Academic literature on the topic 'Solar cells manufacturing'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Solar cells manufacturing.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Solar cells manufacturing"
Bonnet, Dieter. "Manufacturing of CSS CdTe solar cells." Thin Solid Films 361-362 (February 2000): 547–52. http://dx.doi.org/10.1016/s0040-6090(99)00831-7.
Full textNijs, J. F., J. Szlufcik, J. Poortmans, S. Sivoththaman, and R. P. Mertens. "Advanced manufacturing concepts for crystalline silicon solar cells." IEEE Transactions on Electron Devices 46, no. 10 (1999): 1948–69. http://dx.doi.org/10.1109/16.791983.
Full textWinkless, Laurie. "Breakthrough in rapid manufacturing of perovskite solar cells." Materials Today 33 (March 2020): 1. http://dx.doi.org/10.1016/j.mattod.2020.01.016.
Full textSong, Xiangbo, Xu Ji, Ming Li, Weidong Lin, Xi Luo, and Hua Zhang. "A Review on Development Prospect of CZTS Based Thin Film Solar Cells." International Journal of Photoenergy 2014 (2014): 1–11. http://dx.doi.org/10.1155/2014/613173.
Full textHASAN, Md Kamrul, and Katsuhiko SASAKI. "301 Thermal Deformation Analysis of Solar Cells Considering Thermal Profiles of both Manufacturing and Working Processes." Proceedings of the Materials and processing conference 2013.21 (2013): _301–1_—_301–5_. http://dx.doi.org/10.1299/jsmemp.2013.21._301-1_.
Full textWatson, Brian L., Nicholas Rolston, Adam D. Printz, and Reinhold H. Dauskardt. "Scaffold-reinforced perovskite compound solar cells." Energy & Environmental Science 10, no. 12 (2017): 2500–2508. http://dx.doi.org/10.1039/c7ee02185b.
Full textHan, Ming Yu, Yu Dong Feng, Yi Wang, Zhi Min Wang, Hu Wang, Kai Zhao, Xiao Mei Su, Miao Yang, and Xue Lei Li. "Development of Manufacturing CIGS Thin Film Solar Cells Deposited on Polyimide." Applied Mechanics and Materials 700 (December 2014): 161–69. http://dx.doi.org/10.4028/www.scientific.net/amm.700.161.
Full textKim, Sangmo, Van Quy Hoang, and Chung Wung Bark. "Silicon-Based Technologies for Flexible Photovoltaic (PV) Devices: From Basic Mechanism to Manufacturing Technologies." Nanomaterials 11, no. 11 (November 3, 2021): 2944. http://dx.doi.org/10.3390/nano11112944.
Full textKalowekamo, Joseph, and Erin Baker. "Estimating the manufacturing cost of purely organic solar cells." Solar Energy 83, no. 8 (August 2009): 1224–31. http://dx.doi.org/10.1016/j.solener.2009.02.003.
Full textFath, P., H. Nussbaumer, and R. Burkhardt. "Industrial manufacturing of semitransparent crystalline silicon POWER solar cells." Solar Energy Materials and Solar Cells 74, no. 1-4 (October 2002): 127–31. http://dx.doi.org/10.1016/s0927-0248(02)00056-9.
Full textDissertations / Theses on the topic "Solar cells manufacturing"
Samett, Amelia. "Sustainable Manufacturing of CIGS Solar Cells for Implementation on Electric Vehicles." Case Western Reserve University School of Graduate Studies / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=case1591380591637557.
Full textBryngelsson, Erik. "Manufacturing optimization and film stability analysis of PbS quantum dot solar cells." Thesis, KTH, Skolan för kemi, bioteknologi och hälsa (CBH), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-260053.
