Academic literature on the topic 'Soil nutrient'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Soil nutrient.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Soil nutrient"
Thomson, V. P., and M. R. Leishman. "Survival of native plants of Hawkesbury Sandstone communities with additional nutrients: effect of plant age and habitat." Australian Journal of Botany 52, no. 2 (2004): 141. http://dx.doi.org/10.1071/bt03047.
Full textSeman-Varner, R., R. McSorley, and R. N. Gallaher. "Soil nutrient and plant responses to solarization in an agroecosystem utilizing an organic nutrient source." Renewable Agriculture and Food Systems 23, no. 2 (May 27, 2008): 149–54. http://dx.doi.org/10.1017/s1742170507002001.
Full textMoore, James A., Mark J. Kimsey, Mariann Garrison-Johnston, Terry M. Shaw, Peter Mika, and Jaslam Poolakkal. "Geologic Soil Parent Material Influence on Forest Surface Soil Chemical Characteristics in the Inland Northwest, USA." Forests 13, no. 9 (August 27, 2022): 1363. http://dx.doi.org/10.3390/f13091363.
Full textMa, Qifu, Zed Rengel, and Terry Rose. "The effectiveness of deep placement of fertilisers is determined by crop species and edaphic conditions in Mediterranean-type environments: a review." Soil Research 47, no. 1 (2009): 19. http://dx.doi.org/10.1071/sr08105.
Full textComerford, N. B., W. P. Cropper, Jr., Hua Li, P. J. Smethurst, K. C. J. Van Rees, E. J. Jokela, H. Adégbidi, and N. F. Barros. "Soil supply and nutrient demand (SSAND): A general nutrient uptake model and an example of its application to forest management." Canadian Journal of Soil Science 86, no. 4 (August 1, 2006): 655–73. http://dx.doi.org/10.4141/s05-112.
Full textRobson, AD, NE Longnecker, and LD Osborne. "Effects of heterogeneous nutrient supply on root growth and nutrient uptake in relation to nutrient supply on duplex soils." Australian Journal of Experimental Agriculture 32, no. 7 (1992): 879. http://dx.doi.org/10.1071/ea9920879.
Full textEntry, James A., and William H. Emmingham. "Influence of forest age on nutrient availability and storage in coniferous soils of the Oregon Coast Range." Canadian Journal of Forest Research 25, no. 1 (January 1, 1995): 114–20. http://dx.doi.org/10.1139/x95-014.
Full textWibiralske, Anne W., Roger Earl Latham, and Arthur H. Johnson. "A biogeochemical analysis of the Pocono till barrens and adjacent hardwood forest underlain by Wisconsinan and Illinoian till in northeastern Pennsylvania." Canadian Journal of Forest Research 34, no. 9 (September 1, 2004): 1819–32. http://dx.doi.org/10.1139/x04-047.
Full textMylavarapu, R. S. "Diagnostic Nutrient Testing." HortTechnology 20, no. 1 (February 2010): 19–22. http://dx.doi.org/10.21273/horttech.20.1.19.
Full textČekstere, Gunta, Anita Osvalde, and Māris Laiviņš. "Mineral Nutrition of Young Ash in Latvia." Proceedings of the Latvian Academy of Sciences. Section B. Natural, Exact, and Applied Sciences. 70, no. 3 (June 1, 2016): 138–49. http://dx.doi.org/10.1515/prolas-2016-0022.
Full textDissertations / Theses on the topic "Soil nutrient"
Esposito, Nicole C. "Soil Nutrient Availability Properties of Biochar." DigitalCommons@CalPoly, 2013. https://digitalcommons.calpoly.edu/theses/1096.
Full textKraus, Tamara Esther Caroline. "Tannins and nutrient dynamics in forest soils : plant-litter-soil interactions /." For electronic version search Digital dissertations database. Restricted to UC campuses. Access is free to UC campus dissertations, 2002. http://uclibs.org/PID/11984.
Full textFerreira, Francisco Jardelson. "Fertilization rose bushes based on nutrient balance in the soil - plant system." Universidade Federal do CearÃ, 2016. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=17134.
