Journal articles on the topic 'Solar cell'

To see the other types of publications on this topic, follow the link: Solar cell.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Solar cell.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Choudhary, Yogesh, Ankita Bhatia, and Md Asif Iqbal. "A Review on Dye Sensitized Solar Cell." International Journal of Trend in Scientific Research and Development Volume-2, Issue-3 (April 30, 2018): 1103–7. http://dx.doi.org/10.31142/ijtsrd11272.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kryuchenko, Yu V. "Efficiency a-Si:H solar cell. Detailed theory." Semiconductor Physics Quantum Electronics and Optoelectronics 15, no. 2 (May 30, 2012): 91–116. http://dx.doi.org/10.15407/spqeo15.02.091.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Smestad, Greg P., Frederik C. Krebs, Carl M. Lampert, Claes G. Granqvist, K. L. Chopra, Xavier Mathew, and Hideyuki Takakura. "Reporting solar cell efficiencies in Solar Energy Materials and Solar Cells." Solar Energy Materials and Solar Cells 92, no. 4 (April 2008): 371–73. http://dx.doi.org/10.1016/j.solmat.2008.01.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Shizhou Xiao, Shizhou Xiao, and Andreas Ostendorf Andreas Ostendorf*. "Laser Processing in Solar Cell Production(Invited Paper)." Chinese Journal of Lasers 36, no. 12 (2009): 3116–24. http://dx.doi.org/10.3788/cjl20093612.3116.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Admane, Ashvini, and Dr Harikumar Naidu. "Development of Low Cost Solar Cell and Inverter." International Journal of Trend in Scientific Research and Development Volume-2, Issue-4 (June 30, 2018): 2195–96. http://dx.doi.org/10.31142/ijtsrd14519.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

MAHENDRA KUMAR, MAHENDRA KUMAR. "Cds/ Sno2 Thin Films for Solar Cell Applications." International Journal of Scientific Research 3, no. 3 (June 1, 2012): 322–23. http://dx.doi.org/10.15373/22778179/march2014/109.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

MARTYNYUK, V. V., G. I. RADELCHUK, and O. V. SHPAK. "IMPROVED IMPEDANCE MATHEMATICAL MODEL OF A SOLAR CELL." Measuring and computing devices in technological processes 63, no. 1 (January 2019): 5–9. http://dx.doi.org/10.31891/2219-9365-2019-63-1-5-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mutalikdesai, Amruta, and Sheela K. Ramasesha. "Emerging solar technologies: Perovskite solar cell." Resonance 22, no. 11 (November 2017): 1061–83. http://dx.doi.org/10.1007/s12045-017-0571-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mazhari, B. "An improved solar cell circuit model for organic solar cells." Solar Energy Materials and Solar Cells 90, no. 7-8 (May 2006): 1021–33. http://dx.doi.org/10.1016/j.solmat.2005.05.017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Aziz, N. A. Nik, M. I. N. Isa, and S. Hasiah. "Electrical and Hall Effect Study of Hybrid Solar Cell." Journal of Clean Energy Technologies 2, no. 4 (2014): 322–26. http://dx.doi.org/10.7763/jocet.2014.v2.148.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Uddin, Ashraf, Md Arafat Mahmud, Naveen Kumar Elumalai, Mushfika Baishakhi Upama, Dian Wang, Faiazul Haque, and Cheng Xu. "Low Temperature Processed Efficient And Stable Perovskite Solar Cell." Advanced Materials Letters 10, no. 2 (December 19, 2018): 98–106. http://dx.doi.org/10.5185/amlett.2019.2050.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

GÁLL, Vladimír, Alexander MÉSZÁROS, and Ján TKÁČ. "Analysis of Operating Temperature of the Polycrystalline Solar Cell." Acta Electrotechnica et Informatica 17, no. 4 (December 1, 2017): 57–62. http://dx.doi.org/10.15546/aeei-2017-0035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