Full textKvantprickar av halvledande material har en intressant potential att förbättra solcellers verkningsgrad genom en stark absorption inom de infraröda spektrat och ett justerbart bandgap. I detta arbete gjordes ett försök att återskapa en tillverkningsprocess av kvantprickssolceller av PbS, som visat sig framgångsrik vid Uppsala universitet. Två optimeringar undersöktes och stabiliteten av kvantpricksfilmerna analyserades med avseende på tre förvaringsmiljöer med olika exponering för ljus och syre, och mättes med UV-visspektroskopi samt röntgenfotoelektronspektroskopi. Fullt fungerande solceller framställdes men med en lägre prestanda jämfört med resultaten i Uppsala. Optimeringarna var delvis lyckade gällande spridning av EDTlösningen på kvantpricksfilmen av PbS genom att använda etanol och metanol som lösningsmedel. Ingen förbättrad prestanda observerades hos cellerna genom att applicera båda kvantpricksfilmerna i argonatmosfär, jämfört med endast den första. Tydliga skillnader i oxidation för filmerna samt förluster av jodligand kunde identifieras för de olika förvaringsmiljöerna, med bäst stabilitet uppvisad av filmerna som förvarades i argonatmosfär.
Dang, Hongmei. "Nanostructured Semiconductor Device Design in Solar Cells." UKnowledge, 2015. http://uknowledge.uky.edu/ece_etds/77.
Full textJayadevan, Keshavanand. "Fabrication and Characterization of Novel 2SSS CIGS Thin Film Solar Cells for Large-Scale Manufacturing." Scholar Commons, 2011. http://scholarcommons.usf.edu/etd/3167.
Full textPalaferri, Daniele. "Manufacturing and characterization of amorphous silicon alloys passivation layers for silicon hetero-junction solar cells." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2013. http://amslaurea.unibo.it/5940/.
Full textLiu, Guoduan. "Fabrication and Characterization of Planar-Structure Perovskite Solar Cells." UKnowledge, 2019. https://uknowledge.uky.edu/ece_etds/137.
Full textSarvari, Hojjatollah. "FABRICATION AND CHARACTERIZATION OF ORGANIC-INORGANIC HYBRID PEROVSKITE SOLAR CELLS." UKnowledge, 2018. https://uknowledge.uky.edu/ece_etds/123.
Full textTorabi, Naseem M. "Materials Selection and Processing Techniques for Small Spacecraft Solar Cell Arrays." UKnowledge, 2013. http://uknowledge.uky.edu/ece_etds/22.
Full textBerrada, Sounni Amine. "Low cost manufacturing of light trapping features on multi-crystalline silicon solar cells : jet etching method and cost analysis." Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/61522.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (p. 127-128).
An experimental study was conducted in order to determine low cost methods to improve the light trapping ability of multi-crystalline solar cells. We focused our work on improving current wet etching methods to achieve the desired light trapping features which consists in micro-scale trenches with parabolic cross-sectional profiles with a target aspect ratio of 1.0. The jet etching with a hard mask method, which consists in impinging a liquid mixture of hydrofluoric, nitric and acetic acids through the opening of hard mask, was developed. First, a computational fluid dynamics simulation was conducted to determine the desired jet velocity and angle to be used in our experiments. We find that using a jet velocity of 3 m/s and a jetting angle of 45° yields the necessary flow characteristics for etching high aspect ratio features. Second, we performed experiments to determine the effect of jet etching using a photo-resist mask and thermally grown silicon oxide mask on multiple silicon substrates : <100>, <110>, <111> and multi-crystalline silicon. Compared to a baseline of etching with no jet, we find that the jet etching process can improve the light trapping ability of the baseline features by improving their aspect ratio up to 65.2% and their light trapping ability up to 38.1%. The highest aspect ratio achieved using the jet etching process was 0.62. However, it must be noted that the repeatability of the results was not consistent: significant variations in the results of the same experiment occurred, making the jet etching process promising but difficult to control. Finally, we performed a cost analysis in order to determine the minimum efficiency that a jet etching process would have to achieve to be cost competitive and its corresponding features aspect ratio. We find that a minimum cell efficiency of 16.63% and feature aspect ratios of 0.57 are necessary for cost competitiveness with current solar cell manufacturing technology.
by Amine Berrada Sounni.
S.M.in Technology and Policy
S.M.