Full textRose is an economically important crop for the national and the international market and due to this fact generates income to the Ceara State. Rose is a demanding crop in relation to fertilizers, requiring knowledge of soil fertility, nutritional plant requirements and nutrients use efficiency to obtain adequate fertilization. Based on the nutritional balance through the use of mechanistic and empirical models, it is possible to develop a system to quantify the plant nutrients demands to achieve a given productivity. This paper aims to establish parameters of a fertilizer and lime recommendation system to rose crop, based on the plant nutritional balance. The experiment was conducted at the company Cearosa in SÃo Benedito - CE. Plants will be collected during five months and once a month, five rose plants from four varieties (Top Secret, Avalanche, Attache and Ambience) As contradictory Airlines plants Were grinded. Samples will be ground and nutrients content will be determined: N, P, K, Ca, Mg, S, B, Fe, Mn, e Zn. Every sampling plant time, were also soil samples collected at two depths (0-20 and 20-40 cm) In which they underwent fertility analysis. To estimate the fertilizer recommendation, the system was be subdivided into requirement subsystem (REQ), which includes the plant nutrients demands, considering the recovery efficiency of the nutrients to be applied and a rate to achieve the "sustainability" criteria and the supply subsystem (SUP) that comprises the soil nutrient supply. After determining the total REQ and SUP, held -if the nutritional balance, and if the result is positive (REQ> SUP), fertilizers application is recommended and if the result negative or zero (REQ ≤ SUP), fertilizers application is not recommended. The system estimated that there is excess nitrogen and phosphorus fertilization for all cultivars , however , there needs to be supplemental potassium fertilizer . The system estimated that the soil is able to meet the demand of plants for P and Fe for all cultivars , however , there must be supplementary nitrogen fertilizer , potassium . As for micronutrients , the system estimated that there is need for additional fertilizer for Zn in all rosebushes and Mn for the rosebushes "Top Secret " and " Avalnche " , however with very close recommendation the optimal dose , ie equal to zero
A roseira à uma cultura de grande valor no mercado interno e externo, devido a esse fato, as rosas geram benefÃcios para o estado do CearÃ. à uma cultura muito exigente em relaÃÃo à adubaÃÃo, sendo necessÃrios conhecimentos da fertilidade do solo, exigÃncias nutricionais da planta e eficiÃncia na utilizaÃÃo de nutrientes, para obtenÃÃo de uma adubaÃÃo adequada. Partindo a hipÃtese de que conhecendo-se o balanÃo nutricional da cultura, levando-se em consideraÃÃo a demanda de nutrientes pela cultura para alcanÃar uma dada produtividade e o suprimento de nutrientes pelo solo, à possÃvel determinar a quantidade de nutrientes a ser adicionada na fertilizaÃÃo do solo. O presente trabalho tem como objetivo determinar com base no balanÃo de nutrientes solo-planta a quantidade de nutrientes a ser adicionada no solo para cultura da roseira. O experimento foi conduzido na empresa Cearosa, em SÃo Benedito - CE, as plantas foram coletadas durante cinco meses, sendo uma vez por mÃs, amostrando cinco plantas aleatÃrias, de quatro cultivares de rosas: (Top Secret, Avalanche, Attache e Ambience). As partes aÃreas das plantas foram moÃdas e mineralizadas para determinaÃÃo dos teores dos nutrientes: N, P, K, Ca, Mg, S, B, Fe, Mn e Zn. Simultaneamente a coleta de plantas, tambÃm foram coletadas amostras de solo em duas profundidades, camada de 0 a 20 e de 20 a 40cm. Na qual foram submetidas à anÃlise de fertilidade. Para estimar a recomendaÃÃo de adubaÃÃo o sistema foi subdividido em: subsistema requerimento (REQ), que contempla a demanda de nutrientes pela planta, considerando a eficiÃncia de recuperaÃÃo dos nutrientes a serem aplicados, alÃm de uma dose que atende ao critÃrio de âsustentabilidadeâ e o subsistema suprimento (SUP), que corresponde à oferta de nutrientes pelo solo. ApÃs a determinaÃÃo do REQ total e SUP total, realizou -se o balanÃo nutricional, no qual se apresentar resultado positivo (REQ > SUP), recomenda-se a aplicaÃÃo de fertilizantes, e negativo ou nulo (REQ ≤ SUP), nÃo serà recomendado aplicar fertilizantes. O sistema estimou que o solo à capaz de suprir a demanda das plantas para P e Fe para todas as cultivares, no entanto, à necessÃrio que haja complementaÃÃo de adubaÃÃo nitrogenada, potÃssica. Assim como para os micronutrientes, o sistema estimou que hà necessidade de complementaÃÃo de adubaÃÃo, para Zn em todas as roseiras e Mn para as roseiras âTop secretâ e âAvalncheâ, no entanto com a recomendaÃÃo bem prÃximos a dose ideal, ou seja, igual a zero
Barthelemy, Hélène. "Herbivores influence nutrient cycling and plant nutrient uptake : insights from tundra ecosystems." Doctoral thesis, Umeå universitet, Institutionen för ekologi, miljö och geovetenskap, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-120191.
Full textVisser, Saskia M. "Modelling nutrient erosion by wind and water in northern Burkina Faso /." Wageningen : Wageningen University and Research Centre, 2004. http://www.mannlib.cornell.edu/cgi-bin/toc.cgi?5046904.
Full textMills, Carolyn Lesley. "The nutrient economy of grazed grassland." Thesis, Queen's University Belfast, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.361226.
Full textSika, Makhosazana Princess. "Effect of biochar on chemistry, nutrient uptake and fertilizer mobility in sandy soil." Thesis, Stellenbosch : Stellenbosch University, 2012. http://hdl.handle.net/10019.1/20272.
Full textENGLISH ABSTRACT: Biochar is a carbon-rich solid material produced during pyrolysis, which is the thermal degradation of biomass under oxygen limited conditions. Biochar can be used as a soil amendment to increase the agronomic productivity of low potential soils. The aim of this study was to investigate the effect of applying locally-produced biochar on the fertility of low-nutrient holding, sandy soil from the Western Cape, and to determine the optimum biochar application level. Furthermore, this study investigates the effect of biochar on the leaching of an inorganic nitrogen fertilizer and a multi-element fertilizer from the sandy soil. The biochar used in this study was produced from pinewood sawmill waste using slow pyrolysis (450 °C). The soil used was a leached, acidic, sandy soil from Brackenfell, Western Cape. In the first study, the sandy soil mixed with five different levels of biochar (0, 0.05, 0.5, 0.5 and 10.0 % w/w) was chemically characterised. Total carbon and nitrogen, pH, CEC and plant-available nutrients and toxins were determined. The application of biochar resulted in a significant increase in soil pH, exchangeable basic cations, phosphorus and water holding capacity. A wheat pot trial using the biochar-amended soil was carried out for 12 weeks and to maturity (reached at 22 weeks). The trial was conducted with and without the addition of a water-soluble broad spectrum fertilizer. Results showed that biochar improved wheat biomass production when added at low levels. The optimum biochar application level in the wheat pot trial was 0.5 % (approximately 10 t ha-1 to a depth of 15 cm) for the fertilized treatments (21 % biomass increase), and 2.5 % (approximately 50 t ha-1 to a depth of 15 cm) for unfertilized treatments (29 % biomass increase). Since most biochars are alkaline and have a high C:N ratio, caution should be taken when applying it on poorly buffered sandy soil or without the addition of sufficient nitrogen to prevent nutrient deficiencies. In the second study, leaching columns packed with sandy soil and biochar (0, 0.5, 2.5 and 10.0 % w/w) were set up to determine the effect of biochar on inorganic nitrogen fertilizer leaching over a period of 6 weeks. It was found that biochar (0.5, 2.5, and 10.0 % w/w) significantly reduced the leaching of ammonium (12, 50 and 86 % respectively) and nitrate (26, 42 and 95 % respectively) fertilizer from the sandy soil. Moreover, biochar (0.5 %) significantly reduced the leaching of basic cations, phosphorus and certain micronutrients. This study demonstrated the potential of biochar as an amendment of acidic, sandy soils. Our findings suggest that an application rate of 10 t ha-1 should not be exceeded when applying biochar on these soils. Furthermore, biochar application can significantly reduce nutrient leaching in sandy agricultural soils.
AFRIKAANSE OPSOMMING: Biochar is ʼn koolstof-ryke, soliede materiaal geproduseer gedurende pirolise, wat die termiese degradasie van biomassa onder suurstof-beperkte omstandighede behels. Biochar kan gebruik word as ʼn grondverbeterings middel om die agronomiese produktiwiteit van grond te verhoog. Die doel van hierdie studie was om die effek van plaaslike vervaardigde biochar op die vrugbaarheid van die sanderige grond van die Wes-Kaap te ondersoek, en om die optimale biochar toedieningsvlak te bepaal. Verder, het hierdie studie die effek van biochar op die loging van anorganiese stikstof kunsmis en ‘n multi-elementkunsmis op sanderige grond ondersoek. Die biochar wat in hierdie studie gebruik is, is van dennehout saagmeul afval vervaardig d.m.v. stadige pirolise (450 °C). Die grond wat in hierdie studie gebruik is, is ‘n geloogde, suur, sanderige grond van Brackenfell, Wes-Kaap. In die eerste studie, is ‘n chemiesie ondersoek van die sanderige grond wat vermeng met is met vyf verskillende vlakke van biochar (0, 0.05, 0.5 en 10.0 % w/w) uitgevoer. Totale koolstof en stikstof, pH, KUK, en plant-beskikbare voedingstowwe en toksiene is in die grondmengsels bepaal. Die toediening van biochar het ‘n veroorsaak dat die grond pH, uitruilbare basiese katione, fosfor en waterhouvermoë beduidend toegeneem het. ‘n Koringpotproef was uitgevoer vir 12 weke en ook tot volwassenheid (wat op 22 weke bereik was) om die effek van die biochar op die sanderige grond teen die vyf verskillende toedieningsvlakke te bepaal. Daar was behandelings met en sonder die bykomstige toediening van ‘n wateroplosbare breë-spektrumkunsmis. Resultate toon dat die toediening van biochar teen lae vlakke koringbiomassa produksie verbeter. Die optimale biochar toedieningsvlak in die koringpotproef is 0.5 % (omtrent 10 t ha-1 tot ‘n diepte van 15 cm) vir die bemeste behandeling (21 % biomassa toename), en 2.5 % (omtrent 50 t ha-1 na ‘n diepte van 15 cm) vir onbemeste behandelings (29 % biomassa toename). Aangesien die meeste biochars alkalies is en ‘n hoë C:N verhouding besit, moet sorg gedra word wanneer dit op swak-gebufferde of lae N-houdende sanderige gronde toegedien word. Die resultate het aangedui dat die biochar versigtig aangewend moet word om grond oorbekalking te voorkom. In die tweede studie, was kolomme gepak met 2.0 kg van die sanderige grond gemeng met biochar (0, 0.05, 0.5, 2.5 en 10.0 % w/w) om die effek van biochar op die loging die anorganiese stikstof kunsmis oor ‘n tydperk van 6 weke om vas te stel. Daar is gevind dat biochar (0.5, 2.5 en 10.0 % w/w) die loging van ammonium (12, 50 en 86 % onderskeidelik) en nitraat (26, 42 en 95 % onderskeidelik) op sanderige grond aansienliek verminder. Verder, het biochar (0.5 %) die loging van basiese katione, fosfor en mikrovoedingstowwe aansienlik verminder. Hierdie studie het die potensiaal van biochar as verbeteringmiddel van suur, sanderige grond gedemonstreer. Ons bevindinge dui daarop aan dat ‘n toepassing vlak van 10 t ha-1 moet nie oorskry word nie wanneer biochar op hierdie gronde toegedien word. Die toediening van biochar op sanderige grond kan die loging van voedingstowwe aansienlik verlaag.
