Academic literature on the topic 'Soil-water balance'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Soil-water balance.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Soil-water balance"
Ragab, R., F. Beese, and W. Ehlers. "A Soil Water Balance and Dry Matter Production Model: I. Soil Water Balance of Oat." Agronomy Journal 82, no. 1 (January 1990): 152–56. http://dx.doi.org/10.2134/agronj1990.00021962008200010033x.
Full textSackschewsky, M. R., C. J. Kemp, S. O. Link, and W. J. Waugh. "Soil Water Balance Changes in Engineered Soil Surfaces." Journal of Environmental Quality 24, no. 2 (March 1995): 352–59. http://dx.doi.org/10.2134/jeq1995.00472425002400020019x.
Full textCresswell, HP, DE Smiles, and J. Williams. "Soil structure, soil hydraulic properties and the soil water balance." Soil Research 30, no. 3 (1992): 265. http://dx.doi.org/10.1071/sr9920265.
Full textMartínez-Ferri, E., J. L. Muriel-Fernández, and J. A. Rodríguez Díaz. "Soil Water Balance Modelling Using SWAP." Outlook on Agriculture 42, no. 2 (June 2013): 93–102. http://dx.doi.org/10.5367/oa.2013.0125.
Full textMcCoy, A. J., G. Parkin, C. Wagner-Riddle, J. Warland, J. Lauzon, P. von Bertoldi, D. Fallow, and S. Jayasundara. "Using automated soil water content measurements to estimate soil water budgets." Canadian Journal of Soil Science 86, no. 1 (February 1, 2006): 47–56. http://dx.doi.org/10.4141/s05-031.
Full textŠťastná, M., and E. Stenitzer. "SIMWASER model as a tool for the assessment of soil water balance." Plant, Soil and Environment 51, No. 8 (November 19, 2011): 343–50. http://dx.doi.org/10.17221/3609-pse.
Full textKolars, Kelsey, Xinhua Jia, Dean D. Steele, and Thomas F. Scherer. "A Soil Water Balance Model for Subsurface Water Management." Applied Engineering in Agriculture 35, no. 4 (2019): 633–46. http://dx.doi.org/10.13031/aea.13038.
Full textEvett, Steven R., Robert C. Schwartz, Joaquin J. Casanova, and Lee K. Heng. "Soil water sensing for water balance, ET and WUE." Agricultural Water Management 104 (February 2012): 1–9. http://dx.doi.org/10.1016/j.agwat.2011.12.002.
Full textHoekstra, Arjen Y. "Green-blue water accounting in a soil water balance." Advances in Water Resources 129 (July 2019): 112–17. http://dx.doi.org/10.1016/j.advwatres.2019.05.012.
Full textCuenca, Richard H., David E. Stangel, and Shaun F. Kelly. "Soil water balance in a boreal forest." Journal of Geophysical Research: Atmospheres 102, no. D24 (December 1, 1997): 29355–65. http://dx.doi.org/10.1029/97jd02312.
Full textDissertations / Theses on the topic "Soil-water balance"
Qureshi, Suhail Ahmad. "Soil water balance of intercropped corn under water table management." Thesis, McGill University, 1995. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=23289.
Full textCropping system showed no significant effects on evapotranspiration, and on soil moisture distribution. It was observed that the 0.5 m and 0.75 m controlled water tables (CWT) provided the same soil moisture trends in both cropping systems. The soil moisture was always higher in controlled water table plots compared to freely drained plots. The water use efficiency of 0.75 m CWT in both cropping systems was high compared to 0.5 m CWT.
The soil moisture contents at three depths were only 2% to 10% less in intercropped plots compared to monocropped plots. The soil moisture was 12 to 13% higher in CWT plots compared to freely drained plots for both cropping systems. The soil moisture in 0.5 m CWT and 0.75 m CWT plots was not significantly different. The average water table levels in monocropped plots were not significantly different from intercropped plots.
Al-Ali, Mahmoud. "Soil water conservation and water balance model for micro-catchment water harvesting system." Thesis, Loughborough University, 2012. https://dspace.lboro.ac.uk/2134/10941.
