Academic literature on the topic 'Solar cells – Materials'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Solar cells – Materials.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Solar cells – Materials"

1

Lara-Padilla, E., Maximino Avendano-Alejo, and L. Castaneda. "Transparent Conducting Oxides: Selected Materials for Thin Film Solar Cells." International Journal of Science and Research (IJSR) 11, no. 7 (July 5, 2022): 372–80. http://dx.doi.org/10.21275/sr22628033513.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mathew, Xavier. "Solar cells and solar energy materials." Solar Energy 80, no. 2 (February 2006): 141. http://dx.doi.org/10.1016/j.solener.2005.06.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Singh, Surya Prakash, and Ashraful Islam. "Intelligent Materials for Solar Cells." Advances in OptoElectronics 2012 (April 10, 2012): 1. http://dx.doi.org/10.1155/2012/919728.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mellikov, E., D. Meissner, T. Varema, M. Altosaar, M. Kauk, O. Volobujeva, J. Raudoja, K. Timmo, and M. Danilson. "Monograin materials for solar cells." Solar Energy Materials and Solar Cells 93, no. 1 (January 2009): 65–68. http://dx.doi.org/10.1016/j.solmat.2008.04.018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mathew, X. "Solar cells & solar energy materials: Cancun 2003." Solar Energy Materials and Solar Cells 82, no. 1-2 (May 1, 2004): 1–2. http://dx.doi.org/10.1016/j.solmat.2004.01.028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

MATHEW, X. "Solar cells & solar energy materials—Cancun 2004." Solar Energy Materials and Solar Cells 90, no. 6 (April 14, 2006): 663. http://dx.doi.org/10.1016/j.solmat.2005.04.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Tousif, Md Noumil, Sakib Mohamma, A. A. Ferdous, and Md Ashraful Hoque. "Investigation of Different Materials as Buffer Layer in CZTS Solar Cells Using SCAPS." Journal of Clean Energy Technologies 6, no. 4 (July 2018): 293–96. http://dx.doi.org/10.18178/jocet.2018.6.4.477.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Smestad, Greg P., Frederik C. Krebs, Carl M. Lampert, Claes G. Granqvist, K. L. Chopra, Xavier Mathew, and Hideyuki Takakura. "Reporting solar cell efficiencies in Solar Energy Materials and Solar Cells." Solar Energy Materials and Solar Cells 92, no. 4 (April 2008): 371–73. http://dx.doi.org/10.1016/j.solmat.2008.01.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Jung, Hyun Suk, and Nam-Gyu Park. "Solar Cells: Perovskite Solar Cells: From Materials to Devices (Small 1/2015)." Small 11, no. 1 (January 2015): 2. http://dx.doi.org/10.1002/smll.201570002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Smestad, Greg P. "Topical Editors in Solar Energy Materials and Solar Cells." Solar Energy Materials and Solar Cells 92, no. 5 (May 2008): 521. http://dx.doi.org/10.1016/j.solmat.2008.02.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Solar cells – Materials"

1

Søiland, Anne Karin. "Silicon for Solar Cells." Doctoral thesis, Norwegian University of Science and Technology, Department of Materials Technology, 2005. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-565.

Full text
Abstract:
<p>This thesis work consists of two parts, each with a different motivation. Part II is the main part and was partly conducted in industry, at ScanWafer ASA’s plant no.2 in Glomfjord.</p><p>The large growth in the Photo Voltaic industry necessitates a dedicated feedstock for this industry, a socalled Solar Grade (SoG) feedstock, since the currently used feedstock rejects from the electronic industry can not cover the demand. Part I of this work was motivated by this urge for a SoG- feedstock. It was a cooperation with the Sintef Materials and Chemistry group, where the aim was to study the kin
APA, Harvard, Vancouver, ISO, and other styles
2

Musselman, Kevin Philip Duncan. "Nanostructured solar cells." Thesis, University of Cambridge, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.609003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Velusamy, Tamilselvan. "Quantum confined materials for solar cells." Thesis, Ulster University, 2016. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.694653.

Full text
Abstract:
The main objective of this thesis work is to synthesis quantum-confined structures, tailor their properties and investigate their applicability to photovoltaics. In this context, quantum-confined silicon nanocrystals (SiNes) are synthesized and surface engineered to tailor and understand their properties. Also a synthesis method for copper (Cu) oxide nanomaterials is developed with control over band energy diagram and optical properties. Finally these engineered quantum-confined nanostructures are successfully implemented in all-inorganic third generation photovoltaic devices with various devi
APA, Harvard, Vancouver, ISO, and other styles
4

Cattley, Christopher Andrew. "Quaternary nanocrystal solar cells." Thesis, University of Oxford, 2016. http://ora.ox.ac.uk/objects/uuid:977e0f75-e597-4c7a-8f72-6a26031f8f0b.