KIM, Dong Suk, and Yimhyun JO. "Perovskite Solar Cell." Physics and High Technology 28, no. 5 (May 31, 2019): 27–30. http://dx.doi.org/10.3938/phit.28.020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Lee, Jin-Wook, and Nam-Gyu Park. "Perovskite solar cell." Vacuum Magazine 1, no. 4 (December 30, 2014): 10–13. http://dx.doi.org/10.5757/vacmag.1.4.10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Fairley, Peter. "Solar-Cell Squabble." IEEE Spectrum 45, no. 4 (2008): 36–40. http://dx.doi.org/10.1109/mspec.2008.4476444.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Bland, Stewart. "LCD solar cell." Materials Today 14, no. 10 (October 2011): 456. http://dx.doi.org/10.1016/s1369-7021(11)70199-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Suresh, Stephen, and Gautham Nadig. "Nature’s solar cell." Resonance 1, no. 2 (February 1996): 102–4. http://dx.doi.org/10.1007/bf02835707.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Yamaguchi, Masafumi. "Multi-junction solar cells and novel structures for solar cell applications." Physica E: Low-dimensional Systems and Nanostructures 14, no. 1-2 (April 2002): 84–90. http://dx.doi.org/10.1016/s1386-9477(02)00362-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Yaghoobi, Parham, Mehran Vahdani Moghaddam, and Alireza Nojeh. "Solar electron source and thermionic solar cell." AIP Advances 2, no. 4 (December 2012): 042139. http://dx.doi.org/10.1063/1.4766942.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Jabbar, Ali H. "Fabrication and Characterization of CuO:NiO Composite for Solar Cell Applications." Journal of Advanced Research in Dynamical and Control Systems 24, no. 4 (March 31, 2020): 179–86. http://dx.doi.org/10.5373/jardcs/v12i4/20201431.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Hussein, Abdullah A., Waleed A. Hussain, and Hussein F. Al-luaiby. "Enhancement efficiency of P3HT:PCBM solar cell by different treatment annealing." Journal of Zankoy Sulaimani - Part A 17, no. 1 (December 10, 2014): 167–76. http://dx.doi.org/10.17656/jzs.10370.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Miao Zhang, Miao Zhang, Yong Ren Yong Ren, Danchen Cheng Danchen Cheng, and Ming Lu Ming Lu. "Solar cell performance improvement via photoluminescence conversion of Si nanoparticles." Chinese Optics Letters 10, no. 6 (2012): 063101–63103. http://dx.doi.org/10.3788/col201210.063101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Abed Yasseen, Fares. "Enhancement the efficiency of solar cell by using (Bpbpy) dye." Journal of Kufa Physics 10, no. 01 (June 10, 2018): 68–76. http://dx.doi.org/10.31257/2018/jkp/100109.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Singh, Naorem Santakrus, and Avinashi Kapoor. "Determining Multi-Junction Solar Cell Parameters Using Lambert-W Function." Paripex - Indian Journal Of Research 3, no. 5 (January 15, 2012): 203–6. http://dx.doi.org/10.15373/22501991/may2014/62.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Szuromi, Phil. "Tougher solar cell interfaces." Science 372, no. 6542 (May 6, 2021): 584.2–584. http://dx.doi.org/10.1126/science.372.6542.584-b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Markvart, Tom. "Ideal solar cell efficiencies." Nature Photonics 15, no. 3 (February 24, 2021): 163–64. http://dx.doi.org/10.1038/s41566-021-00772-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Peterson, I. "Pinpointing Solar-Cell Efficiency." Science News 129, no. 17 (April 26, 1986): 261. http://dx.doi.org/10.2307/3970476.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Aggarwal, Meena, A. Kapoor, and K. N. Tripathi. "Solar cell array parameters." Solar Energy Materials and Solar Cells 45, no. 4 (February 1997): 377–84. http://dx.doi.org/10.1016/s0927-0248(96)00085-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Im, Jeong-Hyeok, Jingshan Luo, Marius Franckevičius, Norman Pellet, Peng Gao, Thomas Moehl, Shaik Mohammed Zakeeruddin, Mohammad Khaja Nazeeruddin, Michael Grätzel, and Nam-Gyu Park. "Nanowire Perovskite Solar Cell." Nano Letters 15, no. 3 (February 26, 2015): 2120–26. http://dx.doi.org/10.1021/acs.nanolett.5b00046.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Tuttle, John. "Transforming the solar cell." Refocus 7, no. 1 (January 2006): 46–49. http://dx.doi.org/10.1016/s1471-0846(06)70518-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

