Academic literature on the topic 'SOLAR ENERGY FORECASTING'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'SOLAR ENERGY FORECASTING.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "SOLAR ENERGY FORECASTING"
Sangrody, Hossein, Morteza Sarailoo, Ning Zhou, Nhu Tran, Mahdi Motalleb, and Elham Foruzan. "Weather forecasting error in solar energy forecasting." IET Renewable Power Generation 11, no. 10 (July 11, 2017): 1274–80. http://dx.doi.org/10.1049/iet-rpg.2016.1043.
Full textChaudhary, Pankaj, Rohith Gattu, Soundarajan Ezekiel, and James Allen Rodger. "Forecasting Solar Radiation." Journal of Cases on Information Technology 23, no. 4 (October 2021): 1–21. http://dx.doi.org/10.4018/jcit.296263.
Full textEl hendouzi, Abdelhakim, and Abdennaser Bourouhou. "Solar Photovoltaic Power Forecasting." Journal of Electrical and Computer Engineering 2020 (December 31, 2020): 1–21. http://dx.doi.org/10.1155/2020/8819925.
Full textA. G. M. Amarasinghe, P., N. S. Abeygunawardana, T. N. Jayasekara, E. A. J. P. Edirisinghe, and S. K. Abeygunawardane. "Ensemble models for solar power forecasting—a weather classification approach." AIMS Energy 8, no. 2 (2020): 252–71. http://dx.doi.org/10.3934/energy.2020.2.252.
Full textPaulescu, Marius, Nicoleta Stefu, Ciprian Dughir, Robert Blaga, Andreea Sabadus, Eugenia Paulescu, and Sorin Bojin. "Online Forecasting of the Solar Energy Production." Annals of West University of Timisoara - Physics 60, no. 1 (August 1, 2018): 104–10. http://dx.doi.org/10.2478/awutp-2018-0011.
Full textNath, N. C., W. Sae-Tang, and C. Pirak. "Machine Learning-Based Solar Power Energy Forecasting." Journal of the Society of Automotive Engineers Malaysia 4, no. 3 (September 1, 2020): 307–22. http://dx.doi.org/10.56381/jsaem.v4i3.25.
Full textMadhiarasan, Manoharan, Mohamed Louzazni, and Brahim Belmahdi. "Statistical Analysis of Novel Ensemble Recursive Radial Basis Function Neural Network Performance on Global Solar Irradiance Forecasting." Journal of Electrical and Computer Engineering 2023 (March 28, 2023): 1–10. http://dx.doi.org/10.1155/2023/2554355.
Full textAl-Ali, Elham M., Yassine Hajji, Yahia Said, Manel Hleili, Amal M. Alanzi, Ali H. Laatar, and Mohamed Atri. "Solar Energy Production Forecasting Based on a Hybrid CNN-LSTM-Transformer Model." Mathematics 11, no. 3 (January 28, 2023): 676. http://dx.doi.org/10.3390/math11030676.
Full textChodakowska, Ewa, Joanicjusz Nazarko, Łukasz Nazarko, Hesham S. Rabayah, Raed M. Abendeh, and Rami Alawneh. "ARIMA Models in Solar Radiation Forecasting in Different Geographic Locations." Energies 16, no. 13 (June 28, 2023): 5029. http://dx.doi.org/10.3390/en16135029.
Full textVennila, C., Anita Titus, T. Sri Sudha, U. Sreenivasulu, N. Pandu Ranga Reddy, K. Jamal, Dayadi Lakshmaiah, P. Jagadeesh, and Assefa Belay. "Forecasting Solar Energy Production Using Machine Learning." International Journal of Photoenergy 2022 (April 30, 2022): 1–7. http://dx.doi.org/10.1155/2022/7797488.
Full textDissertations / Theses on the topic "SOLAR ENERGY FORECASTING"
Montornès, Torrecillas Alex. "A study of the shortwave schemes in the Weather Research and Forecasting model." Doctoral thesis, Universitat de Barcelona, 2017. http://hdl.handle.net/10803/401501.