Full textBuchanan, Margaret MacNeill. "Soil Water Flow and Irrigated Soil Water Balance in Response to Powder River Basin Coalbed Methane Product Water." Thesis, Montana State University, 2005. http://etd.lib.montana.edu/etd/2005/buchanan/BuchananM0505.pdf.
Full textOliveira, Paulo Tarso Sanches de. "Water balance and soil erosion in the Brazilian Cerrado." Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/18/18138/tde-16012015-170452/.
Full textO desmatamento nas regiões de Cerrado tem causado intensas mudanças nos processos hidrológicos. Essas mudanças no balanço hídrico e erosão do solo são ainda pouco entendidas, apesar de fundamentais na tomada de decisão de uso e manejo do solo nesta região. Portanto, torna-se necessário compreender a magnitude das mudanças nos processos hidrológicos e de erosão do solo, em escalas locais, regionais e continentais, e as consequências dessas mudanças. O principal objetivo do estudo apresentado nesta tese de doutorado foi de melhor entender os mecanismos dos processos hidrológicos e de erosão do solo no Cerrado Brasileiro. Para tanto, utilizou-se diferentes escalas de trabalho (vertentes, bacias hidrográficas e continental) e usando dados experimentais in situ, de laboratório e a partir de sensoriamento remoto. O estudo de revisão de literatura indica que a erosividade da chuva no Brasil varia de 1672 to 22,452 MJ mm ha-1 h-1 yr-1. Os menores valores encontram-se na região nordeste e os maiores nas regiões norte e sudeste do Brasil. Verificou-se que os valores de interceptação da chuva variam de 4 a 20% e o escoamento pelo tronco aproximadamente 1% da precipital total no cerrado. O coeficiente de escoamento superficial foi menor que 1% nas parcelas de cerrado e o desmatamento tem o potencial de aumentar em até 20 vezes esse valor. Os resultados indicam que o método Curve Number não foi adequado para estimar o escoamento superficial nas áreas de cerrado, solo exposto (grupo hidrológico do solo A), pastagem e milheto. Portanto, nesses casos o uso do CN é inadequado e o escoamento superficial é melhor estimado a partir da equação Q = CP, onde C é o coeficiente de escoamento superficial. O balanço hídrico a partir de dados de sensoriamento remoto para todo o Cerrado Brasileiro indica que a principal fonte de incerteza na estimativa do escoamento superficial ocorre nos dados de precipitação do TRMM. A variação de água na superfície terrestre calculada como o residual da equação do balanço hídrico usando dados de sensoriamento remoto (TRMM e MOD16) e valores observados de vazão mostram uma correlação significativa com os valores de variação de água na superfície terrestre provenientes dos dados do GRACE. Os dados do GRACE podem representar satisfatoriamente a variação de água na superfície terrestre para extensas regiões do Cerrado. A média anual de perda de solo nas parcelas de solo exposto e cerrado foram de 15.25 t ha-1 yr-1 and 0.17 t ha-1 yr-1, respectivamente. O fator uso e manejo do solo (fator C) da Universal Soil Loss Equation para o cerrado foi de 0.013. Os resultados mostraram que o escoamento superficial, erosão do solo e o fator C na área de cerrado variam de acordo com as estações. Os maiores valores do fator C foram encontrados no verão e outono. Os resultados encontrados nesta tese de doutorado fornecem valores de referência sobre os componentes do balanço hídrico e erosão do solo no Cerrado, que podem ser úteis para avaliar o uso e cobertura do solo atual e futuro. Além disso, conclui-se que os dados de sensoriamento remoto apresentam resultados satisfatórios para avaliar os componentes do balanço hídrico no Cerrado, identificar os períodos de seca e avaliar as alterações no balanço hídrico devido à mudanças de uso e cobertura do solo.
Haigh, R. A. "Water balance and water quality studies in an underdrained clay soil catchment." Thesis, University of Oxford, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.371543.
