Academic literature on the topic 'Soil Inorganic Carbon'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Soil Inorganic Carbon.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Soil Inorganic Carbon"

1

Walia, Maninder K., and Warren A. Dick. "Gypsum and carbon amendments influence carbon fractions in two soils in Ohio, USA." PLOS ONE 18, no. 4 (April 4, 2023): e0283722. http://dx.doi.org/10.1371/journal.pone.0283722.

Full text
Abstract:
Carbon sequestration as influenced by management practices such as soil amendments is not yet fully understood. Gypsum and crop residues can improve soil properties, but few studies have focused on their combined effect on soil C fractions. The objective of this greenhouse study was to determine how treatments affected different forms of C, i.e., total C, permanganate oxidizable C (POXC), and inorganic C in 5 soil layers (0–2, 2–4, 4–10, 10–25, and 25–40 cm). Treatments were glucose (4.5 Mg ha-1), crop residues (13.4 Mg ha-1), gypsum (26.9 Mg ha-1) and an untreated control. Treatments were applied to two contrasting soil types in Ohio (USA)—Wooster silt loam and Hoytville clay loam. The C measurements were made one year after the treatment applications. Total C and POXC contents were significantly higher in Hoytville soil as compared to Wooster soil (P < 0.05). Across both Wooster and Hoytville soils, the addition of glucose increased total C significantly by 7.2% and 5.9% only in the top 2 cm and 4 cm layers of soil, respectively, compared to the control treatment, and residue additions increased total C from 6.3–9.0% in various soil layers to a depth of 25 cm. Gypsum addition did not affect total C concentrations significantly. Glucose addition resulted in a significant increase in calcium carbonate equivalent concentrations in the top 10 cm of Hoytville soil only, and gypsum addition significantly (P < 0.10) increased inorganic C, as calcium carbonate equivalent, in the lowest layer of the Hoytville soil by 32% compared to the control. The combination of glucose and gypsum increased inorganic C levels in Hoytville soils by creating sufficient amounts of CO2 that then reacted with Ca within the soil profile. This increase in inorganic C represents an additional way C can be sequestered in soil.
APA, Harvard, Vancouver, ISO, and other styles
2

Naorem, Anandkumar, Somasundaram Jayaraman, Ram C. Dalal, Ashok Patra, Cherukumalli Srinivasa Rao, and Rattan Lal. "Soil Inorganic Carbon as a Potential Sink in Carbon Storage in Dryland Soils—A Review." Agriculture 12, no. 8 (August 18, 2022): 1256. http://dx.doi.org/10.3390/agriculture12081256.

Full text
Abstract:
Soil organic carbon (SOC) pool has been extensively studied in the carbon (C) cycling of terrestrial ecosystems. In dryland regions, however, soil inorganic carbon (SIC) has received increasing attention due to the high accumulation of SIC in arid soils contributed by its high temperature, low soil moisture, less vegetation, high salinity, and poor microbial activities. SIC storage in dryland soils is a complex process comprising multiple interactions of several factors such as climate, land use types, farm management practices, irrigation, inherent soil properties, soil biotic factors, etc. In addition, soil C studies in deeper layers of drylands have opened-up several study aspects on SIC storage. This review explains the mechanisms of SIC formation in dryland soils and critically discusses the SIC content in arid and semi-arid soils as compared to SOC. It also addresses the complex relationship between SIC and SOC in dryland soils. This review gives an overview of how climate change and anthropogenic management of soil might affect the SIC storage in dryland soils. Dryland soils could be an efficient sink in C sequestration through the formation of secondary carbonates. The review highlights the importance of an in-depth understanding of the C cycle in arid soils and emphasizes that SIC dynamics must be looked into broader perspective vis-à-vis C sequestration and climate change mitigation.
APA, Harvard, Vancouver, ISO, and other styles
3

Knowles, T. A., and B. Singh. "Carbon storage in cotton soils of northern New South Wales." Soil Research 41, no. 5 (2003): 889. http://dx.doi.org/10.1071/sr02023.