Hassan, Khalida Abdul-Karim. "The effect of soil conditions on nutrient availability, nutrient uptake and productivity of spring wheat." Thesis, University of Manchester, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.329590.
Full textSchofield, Hannah Kate. "A biogeochemical study of nutrient dynamics in artificial soil." Thesis, University of Plymouth, 2015. http://hdl.handle.net/10026.1/3766.
Full textCollins, Shane. "Residue composition influences nutrient release from crop residues." University of Western Australia. School of Earth and Geographical Sciences, 2009. http://theses.library.uwa.edu.au/adt-WU2009.0171.
Full textBooks on the topic "Soil nutrient"
Nair, Kodoth Prabhakaran. Thermodynamics of Soil Nutrient Bioavailability. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-76817-1.
Full textK, Soon Y., ed. Soil nutrient availability: Chemistry and concepts. New York, N.Y: Van Nostrand Reinhold, 1985.
Find full textG, Paoletti M., Foissner Wilhelm, and Coleman David C. 1938-, eds. Soil biota, nutrient cycling, and farming systems. Boca Raton: Lewis Publishers, 1993.
Find full textBarber, Stanley A. Soil nutrient bioavailability: A mechanistic approach. 2nd ed. New York: Wiley, 1995.
Find full textKoch, Marguerite S. Soil and surface water nutrients in the Everglades nutrient removal project. West Palm Beach: Environmental Sciences Division, Research and Evaluation Dept., South Florida Water Management District, 1991.
Find full textBallard, T. M. Evaluating forest stand nutrient status. Victoria, B.C: Information Services Branch, Ministry of Forests, 1986.
Find full textJorgensen, Jacques R. Foresters' primer in nutrient cycling. Asheville, N.C: U.S. Dept. of Agriculture, Forest Service, Southeastern Forest Experiment Station, 1986.
Find full textMahler, Robert Louis. Current nutrient status of soils in Idaho, Oregon and Washington. [Corvallis, Or.]: University of Idaho Cooperative Extension Service, Washington State University Cooperative Extension Service, Oregon State University Cooperative Extension Service, and U.S. Dept. of Agriculture, 1985.
Find full textSinha, Madhulika. Biomass and soil nutrient budget in Karnataka. Bangalore, India: Indian Institute of Science, Centre for Ecological Sciences, 1987.
Find full textHavlin, John L., and Jeffrey S. Jacobsen, eds. Soil Testing: Prospects for Improving Nutrient Recommendations. Madison, WI, USA: Soil Science Society of America, Inc., American Society of Agronomy, Inc., 1994. http://dx.doi.org/10.2136/sssaspecpub40.
Full textBook chapters on the topic "Soil nutrient"
Wallander, Håkan. "The Nutrient Cycle." In Soil, 79–100. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-08458-9_5.
Full textArbestain, M. Camps, F. Macías, W. Chesworth, Ward Chesworth, Otto Spaargaren, Johnson Semoka, and Konrad Mengel. "Nutrient Potentials." In Encyclopedia of Soil Science, 494–500. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-3995-9_386.
Full textBinkley, Dan, and Peter Vitousek. "Soil nutrient availability." In Plant Physiological Ecology, 75–96. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-010-9013-1_5.
Full textBinkley, Dan, and Peter Vitousek. "Soil nutrient availability." In Plant Physiological Ecology, 75–96. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-2221-1_5.
Full textReetsch, Anika, Didas Kimaro, Karl-Heinz Feger, and Kai Schwärzel. "Traditional and Adapted Composting Practices Applied in Smallholder Banana-Coffee-Based Farming Systems: Case Studies from Kagera and Morogoro Regions, Tanzania." In Organic Waste Composting through Nexus Thinking, 165–84. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-36283-6_8.
