Academic literature on the topic 'Soils South Australia Nitrogen content'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Soils South Australia Nitrogen content.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Soils South Australia Nitrogen content"
Lewis, DC, and LA Sparrow. "Implications of soil type, pasture composition and mineral content of pasture components for the incidence of grass tetany in the South East of South Australia." Australian Journal of Experimental Agriculture 31, no. 5 (1991): 609. http://dx.doi.org/10.1071/ea9910609.
Full textO'Sullivan, Cathryn A., Steven A. Wakelin, Ian R. P. Fillery, and Margaret M. Roper. "Factors affecting ammonia-oxidising microorganisms and potential nitrification rates in southern Australian agricultural soils." Soil Research 51, no. 3 (2013): 240. http://dx.doi.org/10.1071/sr13039.
Full textLatta, R. A., and A. Lyons. "The performance of lucerne - wheat rotations on Western Australian duplex soils." Australian Journal of Agricultural Research 57, no. 3 (2006): 335. http://dx.doi.org/10.1071/ar04016.
Full textAngus, J. F., A. F. van Herwaarden, D. P. Heenan, R. A. Fischer, and G. N. Howe. "The source of mineral nitrogen for cereals in south-eastern Australia." Australian Journal of Agricultural Research 49, no. 3 (1998): 511. http://dx.doi.org/10.1071/a97125.
Full textLewis, DC, TD Potter, SE Weckert, and IL Grant. "Effect of nitrogen and phosphorus fertilizers on the seed yield and oil concentration of oilseed rape (Brassica napus L.) and the prediction of responses by soil tests and past paddock use." Australian Journal of Experimental Agriculture 27, no. 5 (1987): 713. http://dx.doi.org/10.1071/ea9870713.
Full textSmiles, D. E., and C. J. Smith. "A survey of the cation content of piggery effluents and some consequences of their use to irrigate soils." Soil Research 42, no. 2 (2004): 231. http://dx.doi.org/10.1071/sr03059.
Full textBauhus, J., PK Khanna, and RJ Raison. "The effect of fire on carbon and nitrogen mineralization and nitrification in an Australian forest soil." Soil Research 31, no. 5 (1993): 621. http://dx.doi.org/10.1071/sr9930621.
Full textCooke, JW, GW Ford, RG Dumsday, and ST Willatt. "Effect of fallowing practices on the growth and yield of wheat in south-eastern Australia." Australian Journal of Experimental Agriculture 25, no. 3 (1985): 614. http://dx.doi.org/10.1071/ea9850614.
Full textPérez-Fernández, María A., and Byron B. Lamont. "Nodulation and performance of exotic and native legumes in Australian soils." Australian Journal of Botany 51, no. 5 (2003): 543. http://dx.doi.org/10.1071/bt03053.
Full textChen, Wen, Graeme Blair, Jim Scott, and Rod Lefroy. "Nitrogen and sulfur dynamics of contrasting grazed pastures." Australian Journal of Agricultural Research 50, no. 8 (1999): 1381. http://dx.doi.org/10.1071/ar98104.
Full textDissertations / Theses on the topic "Soils South Australia Nitrogen content"
Lotfollahi, Mohammad. "The effect of subsoil mineral nitrogen on grain protein concentration of wheat." Title page, table of contents and summary only, 1996. http://web4.library.adelaide.edu.au/theses/09PH/09phl882.pdf.
Full textShrestha, Hari Ram. "Post-fire recovery of carbon and nitrogen in sub-alpine soils of South-eastern Australia /." Connect to thesis, 2009. http://repository.unimelb.edu.au/10187/6963.
Full textThis study investigated post-fire recovery of soil C and N in four structurally different sub-alpine plant communities (grassland, heathland, Snowgum and Alpine ash) of south-eastern Australia which were extensively burnt by landscape-scale fires in 2003. The amount and isotopic concentration of C and N in soils to a depth of 20 cm from Alpine ash forest were assessed five years after fire in 2008 and results were integrated with measurements taken immediately prior to burning (2002) and annually afterwards.
Because the historical data set, comprised of three soil samplings over the years 2002 to 2005, consisted of soil total C and N values which were determined as an adjunct to 13C and 15N isotopic studies, it was necessary to establish the accuracy of these IRMS-derived measurements prior to further analysis of the dataset. Two well-established and robust methods for determining soil C (total C by LECO and oxidizable C by the Walkley-Black method) were compared with the IRMS total C measurement in a one-off sampling to establish equivalence prior to assembling a time-course change in soil C from immediately pre-fire to five years post-fire. The LECO and IRMS dry combustion measurements were essentially the same (r2 >0.99), while soil oxidizable C recovery by the Walkley-Black method (wet digestion) was 68% compared to the LECO/IRMS measurements of total C. Thus the total C measurement derived from the much smaller sample size (approximately 15 mg) combusted during IRMS are equivalent to LECO measurement which require about 150 mg of sample.