Full text
Abstract:
Soil carbon is an important component of the global carbon cycle with an estimated pool of soil organic carbon of about 1500 Gt. There are few estimates of the pool of inorganic carbon, but it is thought to be approximately 50% of the organic carbon pool. There is no detailed study on the estimation of the soil carbon pool for Australian soils.In order to quantify the carbon pools and to determine the extent of spatial variability in the organic and inorganic carbon pools, 120 soil cores were taken down to a depth of 0.90 m from a typical cotton field in northern NSW. Three cores were also taken from nearby virgin bushland and these samples were used as paired samples. Each soil core was separated into 4 samples, i.e. 0–0.15, 0.15–0.30, 0.30–0.60, and 0.60–0.90 m. Soil organic carbon was determined by wet oxidation and inorganic carbon content was determined using the difference between total carbon and organic carbon, and confirmed by the acid dissolution method. Total carbon was measured using a LECO CHN analyser. Soil organic carbon of the field constituted 62% (0–0.15 m), 58% (0.15–0.30 m), 60% (0.30–0.60 m), and 67% (0.60–0.90 m) of the total soil carbon. The proportion of inorganic carbon in total carbon is higher than the global average of 32%. Organic carbon content was relatively higher in the deeper layers (>0.30�m) of the studied soils (Vertosols) compared with other soil types of Australia. The carbon content varied across the field, however, there was little correlation between the soil types (grey, red, or intergrade colour) and carbon content. The total soil carbon pool of the studied field was estimated to be about 78 t/ha for 0–0.90 m layer, which was approximately 58% of the total soil carbon in the soil under nearby remnant bushland (136 t/ha). The total pool of carbon in the cotton soils of NSW was estimated to be 44.8 Mt C, where organic carbon and inorganic carbon constitute 34.9 Mt C and 9.9 Mt C, respectively. Based on the results of a limited number of paired sites under remnant vegetation, it was estimated that about 18.9 Mt of C has been lost from Vertosols by cotton cropping in NSW. With more sustainable management practices such as conservation tillage and green manuring, some of the lost carbon can be resequestered, which will help to mitigate the greenhouse effect, improve soil quality and may increase crop yield.
APA, Harvard, Vancouver, ISO, and other styles
4

Baldock, J. A., B. Hawke, J. Sanderman, and L. M. Macdonald. "Predicting contents of carbon and its component fractions in Australian soils from diffuse reflectance mid-infrared spectra." Soil Research 51, no. 8 (2013): 577. http://dx.doi.org/10.1071/sr13077.

Full text
Abstract:
Quantifying the content and composition of soil carbon in the laboratory is time-consuming, requires specialised equipment and is therefore expensive. Rapid, simple and low-cost accurate methods of analysis are required to support current interests in carbon accounting. This study was completed to develop national and state-based models capable of predicting soil carbon content and composition by coupling diffuse reflectance mid-infrared (MIR) spectra with partial least-squares regression (PLSR) analyses. Total, organic and inorganic carbon contents were determined and MIR spectra acquired for 20 495 soil samples collected from 4526 locations from soil depths to 1 m within Australia’s agricultural regions. However, all subsequent MIR/PLSR models were developed using soils only collected from the 0–10, 10–20 and 20–30 cm depth layers. The extent of grinding applied to air-dried soil samples was found to be an important determinant of the variability in acquired MIR spectra. After standardisation of the grinding time, national MIR/PLSR models were developed using an independent test-set validation approach to predict the square-root transformed contents of total, organic and inorganic carbon and total nitrogen. Laboratory fractionation of soil organic carbon into particulate, humus and resistant forms was completed on 312 soil samples. Reliable national MIR/PLSR models were developed using cross-validation to predict the contents of these soil organic carbon fractions; however, further work is required to enhance the representation of soils with significant contents of inorganic carbon. Regional MIR/PLSR models developed for total, organic and inorganic carbon and total nitrogen contents were found to produce more reliable and accurate predictions than the national models. The MIR/PLSR approach offers a more rapid and more cost effective method, relative to traditional laboratory methods, to derive estimates of the content and composition of soil carbon and total nitrogen content provided that the soils are well represented by the calibration samples used to build the predictive models.
APA, Harvard, Vancouver, ISO, and other styles
5

JAIN, N. K., H. N. MEENA, R. S. YADAV, and R. S. JAT. "Biomass production, carbon sequestration potential and productivity of different peanut (Arachis hypogaea)-based cropping systems and their effect on soil carbon dynamics." Indian Journal of Agricultural Sciences 88, no. 7 (July 19, 2018): 1044–53. http://dx.doi.org/10.56093/ijas.v88i7.81548.

Full text
Abstract:
A field experiment was conducted during 2011-12 and 2012-13 at Junagadh (Gujarat) with fourteen treatment combinations comprising cropping systems, tillage, crop residues incorporation and green manuring with three replications. Results revealed that maximum biomass production (30.05 t/ha) and carbon sequestration potential (12.63 t/ha) were recorded under peanut (Arachis hypogaea L.)+pigeonpea [Cajanus cajan (L.) Millsp.]-Sesbania cropping system. On the other hand, maximum peanut-pod equivalent yield (3.64 t/ha) was obtained under peanutwheat(ZT)-Sesbania which was significantly higher by 102.2 per cent compared to sole peanut. The inorganic soil carbon was significantly altered in peanut-based cropping systems whereas soil organic carbon (SOC) was found non-significant both in plough and sub-soil layers. The highest labile soil carbon was recorded under peanut-wheat (ZT)-Sesbania cropping system (0.77 g/kg) under plough soil layer. On the other hand, the highest non-labile soil carbon was found in peanut-wheat (ZT) (7.07 to 8.03 g/kg) with and without plant residues incorporation at both soil depths (i.e. plough and sub-soil layers). The inorganic carbon increased appreciably (3 to 57%) with increase in soil depth. In contrary, values of organic, labile and non-labile soil carbons, showed declining trend with the increase in soil depth under these cropping systems. In general, the highest values of all soil carbon fractions were observed in peanut-wheat (ZT) at all the soil depths except 15-30 cm for inorganic carbon. The highest MBC (441 mg/kg), SOC stock (17.3 t/ha) and CMI (188.8) were registered under peanut-wheat (ZT)-Sesbania while MQ was higher in peanut-wheat (CT) (4.90%).
APA, Harvard, Vancouver, ISO, and other styles
6

Ling, Ling, Yan Jiao, Wenzhu Yang, and Yan Wang. "Research Progress and Trend Analysis of Soil Inorganic Carbon Sink Based on Citespace." E3S Web of Conferences 406 (2023): 04022. http://dx.doi.org/10.1051/e3sconf/202340604022.

Full text
Abstract:
To comprehensively understand the research status and development trend of soil inorganic carbon development, this study comprised 441 inorganic carbon pool papers from 1991-2022 in the Web of Science database based on CiteSpace software, and conducted Visualization analysis to explore the research hotspots, research status and development trend in this field. The results show that number of publications has increased year by year, and the clustering results show that the research topics mainly involve terrestrial biosphere, coastal forest ecosystem, forest soil, changed temperature hutrient. The hotspots of research include the blue carbon, soil carbon sequestration and dissolution processes of inorganic carbon. In addition, development trend include the effects of land use change, temperature, organic matter and other changes. soil inorganic carbon sinks, carbon dioxide uptake and the application of isotope technology are the ongoing concerns in this field, which will be the hotspot of soil inorganic carbon sink research in the future period.
APA, Harvard, Vancouver, ISO, and other styles
7

Urmi, Tahmina Akter, Md Mizanur Rahman, Md Moshiul Islam, Md Ariful Islam, Nilufar Akhtar Jahan, Md Abdul Baset Mia, Sohela Akhter, Manzer H. Siddiqui, and Hazem M. Kalaji. "Integrated Nutrient Management for Rice Yield, Soil Fertility, and Carbon Sequestration." Plants 11, no. 1 (January 5, 2022): 138. http://dx.doi.org/10.3390/plants11010138.

Full text
Abstract:
Reliance on inorganic fertilizers with less or no use of organic fertilizers has impaired the productivity of soils worldwide. Therefore, the present study was conducted to quantify the effects of integrated nutrient management on rice yield, nutrient use efficiency, soil fertility, and carbon (C) sequestration in cultivated land. The experiment was designed with seven treatments comprising of a zero input control, recommended inorganic fertilizers (RD), poultry manure (PM) (5 t ha−1) + 50% RD, PM (2.5 t ha−1) + 75% RD, vermicompost (VC) (5 t ha−1) + 50% RD, VC (2.5 t ha−1) + 75% RD, and farmers’ practice (FP) with three replications that were laid out in a randomized complete block design. The highest grain yield (6.16–6.27 t ha−1) was attained when VC and PM were applied at the rate of 2.5 t ha−1 along with 75% RD. Uptake of nutrients and their subsequent use efficiencies appeared higher and satisfactory from the combined application of organic and inorganic fertilizers. The addition of organic fertilizer significantly influenced the organic carbon, total carbon, total nitrogen, ammonium nitrogen, nitrate nitrogen, soil pH, phosphorus, potassium, sulfur, calcium, and magnesium contents in post-harvest soil, which indicated enhancement of soil fertility. The maximum value of the organic carbon stock (18.70 t ha−1), total carbon stock (20.81 t ha−1), and organic carbon sequestration (1.75 t ha−1) was observed in poultry manure at the rate of 5 t ha−1 with 50% RD. The soil bulk density decreased slightly more than that of the control, which indicated the improvement of the physical properties of soil using organic manures. Therefore, regular nourishment of soil with organic and inorganic fertilizers might help rejuvenate the soils and ensure agricultural sustainability.
APA, Harvard, Vancouver, ISO, and other styles
8

Asanopoulos, Christina H., Jeff A. Baldock, Lynne M. Macdonald, and Timothy R. Cavagnaro. "Quantifying blue carbon and nitrogen stocks in surface soils of temperate coastal wetlands." Soil Research 59, no. 6 (2021): 619. http://dx.doi.org/10.1071/sr20040.

Full text
Abstract:
Coastal wetlands are carbon and nutrient sinks that capture large amounts of atmospheric CO2 and runoff of nutrients. ‘Blue carbon’ refers to carbon stored within resident vegetation (e.g. mangroves, tidal marshes and seagrasses) and soil of coastal wetlands. This study aimed to quantify the impact of vegetation type on soil carbon stocks (organic and inorganic) and nitrogen in the surface soils (0–10 cm) of mangroves and tidal marsh habitats within nine temperate coastal blue carbon wetlands in South Australia. Results showed differences in surface soil organic carbon stocks (18.4 Mg OC ha–1 for mangroves; 17.6 Mg OC ha–1 for tidal marshes), inorganic carbon (31.9 Mg IC ha–1 for mangroves; 35.1 Mg IC ha–1 for tidal marshes), and total nitrogen (1.8 Mg TN ha–1 for both) were not consistently driven by vegetation type. However, mangrove soils at two sites (Clinton and Port Augusta) and tidal marsh soils at one site (Torrens Island) had larger soil organic carbon (SOC) stocks. These results highlighted site-specific differences in blue carbon stocks between the vegetation types and spatial variability within sites. Further, differences in spatial distribution of SOC within sites corresponded with variations in soil bulk density (BD). Results highlighted a link between SOC and BD in blue carbon soils. Understanding the drivers of carbon and nitrogen storage across different blue carbon environments and capturing its spatial variability will help improve predictions of the contribution these ecosystems to climate change mitigation.
APA, Harvard, Vancouver, ISO, and other styles
9

Xiong, Yufei. "Soil Inorganic Carbon Research Progress in China." Landscape and Urban Horticulture 1, no. 1 (2018): 24–28. http://dx.doi.org/10.23977/lsuh.2018.11004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

MI, NA, SHAOQIANG WANG, JIYUAN LIU, GUIRUI YU, WENJUAN ZHANG, and ESTEBAN JOBBÁGY. "Soil inorganic carbon storage pattern in China." Global Change Biology 14, no. 10 (May 27, 2008): 2380–87. http://dx.doi.org/10.1111/j.1365-2486.2008.01642.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Soil Inorganic Carbon"

1

Burgos, Hernández Tania D. "Investigating Soil Quality and Carbon Balance for Ohio State University Soils." The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1577141132704637.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Holmes, Brett. "Mobilization of Metals and Phosphorous from Intact Forest Soil Cores by Dissolved Inorganic Carbon: A Laboratory Column Study." Fogler Library, University of Maine, 2007. http://www.library.umaine.edu/theses/pdf/HolmesB2007.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kiser, Larry Christopher. "Thirty-year Changes in Mineral Soil C in a Cumberland Plateau Forest as Influenced by Inorganic-N, Soil Texture, and Topography." Thesis, Virginia Tech, 2007. http://hdl.handle.net/10919/35725.

Full text
Abstract:
Increases in atmospheric C have resulted in concerns about global warming and interest in finding means to sequester atmospheric C through land management strategies. The purpose of this study was to (i) compare changes in mineral soil C after a 30-year interval and (ii) examine the role of inorganic-N, soil texture, and topography in these changes. Soil samples were collected at permanently identified points on the Camp Branch Watershed, a second growth oak forest on the Cumberland Plateau in central Tennessee, in July of 1976 and archived. These points were re-sampled in July of 2006 and both archived and new samples of the 0 to 10 cm increment of the mineral soil were analyzed for C and N using the same procedures. Paired comparisons revealed changes in C and N were distinct to each of the 8 soil series. Comparison of 2006 samples to 1976 samples indicated changes in C concentration ranged from -13.1% to +12.0%. Changes in C mass ranged from -11.3% to +8.3%. Increases in C were most closely associated with increases in the C/total-N ratio. C was positively correlated to exchangeable inorganic-N in 1976 (r2 = 0.387) and 2006 (r2 = 0.107). Regression analysis revealed C increased with increasing azimuth and decreasing elevation in 1976 (r2 = 0.140). C was predicted only by clay content in 2006 (r2 = 0.079) and exhibited a negative relationship. Since topography was no longer a predictor of mineral soil C in 2006, we speculate that changes in forest cover also influenced changes in mineral soil C.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
4

Waiser, Travis Heath. "In situ characterization of soil properties using visible near-infrared diffuse reflectance spectroscopy." Thesis, Texas A&M University, 2003. http://hdl.handle.net/1969.1/5915.

Full text
Abstract:
Diffuse reflectance spectroscopy (DRS) is a rapid proximal-sensing method that is being used more and more in laboratory settings to measure soil properties. Diffuse reflectance spectroscopy research that has been completed in laboratories shows promising results, but very little has been reported on how DRS will work in a field setting on soils scanned in situ. Seventy-two soil cores were obtained from six fields in Erath and Comanche County, Texas. Each soil core was scanned with a visible near-infrared (VNIR) spectrometer with a spectral range of 350-2500 nm in four different combinations of moisture content and pre-treatment: field-moist in situ, air-dried in situ, field-moist smeared in situ, and air-dried ground. Water potential was measured for the field-moist in situ scans. The VNIR spectra were used to predict total and fine clay content, water potential, organic C, and inorganic C of the soil using partial least squares (PLS) regression. The PLS model was validated with data 30% of the original soil cores that were randomly selected and not used in the calibration model. The root mean squared deviation (RMSD) of the air-dry ground samples were within the in situ RMSD and comparable to literature values for each soil property. The validation data set had a total clay content root mean squared deviation (RMSD) of 61 g kg-1 and 41 g kg-1 for the field-moist and air-dried in situ cores, respectively. The organic C validation data set had a RMSD of 5.8 g kg-1 and 4.6 g kg-1 for the field-moist and air-dried in situ cores, respectively. The RMSD values for inorganic C were 10.1 g kg-1 and 8.3 g kg-1 for the field moist and air-dried in situ scans, respectively. Smearing the samples increased the uncertainty of the predictions for clay content, organic C, and inorganic C. Water potential did not improve model predictions, nor did it correlate with the VNIR spectra; r2-values were below 0.31. These results show that DRS is an acceptable technique to measure selected soil properties in-situ at varying water contents and from different parent materials.
APA, Harvard, Vancouver, ISO, and other styles
5

Van, der Ham Ilana. "The effect of inorganic fertilizer application on compost and crop litter decomposition dynamics in sandy soil." Thesis, Stellenbosch : Stellenbosch University, 2015. http://hdl.handle.net/10019.1/97109.