Full textL’objectiu principal d’aquesta tesi ´es la identificaci´o i quantificaci´o de les fonts d’error que tenen una contribuci´o directa o indirecta en la precisi´o dels esquemes solars, particularment en aquells disponibles en el model Weather Research and Forecasting (WRF-ARW), `ampliament emprat en el sector de l’energia solar. Les fonts d’error s´on limitacions en la representaci´o del transport radiatiu com a consequ¨`encia del conjunt d’aproximacions assumides per cada esquema. En aquesta tesi hi ha tres fonts d’error que s´on analitzades: i) l’error degut a la discretitzaci´o vertical de l’atmosfera en un conjunt d’estrats que s’assumeixen homogenis (error de truncament, Etrun), ii) l’error com a resultat d’una repre- sentaci´o insuficient de l’estrat entre el cim del model (TOM) i el cim de l’atmosfera (TOA), anomenat error de TOM Etom, i iii) l’error degut a les simplificacions i a les parametritzacions f´ısiques de l’RTE, definit com a error físic, Ephys. Per tal d’evitar la incertesa introdu¨ıda pels altres components del model, el codi font de cadas- cun dels sis esquemes solars ha estat separat del model i adaptat per treballar amb perfils verticals 1-dimensionals. Mitjan¸cant aquest m`etode, les habilitats dels esquemes solars poden ´esser anal- itzades sota condicions d’entrada id`entiques. D’una banda l’error de TOM i el de truncament s’analitzen a partir de perfils ideals. De l’altra, l’error f´ısic s’evalua prenent dades de radiosondatge com a perfil vertical i comparant les sortides dels esquemes radiatius amb mesures en superf´ıcie. Els resultats d’aquesta tesi mostren que l’Etom esdev´e negligible per la majoria d’aplicacions de mesoscala. Per configuracions t´ıpiques del model, l’Etrun en condicions de cel ser`e es troba al voltant de l’1.1%, el 0.9% i el 4.9% per la GHI, DHI i DIF, respectivament. En el cas amb nu´vols augmenta de forma significativa. L’estudi de l’Ephys mostra una relaci´o significativa amb el contingut de vapor d’aigua i els aerosols.
Kim, Byungyu. "Solar Energy Generation Forecasting and Power Output Optimization of Utility Scale Solar Field." DigitalCommons@CalPoly, 2020. https://digitalcommons.calpoly.edu/theses/2149.
Full textD, Pepe. "New techniques for solar power forecasting and building energy management." Doctoral thesis, Università di Siena, 2019. http://hdl.handle.net/11365/1072873.
Full textRudd, Timothy Robert. "BENEFITS OF NEAR-TERM CLOUD LOCATION FORECASTING FOR LARGE SOLAR PV." DigitalCommons@CalPoly, 2011. https://digitalcommons.calpoly.edu/theses/597.
Full textUwamahoro, Jean. "Forecasting solar cycle 24 using neural networks." Thesis, Rhodes University, 2009. http://hdl.handle.net/10962/d1005253.
Full textSfetsos, Athanasios. "Time series forecasting of wind speed and solar radiation for renewable energy sources." Thesis, Imperial College London, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.313886.
Full textFerrer, Martínez Claudia. "Machine Learning for Solar Energy Prediction." Thesis, Högskolan i Gävle, Avdelningen för elektronik, matematik och naturvetenskap, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-27423.
Full textMohammed, Kadhim Nada. "Creating 3D city models from satellite imagery for integrated assessment and forecasting of solar energy." Thesis, Cardiff University, 2018. http://orca.cf.ac.uk/109232/.
Full textUppling, Hugo, and Adam Eriksson. "Single and multiple step forecasting of solar power production: applying and evaluating potential models." Thesis, Uppsala universitet, Institutionen för teknikvetenskaper, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-384340.
Full textDe, Jong Pieter. "Forecasting, integration, and storage of renewable energy generation in the Northeast of Brazil." Escola Politécnica, 2017. http://repositorio.ufba.br/ri/handle/ri/24167.