Full textMhlauli, Ntuthuzelo Columbus. "Growth analysis and soil water balance of selected vegetable crops." Diss., University of Pretoria, 2000. http://hdl.handle.net/2263/26200.
Full textDissertation (M Inst Agrar (Horticulture Science))--University of Pretoria, 2000.
Plant Production and Soil Science
unrestricted
Chen, Liping. "Soil Characteristics Estimation and Its Application in Water Balance Dynamics." Thesis, University of North Texas, 2008. https://digital.library.unt.edu/ark:/67531/metadc9789/.
Full textChen, Liping Acevedo Miguel Felipe. "Soil characteristics estimation and its application in water balance dynamics." [Denton, Tex.] : University of North Texas, 2008. http://digital.library.unt.edu/permalink/meta-dc-9789.
Full textMbarushimana, Kagabo Desire. "Modelling the soil water balance of potatoes for improved irrigation management." Pretoria : [s.n.], 2006. http://upetd.up.ac.za/thesis/available/etd-07192007-134318.
Full textMoreira, LuÃs ClÃnio JÃrio. "Estimating irrigated watermelon evapotranspiration using sebal, soil-water balance and eddy correlations." Universidade Federal do CearÃ, 2009. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=5217.
Full textIn applications of the SEBAL (Surface Energy Balance Algorithm for Land) algorithm parameters for physical processes adjusted for other regions of the planet are commonly used. Therefore, there is a need for validation of the estimates made with the algorithm compared with other conventional methods of estimating evapotranspiration. Thus, this study main goal was to evaluate the satellite-based algorithm to estimate evapotranspiration of irrigated watermelon using as comparative methods: soil water balance and eddy correlation. The studied area was a plot of 1 ha located in the irrigated district of the low Acaraà River. Foliar coverage was obtained from digital images taken from a camera. Sensors were installed from the soil surface to a height of 1.5 m for monitoring the temperature in the air. The unsaturated hydraulic conductivity function of the soil was obtained using the instantaneous profile method. The water balance in the soil was done on days 17, 18 and 19 December, 2008, in the 0 to 30 cm depth using soil moisture capacitive sensors. To evaluate the components of net radiation and evapotranspiration using the method of eddy correlation, a micrometeorological tower was installed in the center of the studied area, where latent heat flux (LE), sensible heat flux (H) and evapotranspiration were determined. With climate data from a meteorological station nearby and using the FAOÂs methodology, net radiation (Rn) and soil heat flow (G) were determined. The SEBAL algorithm was applied in two Landsat5 satellite images acquired in 17/12/2008 and 02/01/2009 for estimating the net radiation and daily evapotranspiration. The measured temperature at the soil surface and in the air at 10 cm high was over 40  C near noon time. The unsaturated hydraulic conductivity function found was of the form K (θ) = 0.089 e28, 53θ and K (θ) = 0.0469 e48, 773θ, respectively for 0 - 15 and 15 - 30 cm. The evapotranspiration obtained from soil water balance with capacitive sensors in the study period was 9.37; 12.18 and 11.27 mm day-1, respectively in 17; 18 and December 19, 2008. For the radiation balance it was found that the latent heat flux was underestimated by using the method of eddy correlation with maximum values of the order of 150 W m-2. The sensible heat flux was always larger than the LE during the day, with maximum values near 300 W m-2. The energy balance done but accounting H + LE and Rn â G produced a residual error of around 60%. The daily average values of ETc (eddy correlations) for part of the experimental period were in the range of 0.91 to 1.18 mm day-1, with an average of 0.96 mm day-1. The satellite image that was applied to SEBAL algorithm presented many clouds, affecting the estimation of the components of radiation balance and evapotranspiration. In the area of watermelon, SEBAL estimates of evapotranspiration for dates 17/12/2008 and 02/01/2009 were 6.5 and 4.0 mm day-1, respectively. For validation, the ETo obtained by Penman-Montheith method at the time of satellite overpass was 0.53 mm h-1, while Etc obtained with SEBAL, eddy correlation and soil-water balance was 0.78; 0.11 and 0.55 mm h-1, respectively.