Full text
Abstract:
This thesis studies quaternary chalcogenide nanocrystals and their photovoltaic applications. A temperature-dependent phase change between two distinct crystallographic phases of stoichiometric Cu<sub>2</sub>ZnSnS<sub>4</sub> is investigated through the development of a one pot synthesis method. Characterisation of the Cu<sub>2</sub>ZnSnS<sub>4</sub> nanocrystals was performed using absorption spectroscopy, transmission electron microscopy (TEM) and powder X-ray diffraction (XRD). An investigation was conducted into the effects of using hexamethyldisilathiane (a volatile sulphur precursor) in
APA, Harvard, Vancouver, ISO, and other styles
5

Moore, Jennifer Rose. "New materials for solution-processible solar cells." Thesis, University of Cambridge, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.609301.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wang, Hongda. "Porphyrin-based materials for organic solar cells." HKBU Institutional Repository, 2015. https://repository.hkbu.edu.hk/etd_oa/200.

Full text
Abstract:
A series of novel porphyrin materials with pushpull framework were designed and synthesized for organic solar cells (OSCs). To start with, a brief overview on the background of OSC, including dye-sensitized solar cells (DSSCs) and bulk heterojunction (BHJ) solar cells, and the porphyrin based materials for OSC applications was presented in Chapter 1. In Chapter 2, an efficient panchromatic light harvesting was demonstrated by the co-adsorption of a porphyrin molecule HD18 or HD19 and N719 in dye-sensitized solar cells. It is apparent that the porphyrin sensitizers show strong absorption in the
APA, Harvard, Vancouver, ISO, and other styles
7

Wang, Yiwen. "Stability of nonfullerene organic solar cells." HKBU Institutional Repository, 2019. https://repository.hkbu.edu.hk/etd_oa/666.

Full text
Abstract:
The development of nonfullerene organic solar cells (OSCs) has attracted increasing interests because of the intrinsic advantages of nonfullerene acceptors, including their high absorption capability over the long wavelength region, tunable electronic properties, and excellent miscibility with polymer donors. Recently, power conversion efficiency (PCE) of >15 % for single-junction nonfullerene OSCs has been reported. Apart from the rapid progresses made in the cell efficiency, significant improvement in the stability of nonfullerene OSCs is required if the organic photovoltaic technology is to
APA, Harvard, Vancouver, ISO, and other styles
8

Li, Xuanhua, and 李炫华. "Plasmonic-enhanced organic solar cells." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2014. http://hdl.handle.net/10722/197526.

Full text
Abstract:
Organic solar cells (OSCs) have recently attracted considerable research interest. However, there is a mismatch between their optical absorption length and charge transport scale. Attempts to optimize both the optical and electrical properties of the photoactive layer of OSCs have inevitably resulted in demands for rationally designed device architecture. Plasmonic nanostructures have recently been introduced into solar cells to achieve highly efficient light harvesting. The remaining challenge is to improve OSC performance using plasmonic nanotechnology, a challenge taken up by the research r
APA, Harvard, Vancouver, ISO, and other styles
9

Li, Dai-Yin. "Texturization of multicrystalline silicon solar cells." Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/64615.

Full text
Abstract:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2010.<br>Cataloged from PDF version of thesis.<br>Includes bibliographical references (p. 103-111).<br>A significant efficiency gain for crystalline silicon solar cells can be achieved by surface texturization. This research was directed at developing a low-cost, high-throughput and reliable texturing method that can create a honeycomb texture. Two distinct approaches for surface texturization were studied. The first approach was photo-defined etching. For this approach, the research focus was t
APA, Harvard, Vancouver, ISO, and other styles
10

Almeataq, Mohammed. "Development of new materials for solar cells application." Thesis, University of Sheffield, 2013. http://etheses.whiterose.ac.uk/4863/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Solar cells – Materials"

1

Semiconductors for solar cells. Boston: Artech House, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Pizzini, Sergio. Advanced silicon materials for photovoltaic applications. Hoboken, NJ: John Wiley & Sons, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Paranthaman, M. Parans, Winnie Wong-Ng, and Raghu N. Bhattacharya, eds. Semiconductor Materials for Solar Photovoltaic Cells. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-20331-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Adachi, Sadao. Earth-Abundant Materials for Solar Cells. Chichester, UK: John Wiley & Sons, Ltd, 2015. http://dx.doi.org/10.1002/9781119052814.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

K, Das B., Singh S. N. Dr, National Physical Laboratory (India), and Symposium on Photovoltaic Materials and Devices (1984 : New Delhi, India), eds. Photovoltaic materials and devices. New York: Wiley, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Choy, Wallace C. H. Organic Solar Cells: Materials and Device Physics. London: Springer London, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Badescu, Viorel. Physics of nanostructured solar cells. Hauppauge, NY, USA: Nova Science Publishers, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Fahrner, Wolfgang Rainer. Amorphous Silicon / Crystalline Silicon Heterojunction Solar Cells. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

J, Meyer Gerald, ed. Molecular level artificial photosynthetic materials. New York: John Wiley & Sons, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Oku, Takeo. Solar Cells and Energy Materials. de Gruyter GmbH, Walter, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Solar cells – Materials"

1

Wachter, Igor, Peter Rantuch, and Tomáš Štefko. "Solar Cells." In Transparent Wood Materials, 59–69. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-23405-7_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bainglass, Edan, Sajib K. Barman, and Muhammad N. Huda. "Photovoltaic Materials Design by Computational Studies: Metal Sulfides." In Solar Cells, 123–38. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-36354-3_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Fu, Kunwu, Anita Wing Yi Ho-Baillie, Hemant Kumar Mulmudi, and Pham Thi Thu Trang. "Organic Hole-Transporting Materials." In Perovskite Solar Cells, 159–82. Includes bibliographical references and index.: Apple Academic Press, 2019. http://dx.doi.org/10.1201/9780429469749-10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Fu, Kunwu, Anita Wing Yi Ho-Baillie, Hemant Kumar Mulmudi, and Pham Thi Thu Trang. "Inorganic Hole-Transporting Materials." In Perovskite Solar Cells, 183–200. Includes bibliographical references and index.: Apple Academic Press, 2019. http://dx.doi.org/10.1201/9780429469749-11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Fu, Kunwu, Anita Wing Yi Ho-Baillie, Hemant Kumar Mulmudi, and Pham Thi Thu Trang. "Organic N-Type Materials." In Perovskite Solar Cells, 139–56. Includes bibliographical references and index.: Apple Academic Press, 2019. http://dx.doi.org/10.1201/9780429469749-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bashir, Amna, and Muhammad Sultan. "Organometal Halide Perovskite-Based Materials and Their Applications in Solar Cell Devices." In Solar Cells, 259–81. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-36354-3_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ali, Khuram, Afifa Khalid, Muhammad Raza Ahmad, Hasan M. Khan, Irshad Ali, and S. K. Sharma. "Multi-junction (III–V) Solar Cells: From Basics to Advanced Materials Choices." In Solar Cells, 325–50. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-36354-3_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hu, Lijun, Lijun Hu, Ke Yang, Ke Yang, Kuan Sun, Kuan Sun, Wei Chen, et al. "Electrode Materials for Printable Solar Cells." In Printable Solar Cells, 457–512. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119283720.ch14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ekins-Daukes, N. J. "III-V Solar Cells." In Solar Cell Materials, 113–43. Chichester, UK: John Wiley & Sons, Ltd, 2014. http://dx.doi.org/10.1002/9781118695784.ch6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hoth, Claudia, Andrea Seemann, Roland Steim, Tayebeh Ameri, Hamed Azimi, and Christoph J. Brabec. "Printed Organic Solar Cells." In Solar Cell Materials, 217–82. Chichester, UK: John Wiley & Sons, Ltd, 2014. http://dx.doi.org/10.1002/9781118695784.ch8.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Solar cells – Materials"

1

LeComber, P. G. "Stability of a-Si:H materials and solar cells-closing remarks." In Amorphous silicon materials and solar cells. AIP, 1991. http://dx.doi.org/10.1063/1.41010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bhat, P. K., D. S. Shen, and R. E. Hollingsworth. "Stability of amorphous silicon solar cells." In Amorphous silicon materials and solar cells. AIP, 1991. http://dx.doi.org/10.1063/1.41008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

McGehee, Michael. "Nanostructured Solar Cells." In Solar Energy: New Materials and Nanostructured Devices for High Efficiency. Washington, D.C.: OSA, 2008. http://dx.doi.org/10.1364/solar.2008.swa1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Brandt, Martin S., and Martin Stutzmann. "Investigation of the Staebler-Wronski effect in a-Si:H by spin-dependent photoconductivity." In Amorphous silicon materials and solar cells. AIP, 1991. http://dx.doi.org/10.1063/1.41015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Redfield, David, and Richard H. Bube. "The rehybridized two-site (RTS) model for defects in a-Si:H." In Amorphous silicon materials and solar cells. AIP, 1991. http://dx.doi.org/10.1063/1.41016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hata, N., and S. Wagner. "The application of a comprehensive defect model to the stability of a-Si:H." In Amorphous silicon materials and solar cells. AIP, 1991. http://dx.doi.org/10.1063/1.41017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

McMahon, T. J. "Defect equilibration in device quality a-Si:H and its relation to light-induced defects." In Amorphous silicon materials and solar cells. AIP, 1991. http://dx.doi.org/10.1063/1.41018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Cohen, J. David, and Thomas M. Leen. "Investigation of defect reactions involved in metastability of hydrogenated amorphous silicon." In Amorphous silicon materials and solar cells. AIP, 1991. http://dx.doi.org/10.1063/1.41019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Street, R. A. "Metastability and the hydrogen distribution in a-Si:H." In Amorphous silicon materials and solar cells. AIP, 1991. http://dx.doi.org/10.1063/1.41031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bennett, M., and K. Rajan. "Thermal annealing of photodegraded a-SiGe:H solar cells." In Amorphous silicon materials and solar cells. AIP, 1991. http://dx.doi.org/10.1063/1.41007.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Solar cells – Materials"

1

Bhattacharya, R. N., A. M. Fernandez, W. Batchelor, J. Alleman, J. Keane, H. Althani, R. Noufi, et al. Electrodeposition of CuIn1-xGaxSe2 Materials for Solar Cells:. Office of Scientific and Technical Information (OSTI), October 2002. http://dx.doi.org/10.2172/15002206.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Rockett, Angus, Sylvain Marsillac, and Robert Collins. Novel Contact Materials for Improved Performance CdTe Solar Cells Final Report. Office of Scientific and Technical Information (OSTI), April 2018. http://dx.doi.org/10.2172/1433077.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Rodriguez, Rene, Joshua Pak, Andrew Holland, Alan Hunt, Thomas Bitterwolf, You Qiang, Leah Bergman, Christine Berven, Alex Punnoose, and Dmitri Tenne. Incorporation of Novel Nanostructured Materials into Solar Cells and Nanoelectronic Devices. Office of Scientific and Technical Information (OSTI), November 2011. http://dx.doi.org/10.2172/1029119.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Jen, Alex K. Development of Efficient Charge-Selective Materials for Bulk Heterojunction Polymer Solar Cells. Fort Belvoir, VA: Defense Technical Information Center, January 2015. http://dx.doi.org/10.21236/ada616502.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sopori, B. L. 17th Workshop on Crystalline Silicon Solar Cells and Modules: Materials and Processes; Workshop Proceedings. Office of Scientific and Technical Information (OSTI), August 2007. http://dx.doi.org/10.2172/913592.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sellinger, Alan. Perovskite Solar Cells: Addressing Low Cost, High Efficiency, and Reliability Through Novel Hole-Transport Materials. Office of Scientific and Technical Information (OSTI), September 2019. http://dx.doi.org/10.2172/1559859.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Brian E. Hardin, Stephen T. Connor, and Craig H. Peters. Novel wide band gap materials for highly efficient thin film tandem solar cells. Final report. Office of Scientific and Technical Information (OSTI), June 2012. http://dx.doi.org/10.2172/1042702.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Keszler, D. A., and J. F. Wager. Novel Materials Development for Polycrystalline Thin-Film Solar Cells: Final Subcontract Report, 26 July 2004--15 June 2008. Office of Scientific and Technical Information (OSTI), November 2008. http://dx.doi.org/10.2172/942065.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Schiff, E. A., Q. Gu, L. Jiang, J. Lyou, I. Nurdjaja, and P. Rao. Research on High-Bandgap Materials and Amorphous Silicon-Based Solar Cells, Final Technical Report, 15 May 1994-15 January 1998. Office of Scientific and Technical Information (OSTI), December 1998. http://dx.doi.org/10.2172/6707.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Schiff, E. A., Q. Gu, L. Jiang, and P. Rao. Research on high-bandgap materials and amorphous silicon-based solar cells. Annual technical report, 15 May 1995--15 May 1996. Office of Scientific and Technical Information (OSTI), January 1997. http://dx.doi.org/10.2172/434452.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!