Ganvir, Rasika. "MODELLING OF THE NANOWIRE CdS-CdTe DEVICE DESIGN FOR ENHANCED QUANTUM EFFICIENCY IN WINDOW-ABSORBER TYPE SOLAR CELLS." UKnowledge, 2016. http://uknowledge.uky.edu/ece_etds/83.
Full textBooks on the topic "Solar cells manufacturing"
Wang, Guangyu. Technology, Manufacturing and Grid Connection of Photo-voltaic Solar Cells. Singapore: John Wiley & Sons Singapore Pte. Ltd, 2018. http://dx.doi.org/10.1002/9781119035183.
Full textLoucas, Tsakalakos, Ji Henry, Ren Binxian, and Materials Research Society Meeting, eds. Advanced materials processing for scalable solar-cell manufacturing: Symposium held April 25-29, 2011, San Francisco, California, U.S.A. Warrendale, Pa: Materials Research Society, 2012.
Find full textEllison, T. Efficiency and throughput advances in continuous roll-to-roll a-Si alloy PV manufacturing technology. Golden, CO: National Renewable Energy Laboratory, 2000.
Find full textP, Shea Stephen, and National Renewable Energy Laboratory (U.S.), eds. Large-scale PV module manufacturing using ultra-thin polycrystalline silicon solar cells: Annual subcontract report, 1 April 2002-30 September 2003. 2nd ed. Golden, Colo: National Renewable Energy Laboratory, 2004.
Find full textNational Renewable Energy Laboratory (U.S.), Colorado State University, Calisolar, and IEEE Photovoltaic Specialists Conference (37th : 2011 : Seattle, Wash.), eds. Imaging study of multi-crystalline silicon wafers throughout the manufacturing process: Preprint. Golden, CO]: National Renewable Energy Laboratory, 2011.
Find full textInc, 1366 Technologies, and National Renewable Energy Laboratory (U.S.), eds. Kerfless silicon precursor wafer formed by rapid solidification: October 2009 - March 2010. Golden, Colo: National Renewable Energy Laboratory, 2011.
Find full textNowlan, Michael J. Development of automated production line processes for solar brightfield modules: Final report, 1 June 2003-30 November 2007. Golden, Colo: National Renewable Energy Laboratory, 2008.
Find full textCarmody, Michael. High efficiency single crystal CdTe solar cells: November 19, 2009 -- January 31, 2011. Golden, CO: National Renewable Energy Laboratory, 2011.
Find full textAntoniadis, Homer. High efficiency, low cost solar cells manufactured using "Silicon Ink" on thin crystalline silicon wafers: October 2009 - November 2010. Golden, CO: National Renewable Energy Laboratory, 2011.
Find full textWiedeman, S. Cost and reliability improvement for CIGS-based PV on flexible substrate: Annual technical report 24 May 2006 - 25 September 2007. Golden, Colo: National Renewable Energy Laboratory, 2008.
Find full textBook chapters on the topic "Solar cells manufacturing"
Galagan, Y. "Flexible Solar Cells." In Roll-to-Roll Manufacturing, 325–62. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2018. http://dx.doi.org/10.1002/9781119163824.ch11.
Full textFu, Kunwu, Anita Wing Yi Ho-Baillie, Hemant Kumar Mulmudi, and Pham Thi Thu Trang. "Commercial Prospects and Manufacturing Costs." In Perovskite Solar Cells, 297–304. Includes bibliographical references and index.: Apple Academic Press, 2019. http://dx.doi.org/10.1201/9780429469749-23.
Full textSlafer, W. Dennis. "Techniques for Roll-to-Roll Manufacturing of Flexible Rectenna Solar Cells." In Rectenna Solar Cells, 337–69. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-3716-1_16.
Full textKajal, Priyanka, Kunal Ghosh, and Satvasheel Powar. "Manufacturing Techniques of Perovskite Solar Cells." In Applications of Solar Energy, 341–64. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-7206-2_16.
Full textXu, Jinlong, Joyce Zhang, and Ken Kuang. "Manufacturing Solar Cells: Assembly and Packaging." In Conveyor Belt Furnace Thermal Processing, 35–41. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-69730-7_5.