FREEMANTLE, MICHAEL. "HYBRID SOLAR CELL FABRICATED." Chemical & Engineering News Archive 80, no. 13 (April 2002): 15. http://dx.doi.org/10.1021/cen-v080n013.p015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Peters, Marius, Ma Fajun, Ke Cangming, Guo Siyu, Nasim Sahraei, Bram Hoex, and Armin G. Aberle. "Advanced Solar Cell Modelling." Energy Procedia 33 (2013): 99–103. http://dx.doi.org/10.1016/j.egypro.2013.05.045.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Crabb, R. L. "Solar cell radiation damage." Radiation Physics and Chemistry 43, no. 1-2 (January 1994): 93–103. http://dx.doi.org/10.1016/0969-806x(94)90204-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Lenzi, G., and V. Canevari. "Solar cell test equipment." Measurement 11, no. 1 (March 1993): 33–37. http://dx.doi.org/10.1016/0263-2241(93)90003-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Yang, Yi, Kamil Mielczarek, Mukti Aryal, Anvar Zakhidov, and Walter Hu. "Nanoimprinted Polymer Solar Cell." ACS Nano 6, no. 4 (March 14, 2012): 2877–92. http://dx.doi.org/10.1021/nn3001388.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Sun, S., Z. Fan, Y. Wang, and J. Haliburton. "Organic solar cell optimizations." Journal of Materials Science 40, no. 6 (March 2005): 1429–43. http://dx.doi.org/10.1007/s10853-005-0579-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Ranjan, S., S. Balaji, Rocco A. Panella, and B. Erik Ydstie. "Silicon solar cell production." Computers & Chemical Engineering 35, no. 8 (August 2011): 1439–53. http://dx.doi.org/10.1016/j.compchemeng.2011.04.017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Solanki, C. S., and G. Beaucarne. "Advanced solar cell concepts." Energy for Sustainable Development 11, no. 3 (September 2007): 17–23. http://dx.doi.org/10.1016/s0973-0826(08)60573-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Emery, K. A., and C. R. Osterwald. "Solar cell efficiency measurements." Solar Cells 17, no. 2-3 (April 1986): 253–74. http://dx.doi.org/10.1016/0379-6787(86)90016-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Emery, Keith A., and Carl R. Osterwald. "Solar cell calibration methods." Solar Cells 27, no. 1-4 (October 1989): 445–53. http://dx.doi.org/10.1016/0379-6787(89)90054-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Green, Martin A., and Keith Emery. "Solar cell efficiency tables." Progress in Photovoltaics: Research and Applications 1, no. 1 (January 1993): 25–29. http://dx.doi.org/10.1002/pip.4670010104.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Kim, Hyunsung, Sangho Kim, Youngseok Lee, Jun-Hui Jeong, Yongjun Kim, Vinh Ai Dao, and Junsin Yi. "Enhancing Solar Cell Properties of Heterojunction Solar Cell in Amorphous Silicon Carbide." Journal of the Korean Institute of Electrical and Electronic Material Engineers 29, no. 6 (June 1, 2016): 376–79. http://dx.doi.org/10.4313/jkem.2016.29.6.376.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Deepak, K. "Solar Cell Characteristic Studies On Metal Organic Framework/TiO2 Hybrid Solar Cell." Advanced Materials Letters 11, no. 9 (September 1, 2020): 20091555. http://dx.doi.org/10.5185/amlett.2020.091555.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Hafezi, Razagh, Soroush Karimi, Sharie Jamalzae, and Masoud Jabbari. "Material and solar cell research in high efficiency micromorph tandem solar cell." Ciência e Natura 37 (December 19, 2015): 434. http://dx.doi.org/10.5902/2179460x20805.