Both total C and N in the soil of Alpine ash forests were significantly higher than soils from Snowgum, heathland and grassland communities. The ratio of soil NH4+ to NO3- concentration was greater for Alpine ash forest and Snow gum woodland but both N-fractions were similar for heathland and grassland soils. The abundance of soil 15N and 13C was significantly depleted in Alpine ash but both isotopes were enriched in the heathland compared to the other ecosystems. Abundance of both 15N and 13C increased with soil depth.
The natural abundance of 15N and 13C in the foliage of a subset of non-N2 fixing and N2 fixing plants was measured as a guide to estimate BNF inputs. Foliage N concentration was significantly greater in N2 fixers than non-N2 fixers while C content and 13C abundance were similar in both functional groups. Abundance of 15N was depleted in the N2 fixing species but was not significantly different from the non-N2 fixers to confidently calculate BNF inputs based on the 15N abundance in the leaves.
The total C pool in soil (to 20 cm depth) had not yet returned to the pre-fire levels in 2008 and it was estimated that such levels of C would be reached in another 6-7 years (about 12 years after the fire). The C and N of soil organic matter were significantly enriched in 15N and 13C isotopes after fire and had not returned to the pre-fire levels five years after the fire. It is concluded that the soil organic N pool can recover faster than the total C pool after the fire in the Alpine ash forests.
Maqubela, Mfundo Phakama. "Bioconditioning and nitrogen fertility effects of selected cyanobacteria strains on two degraded soils in the Eastern Cape Province, South Africa." Thesis, University of Fort Hare, 2009. http://hdl.handle.net/10353/558.
Full textBagheri, Kazemabad Abdolreza. "Boron tolerance in grain legumes with particular reference to the genetics of boron tolerance in peas." Title page, summary and contents only, 1994. http://web4.library.adelaide.edu.au/theses/09PH/09phb144.pdf.
Full textCrawford, Michael Cameron. "Quantification of the belowground inputs of organic carbon by the annual pasture legume barrel medic (Medicago truncatula Gaertn.)." Title page, contents and abstract only, 1997. http://web4.library.adelaide.edu.au/theses/09PH/09phc8988.pdf.
Full textGeorge, Suman Jacob. "Effects of land-use change on phosphorus forms in South-West Australian soils." University of Western Australia. School of Earth and Geographical Sciences, 2004. http://theses.library.uwa.edu.au/adt-WU2004.0078.
Full textHoyle, Frances Carmen. "The effect of soluble organic carbon substrates, and environmental modulators on soil microbial function and diversity." University of Western Australia. School of Earth and Geographical Sciences, 2007. http://theses.library.uwa.edu.au/adt-WU2007.0050.
Full textHuang, Chunyuan. "Mechanisms of Mn efficiency in barley." 1996, 1996. http://web4.library.adelaide.edu.au/theses/09PH/09phh8739.pdf.
Full textLalor, Briony Maree. "An assessment of the recovery of the microbial community in jarrah forest soils after bauxite mining and prescription burning." University of Western Australia. School of Earth and Geographical Sciences, 2009. http://theses.library.uwa.edu.au/adt-WU2010.0037.
Full textMcLaughlin, Michael John. "Phosphorus cycling in soil under wheat-pasture rotations /." Title page, contents and summary only, 1986. http://web4.library.adelaide.edu.au/theses/09PH/09phm1615.pdf.
Full textBooks on the topic "Soils South Australia Nitrogen content"
International Symposium on "Manganese in Soils and Plants" (1988 Waite Agricultural Research Institute). Manganese in soils and plants: Proceedings of the International Symposium on "Manganese in Soils and Plants" held at the Waite Agricultural Research Institute, the University of Adelaide, Glen Osmond, South Australia, August 22-26, 1988, as an Australian Bicentennial event. Dordrecht: Kluwer Academic, 1988.
Find full textBook chapters on the topic "Soils South Australia Nitrogen content"
Slattery, J. F., W. J. Slattery, and B. M. Carmody. "Influence of Soil Chemical Characteristics on Medic Rhizobia in the Alkaline Soils of South Eastern Australia." In Highlights of Nitrogen Fixation Research, 243–49. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-4795-2_49.
Full textSchlesinger, William H., and Sandy L. Tartowski. "Nutrient Cycling within an Arid Ecosystem." In Structure and Function of a Chihuahuan Desert Ecosystem. Oxford University Press, 2006. http://dx.doi.org/10.1093/oso/9780195117769.003.0010.
Full text