolve these issues.
Como consequência da mudança climática global, nas próximas décadas menos precipitação e temperaturas mais altas são projetados para Nordeste (NE) do Brasil. Consequentemente, essas mudanças climáticas regionais podem afetar severamente a geração hidrelétrica no NE, bem como influenciar o potencial de energia solar e eólica. A seca atual nessa região do Brasil fez com que a geração hidrelétrica caísse substancialmente durante os últimos 5 anos e em 2016, as usinas hidrelétricas apenas forneceram 25% da demanda total do NE. Em contraste, a energia eólica forneceu 30% da demanda e deverá gerar 55-60% do fornecimento de energia elétrica do NE até 2020. Portanto, este trabalho está focado tanto na previsão a curto quanto projeções a longo prazo da geração de energia renovável e disponibilidade de recursos. Ele também explora a viabilidade econômica, ambiental e técnica da integração de energias renováveis na região NE. Primeiramente, os impactos de longo prazo das mudanças climáticas na produção hidrelétrica e eólica da região NE são analisados. Especial atenção é dada às projeções de longo prazo de precipitação anual e fluxo na bacia do São Francisco, que podem diminuir em aproximadamente 47% e 80%, respectivamente, até 2050. Por outro lado, prevê-se que o potencial da energia eólica aumente substancialmente durante o mesmo período. Esta tese também estima a viabilidade econômica, social e ambiental das tecnologias de geração renováveis e não-renováveis no Brasil. O custo nivelado de energia elétrica (LCOE), incluindo externalidades, é calculado para diversas usinas de estudo de caso, a maioria localizada no NE. Verificou-se que, a energia eólica se torna a tecnologia de geração mais barata na região NE, uma vez que todos os custos de externalidades e de linhas de transmissão são levados em consideração. O LCOE para a matriz de geração do Nordeste é calculado para várias configurações, incluindo cenários em que a geração hidrelétrica é restrita devido às condições de seca. Concluiu-se que, uma mistura de geração em que a energia eólica substitui toda a geração de combustíveis fósseis até 2020, poderia reduzir o LCOE na região em aproximadamente 46% e diminuir substancialmente as emissões de CO2eq. Dois métodos diferentes são usados para examinar os limites da integração de altas penetrações de tecnologias de geração renovável variáveis em um sistema de energia com uma grande proporção de capacidade hidrelétrica. No primeiro método, dados de geração eólica existentes de 16 parques eólicos são extrapolados no tempo e no espaço, enquanto o segundo método utiliza um modelo de previsão numérica de tempo para simular a futura geração de energia eólica na região NE. Considerando as exigências mínimas de geração das hidrelétricas do São Francisco, estima-se que a penetração máxima de energia eólica na região NE seja de aproximadamente 50% antes que quantidades significativas de energia precisem ser desperdiçadas ou exportadas para outras regiões brasileiras. Finalmente, esta tese examina literatura adicional sobre armazenamento de energia e o impacto da integração de energia renovável variável em larga escala na estabilidade da rede elétrica e na qualidade da energia. Verificou-se que existem várias tecnologias existentes, como dispositivos de regulação de fator de potência e tensão que podem resolver estes problemas.
Alfadda, Abdullah Ibrahim A. "Strategies for Managing Cool Thermal Energy Storage with Day-ahead PV and Building Load Forecasting at a District Level." Diss., Virginia Tech, 2019. http://hdl.handle.net/10919/93509.