Full textApproved for entry into archive by Vanessa Reis (vanessa.jamile@ufba.br) on 2017-09-06T10:26:26Z (GMT) No. of bitstreams: 1 DE JONG, Pieter - Forecasting, integration, and storage of renewable energy generation in the Northeast of Brazil.pdf: 4104557 bytes, checksum: 286729716f48be77c37ddb6f4cf2c93d (MD5)
Made available in DSpace on 2017-09-06T10:26:26Z (GMT). No. of bitstreams: 1 DE JONG, Pieter - Forecasting, integration, and storage of renewable energy generation in the Northeast of Brazil.pdf: 4104557 bytes, checksum: 286729716f48be77c37ddb6f4cf2c93d (MD5)
CAPES e FAPESB.
As a result of global climate change, during the coming decades less rainfall and higher temperatures are projected for the Brazilian Northeast (NE). Consequently these regional climatic changes could severely impact hydroelectric generation in the NE as well as influence solar and wind power potential. The ongoing drought in the Brazilian NE region has caused hydroelectric generation to decline substantially during the last 5 years and in 2016 hydroelectricity only supplied 25% of the NE’s total demand. In contrast, wind power supplied 30% of demand and is expected to generate 55-60% of the NE’s electricity supply by 2020. Therefore, this paper is focused on both short term forecasting and long-term projections of renewable energy generation and resource availability. It also explores the economic, environmental and technical feasibility of renewable energy integration in the NE region of Brazil. First, the long-term impacts of climate change on the NE region’s hydroelectric and wind energy production are analysed. Particular attention is paid to the long-term projections of annual rainfall and streamflow in the São Francisco basin which could decline by approximately 47% and 80%, respectively, by 2050. On the other hand, wind energy potential is projected to increase substantially during the same period. This thesis also estimates the economic, social, and environmental viability of renewable and non-renewable generation technologies in Brazil. The Levelised Cost of Electricity (LCOE) including externalities is calculated for several different case study power plants, the majority of which are located in the Brazilian NE. It was found that wind power becomes the cheapest generation technology in the NE region, once all externality and transmission line costs are taken into consideration. The LCOE for the entire Northeast’s generation matrix is calculated for various configurations, including scenarios in which hydroelectric generation is restricted due to drought conditions. It was concluded that a generation mix in which wind power replaces all fossil fuel generation by 2020, could feasibly reduce the overall LCOE in the region by approximately 46% and substantially decrease CO2eq emissions. Two different methods are used to examine the limits of integrating high penetrations of variable renewable generation technologies into a power system with a large proportion of hydroelectric capacity. In the first method existing wind generation data from 16 wind farms is extrapolated in time and space, while the second method uses a numerical weather prediction model to simulate future wind energy generation in the NE region. Considering the minimum generation requirements of the São Francisco’s hydroelectric dams, the maximum wind energy penetration in the NE region is estimated to be approximately 50% before significant amounts of energy would need to be curtailed or exported to other Brazilian regions. Finally, this thesis reviews additional literature on energy storage and the impact of large scale variable renewable energy integration on grid stability and power quality. It was found that there are several existing technologies such as power factor and voltage regulation devices that can resolve these issues.