Full textMurrell, T. Scott. "Measuring Nutrient Removal, Calculating Nutrient Budgets." In Soil Science Step-by-Step Field Analysis, 159–82. Madison, WI, USA: American Society of Agronomy and Soil Science Society of America, 2015. http://dx.doi.org/10.2136/2008.soilsciencestepbystep.c13.
Full textMukherjee, Swapna. "Chemistry of Soil Nutrient." In Current Topics in Soil Science, 165–82. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-92669-4_16.
Full textMajumdar, Kaushik, Robert M. Norton, T. Scott Murrell, Fernando García, Shamie Zingore, Luís Ignácio Prochnow, Mirasol Pampolino, et al. "Assessing Potassium Mass Balances in Different Countries and Scales." In Improving Potassium Recommendations for Agricultural Crops, 283–340. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59197-7_11.
Full textMitra, Sisir. "Plant nutrition and irrigation." In Guava: botany, production and uses, 148–71. Wallingford: CABI, 2021. http://dx.doi.org/10.1079/9781789247022.0007.
Full textFranzen, David. "Crop-Specific Nutrient Management." In Soil Fertility Management in Agroecosystems, 12–43. Madison, WI, USA: American Society of Agronomy and Soil Science Society of America, 2017. http://dx.doi.org/10.2134/soilfertility.2014.0008.
Full textConference papers on the topic "Soil nutrient"
Zu, Di, Xiaodong Yang, Zhongbin Su, Xiaohe Gu, and Yancang Wang. "The soil nutrient monitoring system." In u- and e- Service, Science and Technology 2014. Science & Engineering Research Support soCiety, 2014. http://dx.doi.org/10.14257/astl.2014.77.17.
Full textSavescu, Petre. "MITIGATION METHODS OF SOIL NUTRIENT LOSSES." In 14th SGEM GeoConference on WATER RESOURCES. FOREST, MARINE AND OCEAN ECOSYSTEMS. Stef92 Technology, 2014. http://dx.doi.org/10.5593/sgem2014/b32/s13.026.
Full textMadhumathi, R., T. Arumuganathan, R. Shruthi, and R. Sneha Iyer. "Soil Nutrient Analysis using Colorimetry Method." In 2020 International Conference on Smart Technologies in Computing, Electrical and Electronics (ICSTCEE). IEEE, 2020. http://dx.doi.org/10.1109/icstcee49637.2020.9277182.
Full textTreese, Daniel P., Shirley E. Clark, and Katherine H. Baker. "Nutrient Leaching from Disturbed Soil Horizons." In World Environmental and Water Resources Congress 2010. Reston, VA: American Society of Civil Engineers, 2010. http://dx.doi.org/10.1061/41114(371)302.
Full textPuno, John Carlo V., Rhen Anjerome R. Bedruz, Allysa Kate M. Brillantes, Ryan Rhay P. Vicerra, Argel A. Bandala, and Elmer P. Dadios. "Soil Nutrient Detection using Genetic Algorithm." In 2019 IEEE 11th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management ( HNICEM ). IEEE, 2019. http://dx.doi.org/10.1109/hnicem48295.2019.9072689.
Full textPallevada, Hema, Siva parvathi Potu, Teja Venkata Kumar Munnangi, Bharath Chandhra Rayapudi, Sai Raghava Gadde, and Mukesh Chinta. "Real-time Soil Nutrient detection and Analysis." In 2021 International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE). IEEE, 2021. http://dx.doi.org/10.1109/icacite51222.2021.9404549.
Full textKrishna, N. M. Sai, R. Priyakanth, Mahesh Babu Katta, and Radha Abburi. "Soil Nutrient Survey and Google Map Cartography." In 2020 9th International Conference System Modeling and Advancement in Research Trends (SMART). IEEE, 2020. http://dx.doi.org/10.1109/smart50582.2020.9337135.