Full textDoctor of Philosophy
In hot weather areas around the world, the electrical load in a building spikes because of the cooling load, but not by the same amount daily due to various conditions. In order to meet the demand of the hottest day of the year, large cooling systems are installed. However, these large systems are not fully utilized during all hot summer days. As a result, the investments in these cooling systems cannot be fully justified. A solution for more optimal use of the building cooling system is presented in this dissertation using Cool Thermal Energy Storage (CTES) deployed at a district level. Such CTES systems are charged overnight and the cool charge is dispatched as cool air during the day. The integration of the CTES helps to downsize the otherwise large cooling systems designed for the hottest day of the year. This reduces the capital costs of installing large cooling systems. However, one important question remains - how much of the CTES should be charged during the night, such that the cooling load for the next day is fully met and at the same time the CTES charge is fully utilized during the day. The solution presented in this dissertation integrated the CTES with Photovoltaics (PV) power forecasting and building load forecasting at a district level for a more optimal charge/discharge management. A district comprises several buildings all connected to the same cooling system with central CTES. The use of the forecasting for both the PV and the building cooling load allows the building operator to more accurately determine how much of the CTES should be charged during the night, such that the cooling system and CTES can meet the cooling demand for the next day. Using this approach, the CTES would be optimally sized and utilized more efficiently. At the same time, peak load is lowered, thus benefiting an electric utility company.
Ahmed, Omar W. "Enhanced flare prediction by advanced feature extraction from solar images : developing automated imaging and machine learning techniques for processing solar images and extracting features from active regions to enable the efficient prediction of solar flares." Thesis, University of Bradford, 2011. http://hdl.handle.net/10454/5407.
Full textLopes, Francisco Manuel Tavares. "Short-term forecasting for direct normal irradiance with numerical weather prediction models in Alentejo (Southern Portugal): implications for concentration solar energy technologies." Doctoral thesis, Universidade de Évora, 2020. http://hdl.handle.net/10174/28724.
Full textAhmed, Omar Wahab. "Enhanced flare prediction by advanced feature extraction from solar images : developing automated imaging and machine learning techniques for processing solar images and extracting features from active regions to enable the efficient prediction of solar flares." Thesis, University of Bradford, 2011. http://hdl.handle.net/10454/5407.
Full textDuverger, Emilien. "Réseau électrique intelligent pour les nouveaux usages." Thesis, Perpignan, 2019. http://www.theses.fr/2019PERP0027/document.
Full textWith the transformation of the energy landscape due to the development of renewable energies, electric vehicles and storage systems, the current grid needs to be modernized. Microgrid concept is a promising solution based on information and communication technologies to improve the management and efficiency of electricity generation, transmission, distribution and consumption. However, the technical and economic challenges associated with their deployment are numerous. The thesis aims to provide contributions on several key points: production and consumption forecasting, equipment modeling, and microgrid management optimization.Rivesaltes-grid is a microgrid demonstrator on the scale of an industrial building consisting of 60 kWp photovoltaic array, 85 kWh lithium-ion batteries and an electric vehicle. It has enabled the development of an innovative energy management system (EMS) to optimize the microgrids energy efficiency. This EMS, based on predictive control management and the resolution of a constrained optimization problem, reduces operation cost by 6.2%. This microgrid management requires as input: (1) the production prediction based on a random forest algorithm and a modeling of the PV field by 1-diode model, (2) the consumption prediction from partitioning algorithm k-means++ and (3) dynamic modeling of the storage system with its constraints
Nobre, André Maia. "Short-term solar irradiance forecasting and photovoltaic systems performance in a tropical climate in Singapore." reponame:Repositório Institucional da UFSC, 2015. https://repositorio.ufsc.br/xmlui/handle/123456789/169480.
Full textMade available in DSpace on 2016-10-19T12:59:30Z (GMT). No. of bitstreams: 1 338190.pdf: 9968372 bytes, checksum: e1c28dfcf84e191f0457a82aa5715399 (MD5) Previous issue date: 2015
A humanidade usou e continua consumindo em grande quantidade os recursos não-renováveis do planeta como petróleo, gás natural e carvão mineral para suprir suas necessidades energéticas. Somente nas últimas duas décadas que outras fontes de energia renováveis, como a solar fotovoltaica e a eólica, passaram a se tornar relevantes na geração de energia elétrica em nível mundial. Instalações de sistemas fotovoltaicos ao redor do mundo atingiram crescimento da ordem de 40% durante os últimos quinze anos. Entretanto, a grande maioria destes sistemas, (acima de 90%), estão localizados em regiões onde o recurso solar não é tão abundante, ou seja, fora da região dos trópicos do planeta. Devido a este fato, ao tentar incorporar a energia solar fotovoltaica às redes elétricas, uma pergunta que sempre surge está relacionada a variação desta forma de geração de energia elétrica com a produção alternante durante o dia devido ao movimento das nuvens e total ausência no período noturno. Mesmo assim, em alguns países, já se atinge percentuais em torno de 5 a 10% de contribuição da energia elétrica proveniente de energia solar fotovoltaica. Passa a ser desafiador a inserção dessa fonte de energia à rede, de maneira intensiva, em paralelo com os recursos já existentes (em sua maioria ainda de origem fóssil). Nesta tese, foi avaliada a previsão do recurso solar em curtíssimo prazo (como 15-min, 30-min e uma hora) para uma região tropical do planeta, neste caso em Cingapura, ilha que se localiza próxima à linha do equador, no Sudeste Asiático. Esta tese foca em métodos existentes de previsão de irradiância, mas também explora uma nova proposta híbrida, adaptada a uma localidade tropical. Além das previsões de irradiação solar, simulações de sistemas fotovoltaicos e o cálculo de seu desempenho foram estudados e avaliados de modo a se prever quanto de energia elétrica é produzida com a mesma antecedência dada nos produtos de previsão do recurso solar. A influência da gaze de queimada foi um fenômeno particular, comum na Cingapura de hoje, que afeta o desempenho de sistemas fotovoltaicos e que foi investigado em detalhe. Todo o trabalho foi validado por redes detalhadas de estações meteorológicas em solo e também através de monitoramento de sistemas fotovoltaicos por toda Cingapura.
Abstract : Humanity has used and continues to consume in great proportion non-renewable energy resources of the planet such as oil, natural gas and coal in order to fulfil its energy needs. It was only during the past two decades that other sources of renewable energy such as solar photovoltaics (PV) and wind energy became somewhat relevant towards electricity generation in the world. PV installations worldwide have reached a compound annual growth rate of ~40% for the last fifteen years. However, the great majority of these systems (over 90% of them) are located where the solar energy resource is not the most abundant - outside of the tropical regions of the planet. While trying to incorporate solar energy PV into electrical power grids, one common question which arises is related to the variable aspect of this form of energy generation - with alternating production during the day due to cloud motion, and total absence during night time. Nonetheless, in some countries, contribution ratios of 5 to 10% of electrical energy from solar PV have been achieved. It becomes then challenging to integrate this source of energy into grids in a professional way, in parallel with existing resources (mostly still fossil-fuel-based). In this thesis, short-term forecasting (for time horizons such as 15-min, 30-min and 1-hour) of the solar resource was investigated in a tropical region of the world - in Singapore, 1° North of the Equator, in Southeast Asia. This thesis focuses on existing methods for irradiance forecasting, but also explores a novel Hybrid proposal, tailored to the tropical environment at hand. Beyond the forecast of the solar energy irradiance ahead of time, PV system simulation and performance assessment were studied and evaluated with the goal of predicting how much electricity is produced in the same time frame given by the solar irradiance forecasting products. The influence of haze was a particular phenomenon, common in today?s Singapore, which affects PV system performance and which was investigated in detail. All work has been validated by a comprehensive network of ground-based meteorological stations, as well as by various PV system monitoring sites throughout Singapore.
Nobre, André Maia. "Short-term solar irradiance forecasting and photovoltaic systems performance in a tropical climate in Singapore." reponame:Repositório Institucional da UFSC, 2015. https://repositorio.ufsc.br/xmlui/handle/123456789/162682.
Full textMade available in DSpace on 2016-05-24T17:37:07Z (GMT). No. of bitstreams: 1 338190.pdf: 9968372 bytes, checksum: e1c28dfcf84e191f0457a82aa5715399 (MD5) Previous issue date: 2015
A humanidade usou e continua consumindo em grande quantidade os recursos não-renováveis do planeta como petróleo, gás natural e carvão mineral para suprir suas necessidades energéticas. Somente nas últimas duas décadas que outras fontes de energia renováveis, como a solar fotovoltaica e a eólica, passaram a se tornar relevantes na geração de energia elétrica em nÃvel mundial. Instalações de sistemas fotovoltaicos ao redor do mundo atingiram crescimento da ordem de 40% durante os últimos quinze anos. Entretanto, a grande maioria destes sistemas, (acima de 90%), estão localizados em regiões onde o recurso solar não é tão abundante, ou seja, fora da região dos trópicos do planeta. Devido a este fato, ao tentar incorporar a energia solar fotovoltaica à s redes elétricas, uma pergunta que sempre surge está relacionada a variação desta forma de geração de energia elétrica com a produção alternante durante o dia devido ao movimento das nuvens e total ausência no perÃodo noturno. Mesmo assim, em alguns paÃses, já se atinge percentuais em torno de 5 a 10% de contribuição da energia elétrica proveniente de energia solar fotovoltaica. Passa a ser desafiador a inserção dessa fonte de energia à rede, de maneira intensiva, em paralelo com os recursos já existentes (em sua maioria ainda de origem fóssil). Nesta tese, foi avaliada a previsão do recurso solar em curtÃssimo prazo (como 15-min, 30-min e uma hora) para uma região tropical do planeta, neste caso em Cingapura, ilha que se localiza próxima à linha do equador, no Sudeste Asiático. Esta tese foca em métodos existentes de previsão de irradiância, mas também explora uma nova proposta hÃbrida, adaptada a uma localidade tropical. Além das previsões de irradiação solar, simulações de sistemas fotovoltaicos e o cálculo de seu desempenho foram estudados e avaliados de modo a se prever quanto de energia elétrica é produzida com a mesma antecedência dada nos produtos de previsão do recurso solar. A influência da gaze de queimada foi um fenômeno particular, comum na Cingapura de hoje, que afeta o desempenho de sistemas fotovoltaicos e que foi investigado em detalhe. Todo o trabalho foi validado por redes detalhadas de estações meteorológicas em solo e também através de monitoramento de sistemas fotovoltaicos por toda Cingapura.
Abstract : Humanity has used and continues to consume in great proportion non-renewable energy resources of the planet such as oil, natural gas and coal in order to fulfil its energy needs. It was only during the past two decades that other sources of renewable energy such as solar photovoltaics (PV) and wind energy became somewhat relevant towards electricity generation in the world. PV installations worldwide have reached a compound annual growth rate of ~40% for the last fifteen years. However, the great majority of these systems (over 90% of them) are located where the solar energy resource is not the most abundant - outside of the tropical regions of the planet. While trying to incorporate solar energy PV into electrical power grids, one common question which arises is related to the variable aspect of this form of energy generation - with alternating production during the day due to cloud motion, and total absence during night time. Nonetheless, in some countries, contribution ratios of 5 to 10% of electrical energy from solar PV have been achieved. It becomes then challenging to integrate this source of energy into grids in a professional way, in parallel with existing resources (mostly still fossil-fuel-based). In this thesis, short-term forecasting (for time horizons such as 15-min, 30-min and 1-hour) of the solar resource was investigated in a tropical region of the world - in Singapore, 1° North of the Equator, in Southeast Asia. This thesis focuses on existing methods for irradiance forecasting, but also explores a novel Hybrid proposal, tailored to the tropical environment at hand. Beyond the forecast of the solar energy irradiance ahead of time, PV system simulation and performance assessment were studied and evaluated with the goal of predicting how much electricity is produced in the same time frame given by the solar irradiance forecasting products. The influence of haze was a particular phenomenon, common in today?s Singapore, which affects PV system performance and which was investigated in detail. All work has been validated by a comprehensive network of ground-based meteorological stations, as well as by various PV system monitoring sites throughout Singapore.
Mayol, Cotapos Carolina de los Ángeles. "Mitigation control against partial shading effects in large-scale photovoltaic power plants using an improved forecasting technique." Tesis, Universidad de Chile, 2017. http://repositorio.uchile.cl/handle/2250/144113.
Full textEn un trabajo previo se propuso un control de mitigación de efecto nube que permitía disminuir los efectos nocivos de la nubosidad parcial sobre parques fotovoltaicos en la frecuencia de sistemas eléctricos de potencia. Esto último sin la necesidad del uso de acumuladores de energía. La estrategia se basa en la operación sub-óptima de los parques (operación en deload) con tal de disponer de reservas de potencia. A pesar que la implementación del sistema nombrado mejoró la frecuencia del sistema de forma significativa en comparación al caso base (sin el sistema de control), la operación en deload de los parques implica una gran cantidad de energía que no se está aprovechando, lo que no se consideró en la metodología. Con tal de mejorar esto, el siguiente trabajo propone un control de mitigación de efecto nube en parques fotovoltaicos de gran escala basado en una herramienta de pronóstico de radiación. Esto último permite disminuir las pérdidas de energía junto con mitigar los efectos de la nubosidad parcial, mediante la determinación de un nivel de deload en los parques fotovoltaicos usando dicho pronóstico. En primer lugar, esta tesis presenta una revisión bibliográfica y discusión del estado del arte de las técnicas de pronóstico en parques fotovoltaicos. Se muestra que la selección de la técnica de pronóstico depende en la información disponible y la ventana de tiempo del pronóstico, es decir, dependerá del caso de estudio. Dicho esto, se propone el uso de una técnica de pronóstico basada en redes neuronales en el Sistema Interconectado del Norte Grande (SING) de Chile. El pronóstico sirve para determinar el nivel de deload en el parque fotovoltaico para los siguientes 10 minutos, en función de una rampa de radiación. Los resultados muestran que la implementación de la técnica de pronóstico no solo mejora la respuesta en frecuencia del sistema, sino que también disminuye las pérdidas energéticas de forma significativa.
Este trabajo fue parcialmente financiado por el Proyecto CONICYT/FONDAP/15110019 "Solar Energy Research Center" SERC-Chile y el Instituto de Sistemas Complejos de Ingeniería (ISCI)
DAVO', Federica. "Optimization and Forecasting Models for Electricity Market and Renewable Energies." Doctoral thesis, Università degli studi di Bergamo, 2017. http://hdl.handle.net/10446/77349.
Full textUwamahoro, Jean. "Forecasting solar cycle 24 using neural networks /." 2008. http://eprints.ru.ac.za/1626/.
Full textTseng, Sung-Ming, and 曾崧銘. "Fuzzy GARCH Model for Forecasting the Claymore/MAC Global Solar Energy Index ETF (TAN)." Thesis, 2010. http://ndltd.ncl.edu.tw/handle/31009856118339425679.
Full text萬能科技大學
經營管理研究所
98
Roleum massive utilization used by human, then gradually reduced, so that people pursue the energy alternative unceasingly. This research made this prediction on the en-ergy financial products, for more people to refer to the future trend of financial products solar energy.In this study, GARCH model, Fuzzy time series and Fuzzy generalized auto-regressive conditional variance (Fuzzy-GARCH) model are employed to forecast the Claymore/MAC Global Solar Energy Index ETF(TAN) to predict. Three assessment criteria RMSE, MAE and MAPE are used to measure the forecast ability of the provided three models. Total 472 records of the closing price of Claymore Solar ETF collected from April 15, 2008 to February 26, 2010 are provided as sample dat for the forecasting model. As the results, Fuzzy-GARCH model has better forecast ability than the GARCH model and the Fuzzy time series. This study establishes a model for the Fuzzy-GARCH (4,8)with criteria, RMSE = 833.4297627, MAE = 666.3567535, MAPE = 0.007416, and also confirms that the interval size on the predictive ability of different settings would be affected in the Fuzzy time series model and the Fuzzy-GARCH model.
Wu, Tzu-Hui, and 吳姿慧. "Application of Grey and Neural Network Approaches to Forecasting Solar Energy Output in Taiwan." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/65443929452551354735.
Full text真理大學
企業管理學系碩士班
101
Taiwan is suitable to develop solar energy due to sufficient sun exposure, high temperature, and located in subtropical regions. Solar energy demand will be a potential orientation to study due to high cost and restriction on emission of greenhouse gases. Therefore, this study investigates solar energy output by coal, coal related product, crude, crude related product, gas, hydroelectric and nuclear power and construct the forecasting model to improve the prediction accuracy. Combing Neural network with grey system model GM (1,1) to establish the NNGM(1,1) forecast model in this study. The NNGM(1,1) model is compared to traditional ARIMA and regression model the NNGM(1,1) model in compared to. At first, using GM(1,1) model to forecaste the solar energy output, the mean absolute percentage error (MAPE) is up to 82.85%, it means the forecast is bad. Therefore, choosing four related factors to construct GM(1,4) model and improve MAPE to 4.04%. Then, only using neural network to establish the forecasting model, the MAPE is 2.47%. As the results, using the combination of neural network and grey forecast model to propose NNGM(1,4) model, which lower MAPE to 1.76%. Comparing to the traditional forecast models in this study, the traditional ARIMA forecast model can get the high prediction accuracy according to the sufficient history data.
Mpfumali, Phathutshedzo. "Probabilistic solar power forecasting using partially linear additive quantile regression models: an application to South African data." Diss., 2019. http://hdl.handle.net/11602/1349.
Full textDepartment of Statistics
This study discusses an application of partially linear additive quantile regression models in predicting medium-term global solar irradiance using data from Tellerie radiometric station in South Africa for the period August 2009 to April 2010. Variables are selected using a least absolute shrinkage and selection operator (Lasso) via hierarchical interactions and the parameters of the developed models are estimated using the Barrodale and Roberts's algorithm. The best models are selected based on the Akaike information criterion (AIC), Bayesian information criterion (BIC), adjusted R squared (AdjR2) and generalised cross validation (GCV). The accuracy of the forecasts is evaluated using mean absolute error (MAE) and root mean square errors (RMSE). To improve the accuracy of forecasts, a convex forecast combination algorithm where the average loss su ered by the models is based on the pinball loss function is used. A second forecast combination method which is quantile regression averaging (QRA) is also used. The best set of forecasts is selected based on the prediction interval coverage probability (PICP), prediction interval normalised average width (PINAW) and prediction interval normalised average deviation (PINAD). The results show that QRA is the best model since it produces robust prediction intervals than other models. The percentage improvement is calculated and the results demonstrate that QRA model over GAM with interactions yields a small improvement whereas QRA over a convex forecast combination model yields a higher percentage improvement. A major contribution of this dissertation is the inclusion of a non-linear trend variable and the extension of forecast combination models to include the QRA.
NRF
Nzuza, Mphiliseni Bongani. "Statistical modelling and estimation of solar radiation." Thesis, 2014. http://hdl.handle.net/10413/11308.
Full textM.Sc. University of KwaZulu-Natal, Durban 2014.
Poshtkouhi, Shahab. "Analysis and Implementation of Fine-grained Distributed Maximum Power Point Tracking in Photovoltaic Systems." Thesis, 2011. http://hdl.handle.net/1807/31391.
Full textTsagouri, I., A. Belehaki, N. Bergeot, C. Cid, V. Delouille, T. Egorova, N. Jakowski, et al. "Progress in space weather modeling in an operational environment." 2013. http://hdl.handle.net/10454/9741.
Full textThis paper aims at providing an overview of latest advances in space weather modeling in an operational environment in Europe, including both the introduction of new models and improvements to existing codes and algorithms that address the broad range of space weather's prediction requirements from the Sun to the Earth. For each case, we consider the model's input data, the output parameters, products or services, its operational status, and whether it is supported by validation results, in order to build a solid basis for future developments. This work is the output of the Sub Group 1.3 "Improvement of operational models'' of the European Cooperation in Science and Technology (COST) Action ES0803 "Developing Space Weather Products and services in Europe'' and therefore this review focuses on the progress achieved by European research teams involved in the action.