Como consequência da mudança climática global, nas próximas décadas menos precipitação e temperaturas mais altas são projetados para Nordeste (NE) do Brasil. Consequentemente, essas mudanças climáticas regionais podem afetar severamente a geração hidrelétrica no NE, bem como influenciar o potencial de energia solar e eólica. A seca atual nessa região do Brasil fez com que a geração hidrelétrica caísse substancialmente durante os últimos 5 anos e em 2016, as usinas hidrelétricas apenas forneceram 25% da demanda total do NE. Em contraste, a energia eólica forneceu 30% da demanda e deverá gerar 55-60% do fornecimento de energia elétrica do NE até 2020. Portanto, este trabalho está focado tanto na previsão a curto quanto projeções a longo prazo da geração de energia renovável e disponibilidade de recursos. Ele também explora a viabilidade econômica, ambiental e técnica da integração de energias renováveis na região NE. Primeiramente, os impactos de longo prazo das mudanças climáticas na produção hidrelétrica e eólica da região NE são analisados. Especial atenção é dada às projeções de longo prazo de precipitação anual e fluxo na bacia do São Francisco, que podem diminuir em aproximadamente 47% e 80%, respectivamente, até 2050. Por outro lado, prevê-se que o potencial da energia eólica aumente substancialmente durante o mesmo período. Esta tese também estima a viabilidade econômica, social e ambiental das tecnologias de geração renováveis e não-renováveis no Brasil. O custo nivelado de energia elétrica (LCOE), incluindo externalidades, é calculado para diversas usinas de estudo de caso, a maioria localizada no NE. Verificou-se que, a energia eólica se torna a tecnologia de geração mais barata na região NE, uma vez que todos os custos de externalidades e de linhas de transmissão são levados em consideração. O LCOE para a matriz de geração do Nordeste é calculado para várias configurações, incluindo cenários em que a geração hidrelétrica é restrita devido às condições de seca. Concluiu-se que, uma mistura de geração em que a energia eólica substitui toda a geração de combustíveis fósseis até 2020, poderia reduzir o LCOE na região em aproximadamente 46% e diminuir substancialmente as emissões de CO2eq. Dois métodos diferentes são usados para examinar os limites da integração de altas penetrações de tecnologias de geração renovável variáveis em um sistema de energia com uma grande proporção de capacidade hidrelétrica. No primeiro método, dados de geração eólica existentes de 16 parques eólicos são extrapolados no tempo e no espaço, enquanto o segundo método utiliza um modelo de previsão numérica de tempo para simular a futura geração de energia eólica na região NE. Considerando as exigências mínimas de geração das hidrelétricas do São Francisco, estima-se que a penetração máxima de energia eólica na região NE seja de aproximadamente 50% antes que quantidades significativas de energia precisem ser desperdiçadas ou exportadas para outras regiões brasileiras. Finalmente, esta tese examina literatura adicional sobre armazenamento de energia e o impacto da integração de energia renovável variável em larga escala na estabilidade da rede elétrica e na qualidade da energia. Verificou-se que existem várias tecnologias existentes, como dispositivos de regulação de fator de potência e tensão que podem resolver estes problemas.
Books on the topic "SOLAR ENERGY FORECASTING"
United States. Bureau of Labor Statistics, ed. Careers in solar power. Washington, D.C.]: U.S. Bureau of Labor Statistics, 2011.
Find full textInvesting in solar stocks: An investor's guide to winning in the global renewable energy market. New York: McGraw-Hill, 2009.
Find full textPaulescu, Marius. Weather Modeling and Forecasting of PV Systems Operation. London: Springer London, 2013.
Find full textNational Renewable Energy Laboratory (U.S.) and IEEE Photovoltaic Specialists Conference (37th : 2011 : Seattle, Wash.), eds. An economic analysis of photovoltaics versus traditional energy sources: Where are we now and where might we be in the near future? : preprint. Golden, Colo.]: National Renewable Energy Laboratory, 2011.
Find full textSolar Energy Technologies Program (U.S.), National Renewable Energy Laboratory (U.S.), and IEEE Photovoltaic Specialists Conference (37th : 2011 : Seattle, Wash.), eds. An economic analysis of photovoltaics versus traditional energy sources: Where are we now and where might we be in the near future? [Golden, Colo.]: National Renewable Energy Laboratory, U.S. Dept. of Energy, Office of Energy Efficienty and Renewable Energy, 2011.
Find full textLipták, Béla G. Post-oil energy technology: The world's first solar-hydrogen demonstration power plant. Boca Raton: CRC Press, 2009.
Find full textEuropean Commission. Directorate-General for Energy and European Photovoltaic Industry Association, eds. Photovoltaics in 2010. Luxembourg: Office for Official Publications of the European Communities, 1996.