Full textVesic, Ana, Vuk Ignjatovic, Sava Lakicevic, Luka Lakicevic, Bojan Gutic, Hristo Skacev, Dusan Dotlic, Andrej Micovic, Marina Marjanovic Jakovljevic, and Miodrag Zivkovic. "Predicting Plant Water and Soil Nutrient Requirements." In 2020 Zooming Innovation in Consumer Technologies Conference (ZINC). IEEE, 2020. http://dx.doi.org/10.1109/zinc50678.2020.9161433.
Full textVernekar, Sulaxana R., Ingrid Anne P. Nazareth, Jivan S. Parab, and Gourish M. Naik. "RF spectroscopy technique for soil nutrient analysis." In 2015 International Conference on Technologies for Sustainable Development (ICTSD). IEEE, 2015. http://dx.doi.org/10.1109/ictsd.2015.7095878.
Full textAkhil, R., M. S. Gokul, Sruthi Menon, and Lekshmi S. Nair. "Automated Soil Nutrient Monitoring for Improved Agriculture." In 2018 International Conference on Communication and Signal Processing (ICCSP). IEEE, 2018. http://dx.doi.org/10.1109/iccsp.2018.8524512.
Full textReports on the topic "Soil nutrient"
Strand, Allan. Effects of fine-root senescence upon soil communities and nutrient flux into soil pools (Final Report). Office of Scientific and Technical Information (OSTI), January 2022. http://dx.doi.org/10.2172/1841430.
Full textCusack, Daniela, Benjamin Turner, S. Wright, and Lee Dietterich. Consequences of Altered Root Nutrient Uptake for Soil Carbon Stabilization (Final Report). Office of Scientific and Technical Information (OSTI), February 2021. http://dx.doi.org/10.2172/1763927.
Full textBusby, Ryan, H. Torbert, and Stephen Prior. Soil and vegetation responses to amendment with pulverized classified paper waste. Engineer Research and Development Center (U.S.), May 2022. http://dx.doi.org/10.21079/11681/44202.
Full textAbay, Kibrom A., Mehari Hiluf Abay, Mulubrhan Amare, Guush Berhane, and Ermias Betemariam. Mismatch between soil nutrient requirements and fertilizer applications: Implications for yield responses in Ethiopia. Washington, DC: International Food Policy Research Institute, 2021. http://dx.doi.org/10.2499/p15738coll2.134449.
Full textAlvez, Juan, James Cropper, Lynn Knight, Ed Rayburn, Howard Skinner, Kathy Soder, and Mike Westendorf. Managing Grazing to Improve Climate Resilience. USDA Northeast Climate Hub, February 2017. http://dx.doi.org/10.32747/2017.6956540.ch.
Full textComerford, N. B. Diagnosis and correction of soil nutrient limitations in intensively managed Southern pine forests. Quarterly report, October-December 1999. Office of Scientific and Technical Information (OSTI), January 2000. http://dx.doi.org/10.2172/759444.
Full textBjorkman, Thomas, Michel Cavigelli, Dan Dostie, Joshua Faulkner, Lynn Knight, Steven Mirsky, and Brandon Smith. Cover Cropping to Improve Climate Resilience. USDA Northeast Climate Hub, February 2017. http://dx.doi.org/10.32747/2017.6956539.ch.
Full textComerford, N. B. Diagnosis and correction of soil nutrient limitations in intensively managed Southern pine forests. Quarterly report for the period January-March 2000. Office of Scientific and Technical Information (OSTI), March 2000. http://dx.doi.org/10.2172/759332.
Full textComerford, N. B. Diagnosis and correction of soil nutrient limitations in intensively managed Southern pine forests. Quarterly report for the period July-September 1999. Office of Scientific and Technical Information (OSTI), October 1999. http://dx.doi.org/10.2172/761037.
Full textHaan, Matthew M., James R. Russell, Daniel G. Morrical, and Daryl R. Strohbehn. Effects of Grazing Management on Forage Sward Height, Mass, and Nutrient Concentrations and the Proportions of Fecal Cover and Bare Soil in Pastures. Ames (Iowa): Iowa State University, January 2007. http://dx.doi.org/10.31274/ans_air-180814-133.
Full text