Full text
Abstract:
“Micromorph” tandem solar cells consisting of a microcrystalline silicon bottom cell and an amorphous silicon top cell are considered as one of the most promising new thin-film silicon solar-cell concepts. Their promise lies in the hope of simultaneously achieving high conversion efficiencies at relatively low manufacturing costs. The concept was introduced by IMT Neuchâtel, based on the VHF-GD (very high frequency glow discharge) deposition method. The key element of the micromorph cell is the hydrogenated microcrystalline silicon bottom cell that opens new perspectives for low-temperature thin-film crystalline silicon technology. This paper describes the use, within p–i–n- and n–i–p-type solar cells, of hydrogenated amorphous silicon (a-Si:H) and hydrogenated microcrystalline silicon (_c-Si:H) thin films (layers), both deposited at low temperatures (200_C) by plasma-assisted chemical vapour deposition (PECVD), from a mixture of silane and hydrogen. Optical and electrical properties of the i-layers are described. Finally, present performances and future perspectives for a high efficiency ‘micromorph’ (mc-Si:Hya-Si:H) tandem solar cells are discussed.
APA, Harvard, Vancouver, ISO, and other styles
45

Crovetto, Andrea, Mathias K. Huss-Hansen, and Ole Hansen. "How the relative permittivity of solar cell materials influences solar cell performance." Solar Energy 149 (June 2017): 145–50. http://dx.doi.org/10.1016/j.solener.2017.04.018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Martí, A., N. López, E. Antolín, E. Cánovas, C. Stanley, C. Farmer, L. Cuadra, and A. Luque. "Novel semiconductor solar cell structures: The quantum dot intermediate band solar cell." Thin Solid Films 511-512 (July 2006): 638–44. http://dx.doi.org/10.1016/j.tsf.2005.12.122.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Khan, Aurangzeb, Masafumi Yamaguchi, Nathaji Dharmaras, Takashi Yamada, Tatsuya Tanabe, Shigenori Takagishi, Hisayoshi Itoh, Takeshi Ohshima, Mitsuru Imaizumi, and Sumio Matsuda. "Radiation Resistant Low Bandgap InGaAsP Solar Cell for Multi-Junction Solar Cells." Japanese Journal of Applied Physics 40, Part 2, No. 7B (July 15, 2001): L728—L731. http://dx.doi.org/10.1143/jjap.40.l728.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Azhar Aditama, Muhammad, Muhammad Nu'man Al Farisi, and Poetro Sambegoro. "Solar absorptivity analysis of nanostructure perovskite solar cell." Solar Energy 266 (December 2023): 112156. http://dx.doi.org/10.1016/j.solener.2023.112156.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Humayun, M. A., M. A. Rashid, F. Malek, S. B. Yaakob, A. Z. Abdullah, M. I. Yusoff, M. I. Misrun, and G. N. Shasidharan. "Enhancement of Intrinsic Carrier Concentration in the Active Layer of Solar Cell Using Indium Nitride Quantum Dot." Applied Mechanics and Materials 793 (September 2015): 435–39. http://dx.doi.org/10.4028/www.scientific.net/amm.793.435.

Full text
Abstract:
This paper presents the improvement of intrinsic carrier concentrations in the active layer of solar cell structure using Indium Nitride quantum dot as the active layer material. We have analyzed effective density of states in conduction band and valance band of the solar cell numerically using Si, Ge and InN quantum dot in the active layer of the solar cell structure in order to improve the intrinsic carrier concentration within the active layer of the solar cell. Then obtained numerical results were compared. From the comparison results it has been revealed that the application of InN quantum dot in the active layer of the device structure improves the effective density of states both in conduction band and in the valance band. Consiquently the intrinsic carrier concentration has been improved significently by using InN quantum dot in the solart cell structure.
APA, Harvard, Vancouver, ISO, and other styles
50

Usmani, Rohma, Mohammed Asim, and Malik Nasibullah. "Optical Modelling of Typical Organic Solar Cell using Transfer Matrix Model." Indian Journal Of Science And Technology 15, no. 38 (October 15, 2022): 1965–70. http://dx.doi.org/10.17485/ijst/v15i38.1398.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography