Dissertations / Theses on the topic 'Solar Cells - Semiconductor Nanocrystals'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Solar Cells - Semiconductor Nanocrystals.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Yuan, Chunze. "The Study of II-VI Semiconductor Nanocrystals Sensitized Solar Cells." Licentiate thesis, KTH, Teoretisk kemi och biologi, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-93752.
Full textQC 20120425
Razgoniaeva, Natalia Razgoniaeva. "Photochemical energy conversion in metal-semiconductor hybrid nanocrystals." Bowling Green State University / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1465822519.
Full textCattley, Christopher Andrew. "Quaternary nanocrystal solar cells." Thesis, University of Oxford, 2016. http://ora.ox.ac.uk/objects/uuid:977e0f75-e597-4c7a-8f72-6a26031f8f0b.
Full textNemitz, Ian R. "Synthesis of Nanoscale Semiconductor Heterostructures for Photovoltaic Applications." Bowling Green State University / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1277087935.
Full textLi, Guangru. "Nanostructured materials for optoelectronic devices." Thesis, University of Cambridge, 2016. https://www.repository.cam.ac.uk/handle/1810/263671.
Full textWong, Henry Mo Pun. "Semiconducting nanocrystals for hybrid solar cells." Thesis, University of Cambridge, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.613367.
Full textEhrler, Bruno. "Nanocrystalline solar cells." Thesis, University of Cambridge, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.607785.
Full textSchnabel, Manuel. "Silicon nanocrystals embedded in silicon carbide for tandem solar cell applications." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:da5bbb64-0bcd-4807-a9f3-4ff63a9ca98d.
Full textKinder, Erich W. "Fabrication of All-Inorganic Optoelectronic Devices Using Matrix Encapsulation of Nanocrystal Arrays." Bowling Green State University / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1339719904.
Full textMarín, Beloqui José Manuel. "Solution processed inorganic semiconductor solar cells." Doctoral thesis, Universitat Rovira i Virgili, 2015. http://hdl.handle.net/10803/334407.
Full textEn esta tesis, el estudio optoelectrónico y la fabricación de diferentes solución de procesado de semiconductores inorgánicos tales como PbS Quantum Dots y células solares de perovskita se han fabricado. A lo largo de esta tesis medidas optoelectrónicos como fotoinducidas carga Extracción (PICE), fotoinducidas transitoria fotovoltaje (PIT-PV), fotoinducidas transitoria fotocorriente (PIT-PC) Laser transitoria Espectroscopia de Absorción (L-TAS) se han realizado a las células solares eficientes con el fin de estudiar los diferentes procesos eléctricos internos presentes en el dispositivo bajo condiciones de trabajo. Usando estas técnicas, el desdoblamiento de los niveles de Fermi ha sido encontrado como el origen de la tensión en PbS QD células solares (Capítulo 2). Además, en el capítulo 4.1 de un estudio optoelectrónico intensiva se ha realizado a las células solares perovskita mesoporosos, donde se descubrieron decaimientos biexponenciales de TPV y carga diferencial se propuso manera tan adecuada para obtener la carga generada en el dispositivo. Por otra parte, los dispositivos fueron fabricados utilizando diferentes polímeros como HTM, y los resultados proporcionados confirmaron que la regeneración fue superior al 90%, y que PIT-PV realizado en condiciones de oscuridad corresponden a la recombinación entre los huecos de la HTM y los electrones en el TiO2, como presentado en el capítulo 4.2. También, los resultados presentados en el capítulo 4.3 mostraron que una capa de Al2O3 monoatómico ralentiza la recombinación en el dispositivo de aumento de la tensión del dispositivo.
In this thesis, the optoelectronic study and fabrication of different solution processed inorganic semiconductor such as PbS Quantum Dots and perovskite solar cells have been fabricated. Along this thesis optoelectronic measurements such as PhotoInduced Charge Extraction (PICE), PhotoInduced Transient PhotoVoltage (PIT-PV), PhotoInduced Transient PhotoCurrent (PIT-PC) Laser Transient Absorption Spectroscopy (L-TAS) have been performed to efficient solar cells in order to study the different inner electrical processes present in the device under working conditions. Using these techniques, the splitting of Fermi levels have found to be the origin of the voltage in PbS QD solar cells (Chapter 2). Besides, in chapter 4.1 an intensive optoelectronic study has been performed to mesoporous perovskite solar cells, where biexponential decays of TPV were discovered and Differential Charging was proposed as suitable way to obtain the charge generated in the device. Moreover, devices were fabricated using different polymers as HTM, and results provided confirmed that the regeneration was over 90%, and that PIT-PV performed in dark conditions correspond to the recombination between the holes in the HTM and the electrons in the TiO2, as presented in chapter 4.2. Also, results presented in chapter 4.3 showed that a monoatomic layer of Al2O3 slow down the recombination in the device increasing the device voltage..
Mat-Teridi, Mohd. "Construction of photosensitised semiconductor cathodes." Thesis, Loughborough University, 2012. https://dspace.lboro.ac.uk/2134/10286.
Full textLian, Zichao. "Photo-Induced Carrier Transfer in Heterostructured Semiconductor Nanocrystals for Solar Energy Conversion." Kyoto University, 2018. http://hdl.handle.net/2433/235053.
Full textChang, Jin. "Controlled synthesis of inorganic semiconductor nanocrystals and their applications." Thesis, Queensland University of Technology, 2013. https://eprints.qut.edu.au/63960/1/Jin_Chang_Thesis.pdf.
Full textDang, Hongmei. "Nanostructured Semiconductor Device Design in Solar Cells." UKnowledge, 2015. http://uknowledge.uky.edu/ece_etds/77.
Full textCAPITANI, CHIARA. "Synthesis of semiconductor colloidal nanocrystals with large Stokes-shift for luminescent solar concentrators." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2022. http://hdl.handle.net/10281/366195.
Full textLuminescent solar concentrators (LSCs) are waveguides composed of a polymeric matrix doped or coated with fluorophores. The direct and/or diffuse sunlight that penetrates the matrix is absorbed by the fluorophores and then re-emitted by them with less energy. The light emitted, thanks to the total internal reflection, propagates until it reaches the edges of the wave guide where it is converted into electricity by photovoltaic cells placed on the perimeter of the matrix. The efficiency of the device is reduced by numerous loss processes, due to the reflection of the matrix and the escape cone, and/or due to the characteristics of the fluorophores, such as the absorption coefficient, the quantum yield (QY) of photoluminescence (PL) and the reabsorption. To minimize losses due to fluorophores, a good alternative are colloidal quantum dots (QDs) that usually have a high QY, a high absorption coefficient and a controllable emission wavelength by changing the size of the nanocrystals. Furthermore, by properly engineering the QDs, it is possible to realize particles with high Stokes-shift between the absorption and emission spectra, in order to reduce the reabsorption as much as possible. The project is focused on the development of the synthesis of QDs, in order to optimize the QY of photoluminescence, compatibility with the polymer matrix and photostability, while limiting the reabsorption. Besides. the synthesis procedure must be easily transferable on industrial volumes, to meet the production needs of high square meters of LSCs. During the three years of the doctoral project in High Apprenticeship I was able to develop a synthesis procedure consisting of four steps: • growth of CuInS2 core nanocrystals; • quaternary formation with zinc addition (ZnCuInS2); crucial step to increase the QY and control the emission wavelength; • growth of a zinc sulphide shell (ZnCuInS2/ZnS) to passivate the surface of nanocrystals, increase QY and photostability; • post-synthesis treatment of the partial exchange of ligands to improve solubility in the polymer matrix. The nanocrystals thus produced show 60% QY and excellent solubility in the polymer matrix. In fact, a large size LSC (30 cm x 30 cm x 0.7 cm) was produced, whose optical power efficiency, OPE = 6.8%. Initially, I developed the synthesis procedure in a 25 ml glass flask, producing 250 mg for batch. Thanks to the equipment provided by Glass to Power s.p.A I was able to study the increase in the scale of the synthesis. Firstly, in order to investigate some possible problems due to the increase in volumes, I have carried out preliminary studies on larger balloons, 500 mL and 2 L. After analysis of heating and quenching of synthesis, I have performed the synthesis in a preindustrial reactor producing 300 g of nanocrystals of ZnCuInS2/ZnS. In addition I also optimized the synthesis procedure. I tested several strategies to increase QY without damaging solubility in the polymer. Thanks to a variation of the reagent in the second step and an increase of the shell layers, I obtained nanocrystals with 80% of QY. The next step will be to scale up this new procedure and produce large LSCs. I collaborated with other PhD students, in particular, I synthesized with a heat-up method CdSe nanocrystals doped with Au7 clusters and decorated with conjugated dyes as efficient triplet sensitizers or up-conversion applications (gold doping improves up-conversion efficiency). The beneficial effects of the doping strategy result in a maximum UC efficiency of 12%, which is an unprecedented result for up-conversion based on decorated NCs as triplet sensitizers.
Liang, Xinxing. "Synthesis of perovskite nanocrystals and their applications in perovskite solar cells." Thesis, University of Bath, 2018. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.767584.
Full textКосяк, Володимир Володимирович, Владимир Владимирович Косяк, Volodymyr Volodymyrovych Kosiak, Анатолій Сергійович Опанасюк, Анатолий Сергеевич Опанасюк, Anatolii Serhiiovych Opanasiuk, Юрій Павлович Гнатенко, et al. "Ternary semiconductor thin films for solar cells application." Thesis, Lublin University of Technology, 2011. http://essuir.sumdu.edu.ua/handle/123456789/30140.
Full textMitra, Somak. "Nanoscale engineering for the integration of silicon nanocrystals in solar cells nanoarchitectures." Thesis, Ulster University, 2014. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.629076.
Full textHarries, Joanna Elizabeth. "Semiconductor nanoparticle sensitization of solid state nanocrystalline solar cells." Thesis, University of Bath, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.438648.
Full textEskandari, Rahmatollah. "Ferroelectric-Semiconductor Systems for New Generation of Solar Cells." ScholarWorks@UNO, 2017. http://scholarworks.uno.edu/td/2318.
Full textLefrançois, Aurélie. "Synthèse de nanocristaux de type Chalcopyrite en vue d'applications en cellules solaires." Phd thesis, Université de Grenoble, 2013. http://tel.archives-ouvertes.fr/tel-01062176.
Full textMiao, Yinghong. "Nanocrystalline titanium dioxide solar cells sensitized with germanium quantum dots." Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 73 p, 2008. http://proquest.umi.com/pqdweb?did=1597633711&sid=14&Fmt=2&clientId=8331&RQT=309&VName=PQD.
Full textNoel, Nakita K. "Advances in hybrid solar cells : from dye-sensitised to perovskite solar cells." Thesis, University of Oxford, 2014. https://ora.ox.ac.uk/objects/uuid:e0f54943-546a-49cd-8fd9-5ff07ec7bf0a.
Full textChern, Kevin Tsun-Jen. "GaInN/GaN Schottky Barrier Solar Cells." Diss., Virginia Tech, 2015. http://hdl.handle.net/10919/52899.
Full textPh. D.
Tachibana, Yasuhiro. "Charge separation and recombination in dye sensitised semiconductor solar cells." Thesis, Imperial College London, 2000. http://hdl.handle.net/10044/1/8787.
Full textSmith, Thomas. "Studies of p-type semiconductor photoelectrodes for tandem solar cells." Thesis, Loughborough University, 2014. https://dspace.lboro.ac.uk/2134/14522.
Full textBerhe, Seare Ahferom. "Acceptor-sensitizers for Nanostructured Oxide Semiconductor in Excitonic Solar Cells." Thesis, University of North Texas, 2014. https://digital.library.unt.edu/ark:/67531/metadc699927/.
Full textShen, Zhangfeng. "Engineering Carbon-Semiconductor Hybrid Materials for Photocatalysis and Solar Cells." Thesis, Curtin University, 2017. http://hdl.handle.net/20.500.11937/66005.
Full textUnger, Eva. "XDSC : Excitonic Dye Solar Cells." Doctoral thesis, Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-168608.
Full textAkgul, M. Zafer. "Environmentally friendly nanocrystals synthesized and processed in ambient conditions for solution-processed solar cells." Doctoral thesis, Universitat Politècnica de Catalunya, 2021. http://hdl.handle.net/10803/671521.
Full textDebido al continuo aumento de la demanda de energía y las preocupaciones ambientales sobre el cambio climático planteadas por la comunidad internacional, los recursos energéticos alternativos han sido objeto de una intensa investigación durante la última década. Como consecuencia, se han propuesto diferentes tecnologías, siendo la fotovoltaica una prometedora entre ellas. Hasta ahora, se han empleado diferentes estructuras y métodos para fabricar células solares para la producción de energía. Tradicionalmente, se han utilizado métodos de deposición basados en vacío para formar las capas necesarias para el funcionamiento fotovoltaico adecuado. Debido a los avances en los métodos de síntesis coloidal, las películas finas de nanocristales semiconductores en solución coloidal (CNCs) han ganado una gran atención como sustitutos baratos de las capas depositadas al vacío. Hasta la fecha, se han desarrollado varios métodos de síntesis coloidal para producir nanocristales semiconductores para aplicaciones en energía fotovoltaica. Gracias al alto grado de controlabilidad y la alta calidad del material, los métodos de inyección en caliente han sido el camino a seguir durante las últimas décadas. Sin embargo, la aplicación de películas de CNCs en fotovoltaica a gran escala se ha retrasado debido a las propias limitaciones de estos métodos de síntesis. En este trabajo, demostramos que es posible eliminar la necesidad de técnicas inertes mediante la selección cuidadosa de los precursores y el diseño de las condiciones de reacción conscientes del oxígeno. Usamos el compuesto semiconductor sulfuro de bismuto y plata (AgBiS2) como material prototipo para demostrar la facilidad y eficiencia del método. Este compuesto semiconductor se ha seleccionado como material prototipo gracias a sus atractivas propiedades ópticas para la energía fotovoltaica y la naturaleza ecológica de los elementos constituyentes. Las células solares fabricadas con CNCs sintetizadas a temperatura ambiente han arrojado una eficiencia de conversión de energía del 5,5 %, lo que demuestra el potencial prometedor del método. La aplicación del método en la síntesis de CNCs de AgBiS2 da como resultado una reducción de costes de al menos un 60 % en comparación con los estudios anteriores que reportaron CNCs de AgBiS2 de una calidad fotovoltaica similar. Otro desafío importante al emplear métodos de inyección en caliente es la escalabilidad. Debido a las dificultades para mantener bajas las fluctuaciones térmicas y la atmósfera inerte dentro del recipiente de reacción, los métodos de inyección en caliente imponen una restricción de escala inherente a la síntesis. Por otro lado, con la eliminación de la restricción de escala mediante el uso de un método de síntesis en condiciones ambientales, se elimina también el requisito de reacción a alta temperatura y entorno de reacción químicamente inerte, lo que nos permite lograr una producción en volumen a gran escala de CNCs. Esto, a su vez, puede reducir aún más el coste de producción de los CNCs, y en consecuencía el coste de las células fotovoltaicas que se basan en CNCs. Además, mostramos que el método en condiciones ambientales se puede adaptar para la síntesis de otro calcogenuro metálico, por ejemplo, CNCs de seleniuro de bismuto y plata (AgBiSe2) con un espectro de absorción más extendido en el infrarrojo cercano, hasta ~ 0.9 eV . Las células solares de CNCs de AgBiSe2 alcanzaron una eficiencia preliminar de hasta el 2,6 %. Además, gracias a la similitud estructural de estos dos compuestos, los dos métodos desarrollados para la síntesis de CNCs de AgBiS2 y AgBiSe2 se combinan y optimizan para obtener CNCs de la aleación cuaternaria AgBiSSe como un medio fácil de sintonización de bandgap en familia de semiconductores de calcogenuro de bismuto y plata.La formación de AgBiSSe CNCs se verifica mediante métodos de caracterización óptica y estructural para mostrar la formación de fase cuaternaria y también la pureza de fase del producto obtenido. En general, se demuestra que el método de síntesis de condiciones ambientales propuesto es capaz de proporcionar materiales fotovoltaicos compatibles con RoHS a un costo menor y un mayor rendimiento en comparación con los métodos basados en inyección en caliente, lo que abre un camino novedoso para la energía fotovoltaica ecológica de bajo costo. .
Penny, Melissa. "Mathematical modelling of dye-sensitised solar cells." Thesis, Queensland University of Technology, 2006. https://eprints.qut.edu.au/16270/1/Melissa_Penny_Thesis.pdf.
Full textGladney, Dewey Clinton. "Simulating radiation-induced defects on semiconductor devices." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2004. http://library.nps.navy.mil/uhtbin/hyperion/04Sep%5FGladney.pdf.
Full textWang, Qiaoyi. "Theoretical investigation of realistic III-V semiconductor intermediate band solar cells." Thesis, University of Bristol, 2016. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.723446.
Full textChen, Jie. "Spectroscopic Ellipsometry Studies of II-VI Semiconductor Materials and Solar Cells." University of Toledo / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1286813480.
Full textNgamsinlapasathian, Supachai. "New aspects of dye-sensitized solar cells using mesoporous semiconductor electrodes." Kyoto University, 2004. http://hdl.handle.net/2433/145254.
Full text0048
新制・課程博士
博士(エネルギー科学)
甲第11150号
エネ博第99号
新制||エネ||27(附属図書館)
22719
UT51-2004-R25
京都大学大学院エネルギー科学研究科エネルギー基礎科学専攻
(主査)教授 吉川 暹, 教授 八尾 健, 教授 片桐 晃
学位規則第4条第1項該当
Young, Eric Rustad. "Crystal Growth and Surface Modification of Pyrite for Use as a Photovoltaic Material." PDXScholar, 2018. https://pdxscholar.library.pdx.edu/open_access_etds/4233.