Full text
Abstract:
Thesis (MSc)--Stellenbosch University, 2015.
ENGLISH ABSTRACT: Inorganic fertilizer applications are common practice in commercial agriculture, yet not much is known regarding their interaction with organic matter and soil biota. Much research has been done on the effect of inorganic N on forest litter decomposition, yet very little research has focused on the effect of inorganic fertilizers on crop litters and, to our knowledge, none on composted organic matter. Furthermore none of the research has been done in South Africa. The main aim of this research project was to determine the effect of inorganic fertilizer applications on the decomposition of selected organic matter sources commonly used in South African agriculture and forestry. Two decomposition studies were conducted over a 3-month period, one on composts and the other on plant litters, using a local, sandy soil. In the first experiment a lower quality compost, compost A (C:N ratio, 17.67), and higher quality compost, compost B (C:N ratio, 4.92) was treated with three commercially used fertilizer treatments. Two were typical blends used for vegetable (tomato and cabbage) production: tomato fertilizer (10:2:15) (100 kg N, 20 kg P, 150 kg K per ha) and cabbage fertilizer (5:2:4) (250 kg N, 100 kg P, 200 kg K per ha). The third fertilizer blend, an equivalent mass application of N and P applied at 150 kg of each element per ha, is more commonly used in pastures. In the second experiment, five commonly encountered crop and forestry litters, namely kikuyu grass, lucerne residues, pine needles, sugar cane trash and wheat straw, were selected to represent the labile organic matter sources. The litters were treated with the tomato and cabbage fertilizer applications rates. Both decomposition experiments were conducted under ambient laboratory conditions at field water capacity. Decomposition rates were monitored by determining CO2 emissions, DOC production, β-glucosidase and polyphenol oxidase activity (PPO). At the start and end of decomposition study, loss on ignition was performed to assess the total loss of OM. Based on the results obtained from these two experiments, it was concluded that the addition of high N containing inorganic fertilizers enhanced the decomposition of both composted and labile organic matter. For both compost and plant litters, DOC production was greatly enhanced with the addition of inorganic fertilizers regardless of the organic matter quality. The conclusion can be made that inherent N in organic matter played a role in the response of decomposition to inorganic fertilizer application with organic matter low in inherent N showing greater responses in decomposition changes. For labile organic matter polyphenol and cellulose content also played a role in the responses observed from inorganic fertilizer applications.
AFRIKAANSE OPSOMMING: Anorganiese kunsmis toedieningss is algemene praktyk in die kommersiële landbou sektor,maar nog min is bekend oor hul interaksie met organiese materiaal en grond biota. Baie navorsing is reeds oor die uitwerking van anorganiese N op woud en plantasiereste se ontbinding gedoen. Baie min navorsing het gefokus op die uitwerking van anorganiese kunsmis op die gewasreste en tot ons kennis, is daar geen navorsing gedoen op die invloed van anorganiese kunsmis op gekomposteer organiese material nie. Verder is geeneen van die navorsing studies is in Suid-Afrika gedoen nie. Die hoofdoel van hierdie navorsingsprojek was om die effek van anorganiese kunsmis toedienings op die ontbinding van geselekteerde organiese materiaal bronne, wat algemeen gebruik word in die Suid-Afrikaanse landbou en bosbou, te bepaal. Twee ontbinding studies is gedoen oor 'n 3-maande-tydperk, een op kompos en die ander op die plantreste, met die gebruik van 'n plaaslike, sanderige grond. In die eerste eksperiment is ‘n laer gehalte kompos, kompos A (C: N verhouding, 17.67), en 'n hoër gehalte kompos, kompos B (C: N verhouding, 4.92) met drie kommersieel anorganiese bemesting behandelings behandel. Twee was tipiese versnitte gebruik vir die groente (tamatie en kool) produksie: tamatie kunsmis (10: 2:15) (100 kg N, 20 kg P, 150 kg K per ha) en kool kunsmis (5: 2: 4) (250 kg N, 100 kg P, 200 kg K per ha). Die derde kunsmis versnit was 'n ekwivalente massa toepassing van N en P van 150 kg van elke element per ha, wat meer algemeen gebruik word in weiding. In die tweede eksperiment was vyf algemeen gewas en bosbou reste, naamlik kikoejoegras, lusern reste, dennenaalde, suikerriet reste en koring strooi, gekies om die labiele organiese materiaal bronne te verteenwoordig. Die reste is met die tamatie en kool kunsmis toedienings behandel. Beide ontbinding eksperimente is uitgevoer onder normale laboratorium toestande by veldwaterkapasiteit. Ontbinding tempo is deur die bepaling van die CO2-vrystellings, opgelosde organiese koolstof (OOK) produksie, β-glukosidase en polifenol oksidase aktiwiteit (PPO) gemonitor. Aan die begin en einde van ontbinding studie, is verlies op ontbranding uitgevoer om die totale verlies van OM te evalueer. Gebaseer op die resultate van hierdie twee eksperimente, was die gevolgtrekking dat die toevoeging van hoë N bevattende anorganiese bemestingstowwe die ontbinding van beide komposte en plant reste verhoog. Vir beide kompos en plantreste word OOK produksie verhoog met die toevoeging van anorganiese bemesting, ongeag van die organiese materiaal gehalte. Die gevolgtrekking kan gemaak word dat die inherente N in organiese materiaal 'n rol gespeel het in die reaksie van ontbinding op anorganiese bemesting toedienings met die grootste reaksie in organiese material laag in inherente N. Vir labiele organiese material het polifenol en sellulose inhoud ook 'n rol gespeel in die reaksie waargeneeming op anorganiese bemesting.
APA, Harvard, Vancouver, ISO, and other styles
6

Vuong, Truong Xuan Verfasser], Gerhard [Akademischer Betreuer] [Gerold, Hermann [Akademischer Betreuer] Jungkunst, Volker [Akademischer Betreuer] Thiel, Hilmar von [Akademischer Betreuer] Eynatten, Heitkamp Dr [Akademischer Betreuer] Felix, and Reimer Dr [Akademischer Betreuer] Andreas. "Highly resolved thermal analysis as a tool for simultaneous quantification of total carbon, organic carbon, inorganic carbon and soil organic carbon fractions in landscapes / Truong Xuan Vuong. Gutachter: Gerhard Gerold ; Hermann Jungkunst ; Volker Thiel ; Hilmar Von Eynatten ; Heitkamp Dr Felix ; Reimer Dr Andreas. Betreuer: Gerhard Gerold." Göttingen : Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2015. http://d-nb.info/106762662X/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Brigham, Russell D. "Assessing the Effects of Lake Dredged Sediments on Soil Health: Agricultural and Environmental Implications on Midwest Ohio." Bowling Green State University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1593902126203743.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Condron, Leo M. "Chemical nature and plant availability of phosphorus present in soils under long-term fertilised irrigated pastures in Canterbury, New Zealand." Lincoln College, University of Canterbury, 1986. http://hdl.handle.net/10182/1875.

