Academic literature on the topic 'Solar Cells - Semiconductor Nanocrystals'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Solar Cells - Semiconductor Nanocrystals.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Solar Cells - Semiconductor Nanocrystals"
Milliron, Delia J., Ilan Gur, and A. Paul Alivisatos. "Hybrid Organic–Nanocrystal Solar Cells." MRS Bulletin 30, no. 1 (January 2005): 41–44. http://dx.doi.org/10.1557/mrs2005.8.
Full textEtgar, Lioz. "Semiconductor Nanocrystals as Light Harvesters in Solar Cells." Materials 6, no. 2 (February 4, 2013): 445–59. http://dx.doi.org/10.3390/ma6020445.
Full textGovindraju, S., N. Ntholeng, K. Ranganathan, M. J. Moloto, L. M. Sikhwivhilu, and N. Moloto. "The Effect of Structural Properties of Cu2Se/Polyvinylcarbazole Nanocomposites on the Performance of Hybrid Solar Cells." Journal of Nanomaterials 2016 (2016): 1–8. http://dx.doi.org/10.1155/2016/9592189.
Full textKamat, Prashant V. "Quantum Dot Solar Cells. Semiconductor Nanocrystals as Light Harvesters." Journal of Physical Chemistry C 112, no. 48 (October 18, 2008): 18737–53. http://dx.doi.org/10.1021/jp806791s.
Full textVigil, Elena. "Nanostructured Solar Cells." Key Engineering Materials 444 (July 2010): 229–54. http://dx.doi.org/10.4028/www.scientific.net/kem.444.229.
Full textHoang, Son, Ahsan Ashraf, Matthew D. Eisaman, Dmytro Nykypanchuk, and Chang-Yong Nam. "Enhanced photovoltaic performance of ultrathin Si solar cells via semiconductor nanocrystal sensitization: energy transfer vs. optical coupling effects." Nanoscale 8, no. 11 (2016): 5873–83. http://dx.doi.org/10.1039/c5nr07932b.
Full textAbulikemu, Mutalifu, Silvano Del Gobbo, Dalaver H. Anjum, Mohammad Azad Malik, and Osman M. Bakr. "Colloidal Sb2S3nanocrystals: synthesis, characterization and fabrication of solid-state semiconductor sensitized solar cells." Journal of Materials Chemistry A 4, no. 18 (2016): 6809–14. http://dx.doi.org/10.1039/c5ta09546h.
Full textSvrcek, Vladimir. "(Invited) Atmospheric Plasmas Synthesized Nanocrystals with Quantum Confinement and Quantum Hybrids in Photovoltaics." ECS Meeting Abstracts MA2022-02, no. 19 (October 9, 2022): 889. http://dx.doi.org/10.1149/ma2022-0219889mtgabs.
Full textChoi, Seong Jae, Dong Kee Yi, Jae-Young Choi, Jong-Bong Park, In-Yong Song, Eunjoo Jang, Joo In Lee, et al. "Spatial Control of Quantum Sized Nanocrystal Arrays onto Silicon Wafers." Journal of Nanoscience and Nanotechnology 7, no. 12 (December 1, 2007): 4285–93. http://dx.doi.org/10.1166/jnn.2007.884.
Full textYalin, Brandon, Andreas C. Liapis, Matthew D. Eisaman, Dmytro Nykypanchuk, and Chang-Yong Nam. "Optical simulation of ultimate performance enhancement in ultrathin Si solar cells by semiconductor nanocrystal energy transfer sensitization." Nanoscale Advances 3, no. 4 (2021): 991–96. http://dx.doi.org/10.1039/d0na00835d.
Full textDissertations / Theses on the topic "Solar Cells - Semiconductor Nanocrystals"
Yuan, Chunze. "The Study of II-VI Semiconductor Nanocrystals Sensitized Solar Cells." Licentiate thesis, KTH, Teoretisk kemi och biologi, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-93752.
Full textQC 20120425
Razgoniaeva, Natalia Razgoniaeva. "Photochemical energy conversion in metal-semiconductor hybrid nanocrystals." Bowling Green State University / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1465822519.
Full textCattley, Christopher Andrew. "Quaternary nanocrystal solar cells." Thesis, University of Oxford, 2016. http://ora.ox.ac.uk/objects/uuid:977e0f75-e597-4c7a-8f72-6a26031f8f0b.
Full textNemitz, Ian R. "Synthesis of Nanoscale Semiconductor Heterostructures for Photovoltaic Applications." Bowling Green State University / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1277087935.
Full textLi, Guangru. "Nanostructured materials for optoelectronic devices." Thesis, University of Cambridge, 2016. https://www.repository.cam.ac.uk/handle/1810/263671.
Full textWong, Henry Mo Pun. "Semiconducting nanocrystals for hybrid solar cells." Thesis, University of Cambridge, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.613367.
Full textEhrler, Bruno. "Nanocrystalline solar cells." Thesis, University of Cambridge, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.607785.
Full textSchnabel, Manuel. "Silicon nanocrystals embedded in silicon carbide for tandem solar cell applications." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:da5bbb64-0bcd-4807-a9f3-4ff63a9ca98d.
Full textKinder, Erich W. "Fabrication of All-Inorganic Optoelectronic Devices Using Matrix Encapsulation of Nanocrystal Arrays." Bowling Green State University / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1339719904.
Full textMarín, Beloqui José Manuel. "Solution processed inorganic semiconductor solar cells." Doctoral thesis, Universitat Rovira i Virgili, 2015. http://hdl.handle.net/10803/334407.
Full textEn esta tesis, el estudio optoelectrónico y la fabricación de diferentes solución de procesado de semiconductores inorgánicos tales como PbS Quantum Dots y células solares de perovskita se han fabricado. A lo largo de esta tesis medidas optoelectrónicos como fotoinducidas carga Extracción (PICE), fotoinducidas transitoria fotovoltaje (PIT-PV), fotoinducidas transitoria fotocorriente (PIT-PC) Laser transitoria Espectroscopia de Absorción (L-TAS) se han realizado a las células solares eficientes con el fin de estudiar los diferentes procesos eléctricos internos presentes en el dispositivo bajo condiciones de trabajo. Usando estas técnicas, el desdoblamiento de los niveles de Fermi ha sido encontrado como el origen de la tensión en PbS QD células solares (Capítulo 2). Además, en el capítulo 4.1 de un estudio optoelectrónico intensiva se ha realizado a las células solares perovskita mesoporosos, donde se descubrieron decaimientos biexponenciales de TPV y carga diferencial se propuso manera tan adecuada para obtener la carga generada en el dispositivo. Por otra parte, los dispositivos fueron fabricados utilizando diferentes polímeros como HTM, y los resultados proporcionados confirmaron que la regeneración fue superior al 90%, y que PIT-PV realizado en condiciones de oscuridad corresponden a la recombinación entre los huecos de la HTM y los electrones en el TiO2, como presentado en el capítulo 4.2. También, los resultados presentados en el capítulo 4.3 mostraron que una capa de Al2O3 monoatómico ralentiza la recombinación en el dispositivo de aumento de la tensión del dispositivo.
In this thesis, the optoelectronic study and fabrication of different solution processed inorganic semiconductor such as PbS Quantum Dots and perovskite solar cells have been fabricated. Along this thesis optoelectronic measurements such as PhotoInduced Charge Extraction (PICE), PhotoInduced Transient PhotoVoltage (PIT-PV), PhotoInduced Transient PhotoCurrent (PIT-PC) Laser Transient Absorption Spectroscopy (L-TAS) have been performed to efficient solar cells in order to study the different inner electrical processes present in the device under working conditions. Using these techniques, the splitting of Fermi levels have found to be the origin of the voltage in PbS QD solar cells (Chapter 2). Besides, in chapter 4.1 an intensive optoelectronic study has been performed to mesoporous perovskite solar cells, where biexponential decays of TPV were discovered and Differential Charging was proposed as suitable way to obtain the charge generated in the device. Moreover, devices were fabricated using different polymers as HTM, and results provided confirmed that the regeneration was over 90%, and that PIT-PV performed in dark conditions correspond to the recombination between the holes in the HTM and the electrons in the TiO2, as presented in chapter 4.2. Also, results presented in chapter 4.3 showed that a monoatomic layer of Al2O3 slow down the recombination in the device increasing the device voltage..
Books on the topic "Solar Cells - Semiconductor Nanocrystals"
Meeting, Materials Research Society, and Symposium A, "Amorphous and Polycrystalline Thin-Film Silicon Science and Technology" (2009 : San Francisco, Calif.)., eds. Amorphous and polycrystalline thin-film silicon science and technology--2009: Symposium held April 14-17, 2009, San Francisco, California, U.S.A. / editors, A. Flewitt ... [et al.]. Warrendale, Pa: Materials Research Society, 2009.
Find full textMeeting, Materials Research Society, and Symposium A, "Amorphous and Polycrystalline Thin-Film Silicon Science and Technology" (2010 : San Francisco, Calif.)., eds. Amorphous and polycrystalline thin-film silicon science and technology--2010: Symposium held April 5-9, 2009, San Francisco, California / editors, Qi Wang ... [et al.]. Warrendale, Pa: Materials Research Society, 2010.
Find full textBorchert, Holger. Solar Cells Based on Colloidal Nanocrystals. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04388-3.
Full textParanthaman, M. Parans, Winnie Wong-Ng, and Raghu N. Bhattacharya, eds. Semiconductor Materials for Solar Photovoltaic Cells. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-20331-7.
Full textMazer, Jeffrey A. Solar cells: An introduction to crystalline photovoltaic technology. Boston: Kluwer Academic Publishers, 1996.
Find full textLuque, Antonio, and Alexander Virgil Mellor. Photon Absorption Models in Nanostructured Semiconductor Solar Cells and Devices. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-14538-9.
Full textS, Licht, ed. Semiconductor electrodes and photoelectrochemistry. Weinheim: Wiley-VCH, 2002.
Find full textNational Renewable Energy Laboratory (U.S.) and IEEE Photovoltaic Specialists Conference (37th : 2011 : Seattle, Wash.), eds. Carrier density and compensation in semiconductors with multi dopants and multi transition energy levels: The case of Cu impurity in CdTe : preprint. Golden, CO]: National Renewable Energy Laboratory, 2011.
Find full textStrikha, V. I. Solnechnye ėlementy na osnove kontakta metall-poluprovodnik. Sankt-Peterburg: Ėnergoatomizdat, Sankt-Peterburgskoe otd-nie, 1992.
Find full textA, Steiner Myles, Kanevce Ana, National Renewable Energy Laboratory (U.S.), and IEEE Photovoltaic Specialists Conference (37th : 2011 : Seattle, Wash.), eds. Using measurements of fill factor at high irradiance to deduce heterobarrier band offsets: Preprint. Golden, CO]: National Renewable Energy Laboratory, 2011.
Find full textBook chapters on the topic "Solar Cells - Semiconductor Nanocrystals"
Borchert, Holger. "Physics and Chemistry of Colloidal Semiconductor Nanocrystals." In Solar Cells Based on Colloidal Nanocrystals, 15–38. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04388-3_2.
Full textPatil, Padmashri. "Thermal Sintering Improves the Short Circuit Current of Solar Cells Sensitized with CdTe/CdSe Core/Shell Nanocrystals." In Physics of Semiconductor Devices, 343–46. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03002-9_86.
Full textBöer, Karl W. "Solar Cells." In Survey of Semiconductor Physics, 1119–70. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2912-1_34.
Full textZhang, Chunfu, Jincheng Zhang, Xiaohua Ma, and Qian Feng. "Organic Solar Cells." In Semiconductor Photovoltaic Cells, 373–432. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9480-9_9.
Full textZhang, Chunfu, Jincheng Zhang, Xiaohua Ma, and Qian Feng. "CdTe Solar Cells." In Semiconductor Photovoltaic Cells, 293–324. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9480-9_7.
Full textGoodnick, Stephen M., and Christiana Honsberg. "Solar Cells." In Springer Handbook of Semiconductor Devices, 699–745. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-79827-7_19.
Full textWinnacker, Albrecht. "Solar Cells." In The Physics Behind Semiconductor Technology, 143–58. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-10314-8_10.
Full textMertens, R. "Crystalline Silicon Solar Cells." In Semiconductor Silicon, 339–44. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-74723-6_27.
Full textZhang, Chunfu, Jincheng Zhang, Xiaohua Ma, and Qian Feng. "Solar Cell Foundation." In Semiconductor Photovoltaic Cells, 23–63. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9480-9_2.
Full textConibeer, Gavin. "Applications of Si Nanocrystals in Photovoltaic Solar Cells." In Silicon Nanocrystals, 555–82. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527629954.ch20.
Full textConference papers on the topic "Solar Cells - Semiconductor Nanocrystals"
Chang, Haixin, Xiaojun Lv, Zijian Zheng, and Hongkai Wu. "Bioinspired solar water splitting, sensitized solar cells, and ultraviolet sensor based on semiconductor nanocrystal antenna/graphene nanoassemblies." In Photonics and Optoelectronics Meetings 2011, edited by Erich Kasper, Jinzhong Yu, Xun Li, Xinliang Zhang, Jinsong Xia, Junhao Chu, Zhijiang Dong, Bin Hu, and Yan Shen. SPIE, 2011. http://dx.doi.org/10.1117/12.915649.
Full textKang, Ki Moon, Hyo-Won Kim, Il-Wun Shim, and Ho-Young Kwak. "Syntheses of Specialty Nanomaterials at the Multibubble Sonoluminescence Condition." In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-68320.
Full textLiu, Chin-Yi, and Uwe R. Kortshagen. "Hybrid Solar Cells From Silicon Nanocrystals and Conductive Polymers." In ASME 2009 3rd International Conference on Energy Sustainability collocated with the Heat Transfer and InterPACK09 Conferences. ASMEDC, 2009. http://dx.doi.org/10.1115/es2009-90322.