Nas aplicaÃÃes feitas com o SEBAL (Surface Energy Balance Algorithm for Land), estÃo sendo utilizadas parametrizaÃÃes de processos fÃsicos ajustados para outras regiÃes do planeta. Portanto, existe uma necessidade de validaÃÃo das estimativas feitas com o algoritmo comparando com outros mÃtodos usuais de estimativa de evapotranspiraÃÃo. Assim, esse trabalho teve como objetivo avaliar o algoritmo SEBAL na estimativa da evapotranspiraÃÃo da melancia irrigada usando como mÃtodos comparativos o balanÃo hÃdrico no solo e mÃtodo das correlaÃÃes turbulentas (eddy correlation). A Ãrea estudada foi um lote de 1 ha localizado no PerÃmetro Irrigado Baixo AcaraÃ. A cobertura Foliar foi obtida a partir de fotografias digitais. Foram instalados sensores a partir da superfÃcie do solo atà a altura de 1,5 m para monitoramento da temperatura no ar. Para fazer o balanÃo hÃdrico no solo foi encontrada a funÃÃo da condutividade hidrÃulica nÃo saturada atravÃs da metodologia do perfil instantÃneo. O balanÃo hÃdrico no solo foi feito nos dias 17, 18 e 19/12/2008 na camada de 0 a 30 cm usando sensores capacitivos de umidade. Para avaliar os componentes do balanÃo de radiaÃÃo e a evapotranspiraÃÃo atravÃs do mÃtodo das correlaÃÃes turbulentas foi instalada uma torre micrometeorolÃgica no centro da Ãrea, onde o fluxo de calor latente (LE), o fluxo de calor sensÃvel (H) e a evapotranspiraÃÃo foram determinados. Com dados climÃticos de uma estaÃÃo meteorologia prÃximo a Ãrea e usando a metodologia da FAO foi estimado a radiaÃÃo lÃquida (Rn) e o fluxo de calor no solo (G). O algoritmo SEBAL foi usado nas imagens do TM-Landsat 5 dos dias 17/12/2008 e 02/01/2009 para estimar o balanÃo de radiaÃÃo e a evapotranspiraÃÃo diÃria. A temperatura na superfÃcie e a 10 cm de altura prÃximos ao meio dia foi superior a 40ÂC. A funÃÃo da condutividade hidrÃulica no solo nÃo saturado para camada de 0 â 15 e 15 â 30 cm foi: K(θ) = 0,089e28,53θ e K(θ) = 0,0469e48,773θ, respectivamente. A evapotranspiraÃÃo obtida atravÃs do balanÃo hÃdrico com sensores capacitivos nos dias analisados foi 9,37; 12,18 e 11,27 mm dia-1, respectivamente em 17; 18 e 19 de dezembro de 2008. No balanÃo de energia observou-se que o fluxo de calor latente foi subestimado usando o mÃtodo das correlaÃÃes turbulentas apresentando valores mÃximos no dia nunca superiores a 150 W m-2. O fluxo de calor sensÃvel esteve sempre maior que o LE durante o dia, apresentando valores mÃximos prÃximos a 300 W m-2. O erro de fechamento da equaÃÃo do balanÃo de energia obtido atravÃs do equacionamento entre H + LE e Rn â G foi de cerca de 60%. Os valores mÃdios diÃrios da ETc (correlaÃÃes turbulentas) para parte do perÃodo experimental estiveram na faixa de 0,91 a 1,18 mm dia-1, com mÃdia de 0,96 mm dia-1. As imagens de satÃlites em que foi usado o algoritmo SEBAL apresentaram nuvens comprometendo a estimativa dos componentes do balanÃo de radiaÃÃo e a evapotranspiraÃÃo. Na Ãrea da melancia, a evapotranspiraÃÃo diÃria usando o SEBAL nos dias 17/12/2008 e 02/01/2009 foi 6,5 e 4,0 mm dia-1, respectivamente. Na anÃlise comparativa, a ETo na hora da passagem do satÃlite foi de 0,53 mm h-1, enquanto a ETc foi de 0,78; 0,11 e 0,55 mm h-1 estimada com o SEBAL, mÃtodos das correlaÃÃes turbulentas e balanÃo hÃdrico, espectivamente.
Books on the topic "Soil-water balance"
International Crops Research Institute for the Semi-arid Tropics. and International Workshop on Soil Water Balance inthe Sudano-Sahelian Zone (1991 : Niamey, Niger), eds. Soil water balance in the Sudano-Sahelian zone: Summary proceedings of an International Workshop on soil water ... 18-23 Feb 1991 Niamey, Niger. Patancheru: International Crops Research Institute for the Semi-arid Tropics,India, 1992.
Find full textWestenbroek, Stephen M. SWB--a modified Thornthwaite-Mather Soil-Water-Balance code for estimating groundwater recharge. Reston, Va: U.S. Dept. of the Interior, U.S. Geological Survey, Ground Resources Program, 2010.
Find full textDumouchelle, D. H. Evaluation of ground-water/surface-water relations, Chapman Creek, west-central Ohio, by means of multiple methods. Columbus, OH: U.S. Dept. of the Interior, U.S. Geological Survey, 2001.
Find full textDumouchelle, D. H. Evaluation of ground-water/surface-water relations, Chapman Creek, west-central Ohio, by means of multiple methods. Columbus, Ohio: U.S. Dept. of the Interior, U.S. Geological Survey, 2001.
Find full textBidlake, W. R. Simulation of the soil water balance of an undeveloped prairie in west-central Florida. Washington, DC: U.S. G.P.O., 1997.
Find full textBoer, M. Assessment of dryland degradation: Linking theory and practice through site water balance modelling. Utrecht: Koninklijk Nederlands Aardrijkskundig Genootschap/Faculteit Ruimtelijke Wetenschappen Universiteit Utrecht, 1999.
Find full textSmall, Eric E. The influence of soil moisture on the surface energy balance in semiarid environments. Las Cruces, N.M: New Mexico Water Resources Research Institute, New Mexico State University, 2001.
Find full textZimmermann, Lothar. Der Bodenwasserhaushalt an einem Hochlagenstandort im Südschwarzwald. Freiburg im Breisgau: Institut für Bodenkunde und Waldernährungslehre der Albert-Ludwigs-Universität Freiburg i.Br., 1995.
Find full textKirsten, Verburg, and CSIRO (Australia). Division of Soils., eds. Methodology in soil water and solute balance modelling: An evaluation of the APSIM-SoilWat and SWIMv2 models : report of an APSRU/CSIRO Division of Soils workshop held in Brisbane, Australia, 16-18 May 1995. [Australia]: CSIRO Australia, Division of Soils, 1996.
Find full textRex, John F. Hydrologic effects of mountain pine beetle infestation and salvage-harvesting operations. Victoria, B.C: Pacific Forestry Centre, 2009.
Find full textBook chapters on the topic "Soil-water balance"
Galle, Sylvie, Joost Brouwer, and Jean-Pierre Delhoume. "Soil Water Balance." In Ecological Studies, 77–104. New York, NY: Springer New York, 2001. http://dx.doi.org/10.1007/978-1-4613-0207-0_5.
Full textMartin, D. L., J. R. Gilley, and R. W. Skaggs. "Soil Water Balance and Management." In Managing Nitrogen for Groundwater Quality and Farm Profitability, 199–235. Madison, WI, USA: Soil Science Society of America, 2015. http://dx.doi.org/10.2136/1991.managingnitrogen.c10.
Full textRitchie, J. T. "Soil water balance and plant water stress." In Understanding Options for Agricultural Production, 41–54. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-017-3624-4_3.
Full textNovák, Viliam, and Hana Hlaváčiková. "Water and Energy Balance in the Field and Soil-Water Regimen." In Applied Soil Hydrology, 243–51. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-01806-1_15.
Full textNarayan Sethi, Laxmi, and Sudhindra Nath Panda. "Soil Water Balance Simulation of Rice using HYDRUS-2D and Mass Balance Model." In Modeling Methods and Practices in Soil and Water Engineering, 41–70. Oakville, ON ; Waretown, NJ : Apple Academic Press, [2016] |: Apple Academic Press, 2017. http://dx.doi.org/10.1201/b19987-4.
Full textPapajorgji, Petraq J., and Panos M. Pardalos. "Soil Water-Balance and Irrigation-Scheduling Models: A Case Study." In Springer Optimization and Its Applications, 239–50. Boston, MA: Springer US, 2014. http://dx.doi.org/10.1007/978-1-4899-7463-1_13.
Full textČadro, Sabrija, Monika Marković, Selman Edi Kaloper, Marija Ravlić, and Jasminka Žurovec. "Soil Water Balance Response to Climate Change in Posavina Region." In 30th Scientific-Experts Conference of Agriculture and Food Industry, 11–24. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-40049-1_2.
Full textRitchie, J. T. "A User-Orientated Model of the Soil Water Balance in Wheat." In Wheat Growth and Modelling, 293–305. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4899-3665-3_27.
Full textSingh, Balwant, Shefali Mishra, Deepak Singh Bisht, and Rohit Joshi. "Growing Rice with Less Water: Improving Productivity by Decreasing Water Demand." In Rice Improvement, 147–70. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-66530-2_5.
Full textBhattarai, Surya P., David J. Midmore, and Ninghu Su. "Sustainable Irrigation to Balance Supply of Soil Water, Oxygen, Nutrients and Agro-Chemicals." In Sustainable Agriculture Reviews, 253–86. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-9513-8_9.
Full textConference papers on the topic "Soil-water balance"
Hess, Amanda, Taylor DelVecchio, Andrea Welker, and Bridget M. Wadzuk. "Water Balance of Soil Mixes for Rain Gardens." In World Environmental and Water Resources Congress 2016. Reston, VA: American Society of Civil Engineers, 2016. http://dx.doi.org/10.1061/9780784479889.006.
Full textAkbar, Ruzbeh, Daniel Short Gianotti, Kaighin A. McColl, Erfan Haghighi, Guido D. Salvucci, and Dara Entekhabi. "First-Order Water Balance Studies Using Smap Soil Moisture." In IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2018. http://dx.doi.org/10.1109/igarss.2018.8518093.
Full textSeung Jong Bae, Ha Woo Chung, and Jin Yong Choi. "Agricultural Drought Analysis Using Soil Water Balance Model and GIS." In 2002 Chicago, IL July 28-31, 2002. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2002. http://dx.doi.org/10.13031/2013.11223.
Full textM. Reza Savabi, D. Shinde, K. Konomi, P. Nkedi-Kizza, and K. Jayachandran. "Effect of soil amendments (composts) on water balance and water quality- Model Simulations." In 2003, Las Vegas, NV July 27-30, 2003. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2003. http://dx.doi.org/10.13031/2013.13802.
Full text"Seasonal soil moisture forecasting using the AWRA landscape water balance model." In 22nd International Congress on Modelling and Simulation. Modelling and Simulation Society of Australia and New Zealand (MSSANZ), Inc., 2017. http://dx.doi.org/10.36334/modsim.2017.l19.vogel.
Full text"Assimilating satellite soil moisture retrievals to improve operational water balance modelling." In 23rd International Congress on Modelling and Simulation (MODSIM2019). Modelling and Simulation Society of Australia and New Zealand, 2019. http://dx.doi.org/10.36334/modsim.2019.h6.tian.
Full textGeorgieva-Milanova, Veska Anastasova. "A WATER BALANCE MODEL FOR CALCULATION OF SOIL WATER CONTENT IN A WINTER WHEAT FIELD." In 15th International Multidisciplinary Scientific GeoConference SGEM2015. Stef92 Technology, 2011. http://dx.doi.org/10.5593/sgem2015/b31/s12.002.
Full textChen Haorui, Huang Jiesheng, Wu Jingwei, Yang Jinzhong, and Ding Xingyan. "Comparisons of a numerical model and a water balance model to quantify soil water balance in root zone of winter wheat." In 2010 2nd International Conference on Education Technology and Computer (ICETC). IEEE, 2010. http://dx.doi.org/10.1109/icetc.2010.5529203.
Full textVillani, Giulia, Paolo Castaldi, Attilio Toscano, Camilla Stanghellini, Tullio Salmon Cinotti, Rodrigo Filev Maia, Fausto Tomei, Markus Taumberger, Paola Zanetti, and Stefano Panizzi. "Soil Water Balance Model CRITERIA-ID in SWAMP Project: Proof of Concept." In 2018 23rd Conference of Open Innovations Association (FRUCT). IEEE, 2018. http://dx.doi.org/10.23919/fruct.2018.8588079.
Full text"Simulated performance of evapotranspiration-based irrigation controllers using soil water balance models." In 2015 ASABE International Meeting. American Society of Agricultural and Biological Engineers, 2015. http://dx.doi.org/10.13031/aim.20152181829.
Full textReports on the topic "Soil-water balance"
Gee, G. W., M. L. Rockhold, and J. L. Downs. Status of FY 1988 soil-water balance studies on the Hanford site. Office of Scientific and Technical Information (OSTI), February 1989. http://dx.doi.org/10.2172/6378096.
Full textRockhold, Mark L., Danielle L. Saunders, Christopher E. Strickland, Scott R. Waichler, and Ray E. Clayton. Soil Water Balance and Recharge Monitoring at the Hanford Site - FY09 Status Report. Office of Scientific and Technical Information (OSTI), September 2009. http://dx.doi.org/10.2172/992383.
Full textFayer, Michael J., Danielle L. Saunders, Ricky S. Herrington, and Diana Felmy. Soil Water Balance and Recharge Monitoring at the Hanford Site ? FY 2010 Status Report. Office of Scientific and Technical Information (OSTI), October 2010. http://dx.doi.org/10.2172/1054490.
Full textDasberg, Shmuel, Jan W. Hopmans, Larry J. Schwankl, and Dani Or. Drip Irrigation Management by TDR Monitoring of Soil Water and Solute Distribution. United States Department of Agriculture, August 1993. http://dx.doi.org/10.32747/1993.7568095.bard.
Full textFuchs, Marcel, Jerry Hatfield, Amos Hadas, and Rami Keren. Reducing Evaporation from Cultivated Soils by Mulching with Crop Residues and Stabilized Soil Aggregates. United States Department of Agriculture, 1993. http://dx.doi.org/10.32747/1993.7568086.bard.
Full textBradford, Joe, Itzhak Shainberg, and Lloyd Norton. Effect of Soil Properties and Water Quality on Concentrated Flow Erosion (Rills, Ephermal Gullies and Pipes). United States Department of Agriculture, November 1996. http://dx.doi.org/10.32747/1996.7613040.bard.
Full textSchlossnagle, Trevor H., Janae Wallace,, and Nathan Payne. Analysis of Septic-Tank Density for Four Communities in Iron County, Utah - Newcastle, Kanarraville, Summit, and Paragonah. Utah Geological Survey, December 2022. http://dx.doi.org/10.34191/ri-284.
Full textMosquna, Assaf, and Sean Cutler. Systematic analyses of the roles of Solanum Lycopersicum ABA receptors in environmental stress and development. United States Department of Agriculture, January 2016. http://dx.doi.org/10.32747/2016.7604266.bard.
Full textThoma, David. Landscape phenology, vegetation condition, and relations with climate at Capitol Reef National Park, 2000–2019. Edited by Alice Wondrak Biel. National Park Service, March 2023. http://dx.doi.org/10.36967/2297289.
Full textMiyamoto, Seiichi, and Rami Keren. Improving Efficiency of Reclamation of Sodium-Affected Soils. United States Department of Agriculture, December 2000. http://dx.doi.org/10.32747/2000.7570569.bard.
Full text