Find full textLiptak, Bela G. Post-oil energy technology: After the age of fossil fuels. Boca Raton, Fl: Taylor & Francis, 2008.
Find full textKleissl, Jan. Solar Energy Forecasting and Resource Assessment. Elsevier Science & Technology Books, 2013.
Find full textSolar Energy Forecasting and Resource Assessment. Elsevier, 2013. http://dx.doi.org/10.1016/c2011-0-07022-9.
Full textBook chapters on the topic "SOLAR ENERGY FORECASTING"
Gupta, Anuj, Kapil Gupta, and Sumit Saroha. "Solar Energy Radiation Forecasting Method." In Smart Technologies for Energy and Environmental Sustainability, 105–29. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-80702-3_7.
Full textShareef Syed, Mahaboob, Ch V. Suresh, B. Sreenivasa Raju, M. Ravindra Babu, and Y. S. Kishore Babu. "Forecasting of Wind Power Using Hybrid Machine Learning Approach." In Wind and Solar Energy Applications, 27–34. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003321897-3.
Full textMasoom, Akriti, Yashwant Kashyap, and Ankit Bansal. "Solar Radiation Assessment and Forecasting Using Satellite Data." In Energy, Environment, and Sustainability, 45–71. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-3302-6_3.
Full textDahl, Astrid, and Edwin Bonilla. "Scalable Gaussian Process Models for Solar Power Forecasting." In Data Analytics for Renewable Energy Integration: Informing the Generation and Distribution of Renewable Energy, 94–106. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-71643-5_9.
Full textSangle, Ashok S., and Prapti D. Deshmukh. "Forecasting Solar Energy on Time Frame: A Review." In Rising Threats in Expert Applications and Solutions, 427–37. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-1122-4_45.
Full textGandhi, R. R. Rubia, C. Kathirvel, R. Mohan Kumar, and M. Siva Ramkumar. "Solar energy forecasting architecture using deep learning models." In Machine Learning and the Internet of Things in Solar Power Generation, 105–21. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003302964-6.
Full textManjarres, Diana, Ricardo Alonso, Sergio Gil-Lopez, and Itziar Landa-Torres. "Solar Energy Forecasting and Optimization System for Efficient Renewable Energy Integration." In Data Analytics for Renewable Energy Integration: Informing the Generation and Distribution of Renewable Energy, 1–12. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-71643-5_1.
Full textBadescu, Viorel. "Available Solar Energy and Weather Forecasting on Mars Surface." In Mars, 25–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03629-3_2.
Full textŞahinbaş, Kevser. "Comparative Study of the Forecasting Solar Energy Generation in Istanbul." In Circular Economy and the Energy Market, 185–99. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-13146-2_15.
Full textMoradzadeh, Arash, Armin Hosseini Rezaei Asl, Morteza Nazari-Heris, Kazem Zare, and Behnam Mohammadi-Ivatloo. "Deep Learning-Assisted Solar Radiation Forecasting for Photovoltaic Power Generation Management in Buildings." In Renewable Energy for Buildings, 47–59. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-08732-5_3.
Full textConference papers on the topic "SOLAR ENERGY FORECASTING"
"Multivariate forecasting of solar energy." In 20th International Congress on Modelling and Simulation (MODSIM2013). Modelling and Simulation Society of Australia and New Zealand (MSSANZ), Inc., 2013. http://dx.doi.org/10.36334/modsim.2013.g1.boland.
Full text"Probabilistic forecasting for solar energy." In 25th International Congress on Modelling and Simulation. Modelling and Simulation Society of Australia and New Zealand, 2023. http://dx.doi.org/10.36334/modsim.2023.boland.
Full textJascourt, Stephen D., Daniel Kirk-Davidhoff, and Christopher Cassidy. "Forecasting Solar Power and Irradiance – Lessons from Real-World Experiences." In American Solar Energy Society National Solar Conference 2016. Freiburg, Germany: International Solar Energy Society, 2016. http://dx.doi.org/10.18086/solar.2016.01.15.