Full textTao, Meng. "Manufacturing of Wafer-Si Solar Cells and Modules." In Terawatt Solar Photovoltaics, 47–60. London: Springer London, 2014. http://dx.doi.org/10.1007/978-1-4471-5643-7_4.
Full textNarayanan, Mohan, and Ted Ciszek. "Silicon Solar Cells: Materials, Devices, and Manufacturing." In Springer Handbook of Crystal Growth, 1701–18. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-74761-1_51.
Full textGe, Ziyi, Shaojie Chen, Ruixiang Peng, and Amjad Islam. "Research Progress and Manufacturing Techniques for Large-Area Polymer Solar Cells." In Organic and Hybrid Solar Cells, 275–300. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-10855-1_9.
Full textMertens, R. P. "Progress in the Manufacturing of Production-Type Crystalline Silicon Solar Cells." In Tenth E.C. Photovoltaic Solar Energy Conference, 240–45. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3622-8_61.
Full textZampiva, Rubia Young Sun, Annelise Kopp Alves, and Carlos Perez Bergmann. "Mg2SiO4:Er3+ Coating for Efficiency Increase of Silicon-Based Commercial Solar Cells." In Sustainable Design and Manufacturing 2017, 820–28. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57078-5_77.
Full textConference papers on the topic "Solar cells manufacturing"
Iles, P. A., F. H. Ho, and Y. C. M. Yeh. "Manufacturing Experience With GaAs Solar Cells." In Cambridge Symposium-Fiber/LASE '86, edited by David Adler. SPIE, 1986. http://dx.doi.org/10.1117/12.937226.
Full textLuchenko, Angelika I., Tetyana Bilyk, Mykola M. Melnichenko, Olexandra M. Shmyryeva, and Kateryna Svezhentsova. "Application of nanostructured silicon to manufacturing of solar cells." In SPIE Solar Energy + Technology, edited by Louay A. Eldada. SPIE, 2011. http://dx.doi.org/10.1117/12.895315.
Full textБухтеев, Андрей Дмитриевич, Виктория Буянтуевна Бальжиева, Анна Романовна Тарасова, Фидан Гасанова, and Светлана Викторовна Агасиева. "MANUFACTURING OF ENERGY EFFICIENT SOLAR PANELS." In Высокие технологии и инновации в науке: сборник избранных статей Международной научной конференции (Санкт-Петербург, Сентябрь 2020). Crossref, 2020. http://dx.doi.org/10.37539/vt187.2020.17.18.006.
Full textVittoe, Robert L., Tung Ho, Sudhir Shrestha, Mangilal Agarwal, and Kody Varahramyan. "All Solution-Based Fabrication of CIGS Solar Cell." In ASME 2013 International Manufacturing Science and Engineering Conference collocated with the 41st North American Manufacturing Research Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/msec2013-1239.
Full textZhang, Jingyi, Xianfeng Gao, Yelin Deng, Yuanchun Zha, and Chris Yuan. "Cradle-to-Grave Life Cycle Assessment of Solid-State Perovskite Solar Cells." In ASME 2017 12th International Manufacturing Science and Engineering Conference collocated with the JSME/ASME 2017 6th International Conference on Materials and Processing. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/msec2017-2970.
Full textHwang, David J., Seungkuk Kuk, Zhen Wang, Won Mok Kim, and Jeung-hyun Jeong. "LASER-ASSISTED MANUFACTURING OF BUILDING-INTEGRATED PHOTOVOLTAIC SOLAR CELLS." In 5-6th Thermal and Fluids Engineering Conference (TFEC). Connecticut: Begellhouse, 2021. http://dx.doi.org/10.1615/tfec2021.sol.032212.
Full textGuha, Subhendu. "Manufacturing technology of amorphous and nanocrystalline silicon solar cells." In 2007 International Workshop on Physics of Semiconductor Devices. IEEE, 2007. http://dx.doi.org/10.1109/iwpsd.2007.4472447.
Full textNguyen, Crystal, Daniel Volpe, William Wilson, Mansour Zenouzi, and Jason Avent. "Efficiency Experiments on Modified Dye Sensitized Solar Cells." In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-68773.
Full textJames, Sagil, Rinkesh Contractor, Chris Veyna, and Galen Jiang. "Fabrication of Efficient Electrodes for Dye-Sensitized Solar Cells Using Additive Manufacturing." In ASME 2018 13th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/msec2018-6709.
Full textRand, J. A., Y. Bai, J. S. Culik, D. H. Ford, P. E. Sims, and A. M. Barnett. "Silicon-film™ solar cells by a flexible manufacturing system." In National center for photovoltaics (NCPV) 15th program review meeting. AIP, 1999. http://dx.doi.org/10.1063/1.58008.
Full textReports on the topic "Solar cells manufacturing"
Culik, J. S., J. A. Rand, Y. Bai, J. R. Bower, J. R. Cummings, I. Goncharovsky, R. Jonczyk, P. E. Sims, R. B. Hall, and A. M. Barnett. Silicon-Film{trademark} Solar Cells by a Flexible Manufacturing System. Office of Scientific and Technical Information (OSTI), September 1999. http://dx.doi.org/10.2172/12181.
Full textSinton, R. A., P. J. Verlinden, R. A. Crane, and R. N. Swanson. Development of manufacturing capability for high-concentration, high-efficiency silicon solar cells. Office of Scientific and Technical Information (OSTI), October 1996. http://dx.doi.org/10.2172/399690.
Full textWojtczuk, S. Manufacturing of High-Efficiency Bi-Facial Tandem Concentrator Solar Cells: February 20, 2009--August 20, 2010. Office of Scientific and Technical Information (OSTI), June 2011. http://dx.doi.org/10.2172/1018101.
Full textRand, J. Silicon-Film(TM) Solar Cells by a Flexible Manufacturing System: Final Report, 16 April 1998 -- 31 March 2001. Office of Scientific and Technical Information (OSTI), February 2002. http://dx.doi.org/10.2172/15000185.
Full textSelvamanickam, Venkat, Sahil Sharma, Carlos Favela, Bo Yu, and Eduard Galstyan. III-V Solar Cells with Novel Epitaxial Lift-off Architectures for Extended Substrate Reuse for Low-cost Manufacturing. Office of Scientific and Technical Information (OSTI), November 2021. http://dx.doi.org/10.2172/1832889.
Full textRand, J. A., and J. S. Culik. High Volume Manufacturing of Silicon-Film Solar Cells and Modules; Final Subcontract Report, 26 February 2003 - 30 September 2003. Office of Scientific and Technical Information (OSTI), October 2005. http://dx.doi.org/10.2172/15020502.
Full textWohlgemuth, J., and M. Narayanan. Large-Scale PV Module Manufacturing Using Ultra-Thin Polycrystalline Silicon Solar Cells: Annual Subcontract Report, 1 October 2003--30 September 2004. Office of Scientific and Technical Information (OSTI), March 2005. http://dx.doi.org/10.2172/15011485.
Full textWohlgemuth, J., and M. Narayanan. Large-Scale PV Module Manufacturing Using Ultra-Thin Polycrystalline Silicon Solar Cells: Final Subcontract Report, 1 April 2002--28 February 2006. Office of Scientific and Technical Information (OSTI), July 2006. http://dx.doi.org/10.2172/888679.
Full textCulik, J. S., J. A. Rand, J. R. Bower, J. C. Bisaillon, J. R. Cummings, K. W. Allison, I. Goncharovsky, et al. Silicon-Film{trademark} Solar Cells by a Flexible Manufacturing System: PVMaT Phase II Annual Report, 1 February 1999 - 31 January 2000. Office of Scientific and Technical Information (OSTI), August 2000. http://dx.doi.org/10.2172/763411.
Full textWohlgemuth, J., and S. P. Shea. Large-Scale PV Module Manufacturing Using Ultra-Thin Polycrystalline Silicon Solar Cells: Annual Subcontract Report, 1 April 2002--30 September 2003 (Revised). Office of Scientific and Technical Information (OSTI), April 2004. http://dx.doi.org/10.2172/15007017.
Full text