Full textBogdanovic, Elena, Ludmila Bakueva, Lukasz Brzozowski, Ivan Gorelikov, Nikita Reznik, Daniel J. Dumont, and J. A. Rowlands. "Luminescence investigation of endothelial cells using metallic and semiconductor nanocrystals." In Photonics North 2005, edited by Warren C. W. Chan, Kui Yu, Ulrich J. Krull, Richard I. Hornsey, Brian C. Wilson, and Robert A. Weersink. SPIE, 2005. http://dx.doi.org/10.1117/12.628234.
Full textWang, Wentao, Fude Liu, Chor Man Lau, Lei Wang, Guandong Yang, Dawei Zheng, and Zhigang Li. "Field-effect ferroelectric-semiconductor solar cells." In 2014 IEEE 40th Photovoltaic Specialists Conference (PVSC). IEEE, 2014. http://dx.doi.org/10.1109/pvsc.2014.6925448.
Full textKatsube, Ryoji, Kenji Kazumi, and Yoshitaro Nose. "Ternary phosphide semiconductor in solar cells." In 2017 IEEE 44th Photovoltaic Specialists Conference (PVSC). IEEE, 2017. http://dx.doi.org/10.1109/pvsc.2017.8366757.
Full textYoon, W., E. E. Foos, M. P. Lumb, and J. G. Tischler. "Solution processing of CdTe nanocrystals for thin-film solar cells." In 2012 IEEE 38th Photovoltaic Specialists Conference (PVSC). IEEE, 2012. http://dx.doi.org/10.1109/pvsc.2012.6318132.
Full textKakherskyi, Stanislav, Oleksandr Dobrozhan, Roman Pshenychnyi, Denys Kurbatov, and Nadia Opanasyuk. "Cu2ZnSnS4, Cu2ZnSnSe4 Nanocrystals As Absorbers In 3rd Generation Solar Cells." In 2020 IEEE 40th International Conference on Electronics and Nanotechnology (ELNANO). IEEE, 2020. http://dx.doi.org/10.1109/elnano50318.2020.9088772.
Full textKakherskyi, Stanislav, Oleksandr Dobrozhan, Roman Pshenychnyi, Denys Kurbatov, and Nadia Opanasyuk. "Cu2ZnSnS4, Cu2ZnSnSe4 Nanocrystals As Absorbers In 3rd Generation Solar Cells." In 2020 IEEE 40th International Conference on Electronics and Nanotechnology (ELNANO). IEEE, 2020. http://dx.doi.org/10.1109/elnano50318.2020.9088910.
Full textCogan, Nicole M. B., Cunming Liu, Fen Qiu, Rebeckah Burke, and Todd D. Krauss. "Ultrafast dynamics of colloidal semiconductor nanocrystals relevant to solar fuels production." In SPIE Defense + Security, edited by Michael K. Rafailov. SPIE, 2017. http://dx.doi.org/10.1117/12.2262168.
Full textReports on the topic "Solar Cells - Semiconductor Nanocrystals"
Alivisatos, A. P. Hierarchial Junction Solar Cells Based on Hyper-Branched Semiconductor Nanocrystals. Fort Belvoir, VA: Defense Technical Information Center, June 2009. http://dx.doi.org/10.21236/ada585157.
Full textKweon, K. Construction of Solar Cells from Colloidal Nanocrystals through Electrophoretic Deposition. Office of Scientific and Technical Information (OSTI), October 2019. http://dx.doi.org/10.2172/1572619.
Full textRedwing, Joan, Tom Mallouk, Theresa Mayer, Elizabeth Dickey, and Chris Wronski. High Aspect Ratio Semiconductor Heterojunction Solar Cells. Office of Scientific and Technical Information (OSTI), May 2013. http://dx.doi.org/10.2172/1350042.
Full textGeisz, J. Evaluation of Novel Semiconductor Materials Potentially Useful in Solar Cells: Cooperative Research and Development Final Report, CRADA number CRD-06-00172. Office of Scientific and Technical Information (OSTI), July 2010. http://dx.doi.org/10.2172/985555.
Full textGinley, D. S. Thin Film Solar Cells Derived from Sintered Semiconductor Quantum Dots: Cooperative Research and Development Final Report, CRADA number CRD-07-00226. Office of Scientific and Technical Information (OSTI), July 2010. http://dx.doi.org/10.2172/985567.
Full textBhushan, M., and J. Meakin. Zn/sub 3/P/sub 2/ as an improved semiconductor for photovoltaic solar cells. Final report, April 1, 1983-March 31, 1984. Office of Scientific and Technical Information (OSTI), March 1985. http://dx.doi.org/10.2172/5872206.
Full text