Full textWillis, Shawn M. "Advanced optoelectronic characterisation of solar cells." Thesis, University of Oxford, 2011. http://ora.ox.ac.uk/objects/uuid:07683f00-b7ba-4be3-aec0-f389fed34644.
Full textPenny, Melissa. "Mathematical modelling of dye-sensitised solar cells." Queensland University of Technology, 2006. http://eprints.qut.edu.au/16270/.
Full textBurton, Lee. "Phase stability and composition of tin sulfide for thin-film solar cells." Thesis, University of Bath, 2014. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.642045.
Full textCass, Michael Jeaffreson. "Simulations of electron transport at semiconductor electrodes and in dye sensitised solar cells." Thesis, University of Bath, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.425886.
Full textJadhav, Priyadarshani. "Singlet exciton fission, a multi-exciton generation process, in organic semiconductor solar cells." Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/75635.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 107-115).
Organic semiconductor photovoltaics hold the promise of cheap production and low manufacturing setup costs. The highest efficiency seen in research labs, ~10% today, is still too low for production. In this work we explore implementations of a multiple exciton generation process, singlet exciton fission, to work around the Shockley-Queisser limit, according to which, all single junctions cells have a theoretical efficiency limit of 33.7%. This is the first implementation of a singlet fission photovoltaic. We measured a singlet fission efficiency of 72% at room temperature. We showed that singlet fission can be implemented in bulk heterojunction photovoltaics, which is an important result since some of the highest efficiency organic photovoltaics in the last 5 years have been bulk heterojunction structures. Secondly, we showed that the magnetic field effect can be used as a probe to investigate triplet dissociation in singlet fission devices. Thirdly, we implemented singlet fission photovoltaics, using the singlet fission material pentacene as donor and low bandgap infrared-absorptive lead chalcogenide quantum dots as acceptors. Singlet fission can enhance the efficiency of organic photovoltaics only if the fission material is paired with an absorptive low-energy-gap material. We find that pentacene triplet excitons dissociate at the pentacene/quantum dot heterojunctions with an internal quantum efficiency of 35%. Lastly, we investigate a series of materials to find a better acceptor in singlet fission photovoltaics using the methods and some results from the previous two investigations. We investigate device structures that pair pentacene and 6,13 diphenyl-pentacene as singlet fission donors with C60 , perylene diimides, PbS quantum dots and PbSe quantum dots as acceptors.
by Priyadarshani Jadhav.
Ph.D.
Leventis, Henry C. "Transient optical studies of photoinduced charge transfer in semiconductor quantum dot solar cells." Thesis, Imperial College London, 2010. http://hdl.handle.net/10044/1/5576.
Full textHey, Andrew Stuart. "Series interconnects and charge extraction interfaces for hybrid solar cells." Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:f19e44a8-e394-4859-9649-734116bc22b8.
Full textIcli, Kerem Cagatay. "Core-shell Type Nanocrystalline Fto Photoanodes For Dye Sensitized Solar Cells." Master's thesis, METU, 2010. http://etd.lib.metu.edu.tr/upload/12612328/index.pdf.
Full textForsyth, Nicola M. "A study of Schottky barriers to CdS, and the CdTe : CdS heterojunction." Thesis, Cardiff University, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.375956.
Full textLiu, Piao. "Heterojunctions and Schottky Diodes on Semiconductor Nanowires for Solar Cell Applications." UKnowledge, 2010. http://uknowledge.uky.edu/gradschool_diss/77.
Full textKhallaf, Hani. "Chemical Bath Deposition of Group II-VI Semiconductor Thin Films for Solar Cells Applications." Doctoral diss., University of Central Florida, 2009. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/2101.
Full textPh.D.
Department of Physics
Sciences
Physics PhD
Jacobs, Sean Abraham. "Nanotip silicon surface for anti-reflection and multiple exciton generation of semiconductor solar cells." Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 57 p, 2009. http://proquest.umi.com/pqdweb?did=1885519531&sid=10&Fmt=2&clientId=8331&RQT=309&VName=PQD.
Full textAbulikemu, Mutalifu. "Synthesis and Characterization of Colloidal Metal and Photovoltaic Semiconductor Nanocrystals." Diss., 2014. http://hdl.handle.net/10754/335794.
Full textFangsuwannarak, Thipwan Photovoltaic & Renewable Energy Engineering UNSW. "Electronic and optical characterisations of silicon quantum dots and its applications in solar cells." 2007. http://handle.unsw.edu.au/1959.4/44340.
Full text