Full textHenze, Gregor P. "Parametric Study of a Simplified Ice Storage Model Operating Under Conventional and Optimal Control Strategies." In ASME Solar 2002: International Solar Energy Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/sed2002-1039.
Full textKumar, Karan, and Nipun Batra. "Solar Energy Forecasting Using Machine Learning." In CoDS COMAD 2020: 7th ACM IKDD CoDS and 25th COMAD. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3371158.3371212.
Full textMarquez, Ricardo, and Carlos F. M. Coimbra. "A Novel Metric for Evaluation of Solar Forecasting Models." In ASME 2011 5th International Conference on Energy Sustainability. ASMEDC, 2011. http://dx.doi.org/10.1115/es2011-54519.
Full textManur, Anusha, Maitreyee Marathe, Ashray Manur, Abhishek Ramachandra, Shamsundar Subbarao, and Giri Venkataramanan. "Smart Solar Home System with Solar Forecasting." In 2020 IEEE International Conference on Power Electronics, Smart Grid and Renewable Energy (PESGRE). IEEE, 2020. http://dx.doi.org/10.1109/pesgre45664.2020.9070340.
Full textAmreen, T. Sana, Radharani Panigrahi, and N. R. Patne. "Solar Power Forecasting Using Hybrid Model." In 2023 5th International Conference on Energy, Power and Environment: Towards Flexible Green Energy Technologies (ICEPE). IEEE, 2023. http://dx.doi.org/10.1109/icepe57949.2023.10201483.
Full textKhoie, Rahim, and Antonio Calderon. "Forecasting Carbon Emissions in States of Hawaii, California, Colorado, and Florida; The Effects of States’ Renewable Portfolio Standards." In American Solar Energy Society National Solar Conference 2018. Freiburg, Germany: International Solar Energy Society, 2018. http://dx.doi.org/10.18086/solar.2018.01.04.
Full textSiddhant, Kumar, Harshit Garg, Ajay Saha, Nitin Singh, Niraj Kumar Choudhary, and Deepak Kumar Singh. "Solar Energy Forecasting using Artificial Neural Network." In 2022 IEEE Students Conference on Engineering and Systems (SCES). IEEE, 2022. http://dx.doi.org/10.1109/sces55490.2022.9887754.
Full textReports on the topic "SOLAR ENERGY FORECASTING"
Stoffel, Thomas. U.S. Department of Energy Workshop Report: Solar Resources and Forecasting. Office of Scientific and Technical Information (OSTI), June 2012. http://dx.doi.org/10.2172/1047954.
Full textSengupta, Manajit, and Craig Turchi. Australian Solar Energy Forecasting System (ASEFS): Cooperative Research and Development Final Report, CRADA Number CRD-14-541. Office of Scientific and Technical Information (OSTI), August 2020. http://dx.doi.org/10.2172/1659797.
Full textBryce, Richard, Grant Buster, Kate Doubleday, Cong Feng, Ross Ring-Jarvi, Michael Rossol, Flora Zhang, and Bri-Mathias Hodge. Solar PV, Wind Generation, and Load Forecasting Dataset for ERCOT 2018: Performance-Based Energy Resource Feedback, Optimization, and Risk Management (P.E.R.F.O.R.M.). Office of Scientific and Technical Information (OSTI), May 2023. http://dx.doi.org/10.2172/1972698.
Full textBARKHATOV, NIKOLAY, and SERGEY REVUNOV. A software-computational neural network tool for predicting the electromagnetic state of the polar magnetosphere, taking into account the process that simulates its slow loading by the kinetic energy of the solar wind. SIB-Expertise, December 2021. http://dx.doi.org/10.12731/er0519.07122021.
Full textWerth, D., and R. Nichols. Advanced Cloud Forecasting for Solar Energy’s Impact on Grid Modernization. Office of Scientific and Technical Information (OSTI), September 2017. http://dx.doi.org/10.2172/1395968.
Full text