Full text
Abstract:
Soil P fractionation was used to examine changes in soil inorganic and organic P under grazed irrigated pasture in a long-term field trial at Winchmore in Mid-Canterbury. The soil P fractionation scheme used involved sequential extractions of soil with O.5M NaHCO₃ @ pH 8.5 (NaHCO₃ P), 0.1M NaOH (NaOH I P), 1M HCl (HCl P) and 0.1M NaOH (NaOH II P). The Winchmore trial comprised 5 treatments: control (no P since 1952), 376R (376 kg superphosphate ha⁻¹ yr⁻¹ 1952-1957, none since), 564R (564 kg superphosphate ha⁻¹ yr⁻¹ 1952-1957, none since) 188PA (188 kg superphosphate ha⁻¹ yr⁻¹ since 1952) and 376PA (376 kg superphosphate ha⁻¹ yr⁻¹ since 1952: Topsoil (0-7.5cm) samples taken from the different treatments in 1958, 1961, 1965, 1968, 1971, 1974 and 1977 were used in this study. Changes in soil P with time showed that significant increases in soil inorganic P occurred in the annually fertilised treatments (l88PA, 376PA). As expected, the overall increase in total soil inorganic P between 1958 and 1977 was greater in the 376PA treatment (159 µg P g⁻¹) than that in the 188PA treatment (37 µg P g⁻¹). However, the chemical forms of inorganic P which accumulated in the annually fertilised treatments changed with time. Between 1958 and 1971 most of the increases in soil inorganic P in these treatments occurred in the NaHCO₃ and NaOH I P fractions. On the other hand, increases in soil inorganic P in the annually fertilised treatments between 1971 and 1977 were found mainly in the HCl and NaOH II P fractions. These changes in soil P forms were attributed to the combined effects of lime addition in 1972 and increased amounts of sparingly soluble apatite P and iron-aluminium P in the single superphosphate applied during the 1970's. In the residual fertiliser treatments (376R, 564R) significant decreases in all of the soil inorganic P fractions (i.e. NaHCO₃ P, NaOH I P, HCl P, NaOH II p) occurred between 1958 and 1977 following the cessation of P fertiliser inputs in 1957. This was attributed to continued plant uptake of P accumulated in the soil from earlier P fertiliser additions. However, levels of inorganic P in the different soil P fractions in the residual fertiliser treatments did not decline to those in the control which indicated that some of the inorganic P accumulated in the soil from P fertiliser applied between 1952 and 1957 was present in very stable forms. In all treatments, significant increases in soil organic P occurred between 1958 and 1971. The overall increases in total soil organic P were greater in the annually fertilised treatments (70-86 µg P g⁻¹) than those in the residual fertiliser (55-64 µg P g⁻¹) and control (34 µg P g⁻¹) treatments which reflected the respective levels of pasture production in the different treatments. These increases in soil organic P were attributed to the biological conversion of native and fertiliser inorganic P to organic P in the soil via plant, animal and microbial residues. The results also showed that annual rates of soil organic P accumulation between 1958 and 1971 decreased with time which indicated that steady-state conditions with regard to net 'organic P accumulation were being reached. In the residual fertiliser treatments, soil organic P continued to increase between 1958 and 1971 while levels of soil inorganic P and pasture production declined. This indicated that organic P which accumulated in soil from P fertiliser additions was more stable and less available to plants than inorganic forms of soil P. Between 1971 and 1974 small (10-38 µg P g⁻¹) but significant decreases in total soil organic P occurred in all treatments. This was attributed to increased mineralisation of soil organic P as a result of lime (4 t ha⁻¹) applied to the trial in 1972 and also to the observed cessation of further net soil organic P accumulation after 1971. Liming also appeared to affect the chemical nature of soil organic P as shown by the large decreases in NaOH I organic P(78-88 µg P g⁻¹) and concomitant smaller increases in NaOH II organic P (53-65 µg P g⁻¹) which occurred in all treatments between 1971 and 1974. The chemical nature of soil organic P in the Winchmore long-term trial was also investigated using 31p nuclear magnetic resonance (NMR) spectroscopy and gel filtration chromatography. This involved quantitative extraction of organic P from the soil by sequential extraction with 0.1M NaOH, 0.2M aqueous acetylacetone (pH 8.3) and 0.5M NaOH following which the extracts were concentrated by ultrafiltration. Soils (0-7.5cm) taken from the control and 376PA annually fertilised treatments in 1958, 1971 and 1983 were used in this study. 31p NMR analysis showed that most (88-94%) of the organic P in the Winchmore soils was present as orthophosphate monoester P while the remainder was found as orthophosphate diester and pyrophosphate P. Orthophosphate monoester P also made up almost all of the soil organic P which accumulated in the 376PA treatment between 1958 and 1971. This indicated that soil organic P in the 376PA and control treatments was very stable. The gel filtration studies using Sephadex G-100 showed that most (61-83%) of the soil organic P in the control and 376PA treatments was present in the low molecular weight forms (<100,000 MW), although the proportion of soil organic P in high molecular weight forms (>100,000 MW) increased from 17-19% in 1958 to 38-39% in 1983. The latter was attributed to the microbial humification of organic P and indicated a shift toward more complex and possibly more stable forms of organic P in the soil with time. Assuming that the difference in soil organic P between the control and 376PA soils sampled in 1971 and 1983 represented the organic P derived from P fertiliser additions, results showed that this soil organic P was evenly distributed between the high and low molecular weight fractions. An exhaustive pot trial was used to examine the relative availability to plants of different forms of soil inorganic and organic P in long-term fertilised pasture soils. This involved growing 3 successive crops of perennial ryegrass (Lolium perenne) in 3 Lismore silt loam (Udic Ustochrept) soils which had received different amounts of P fertiliser for many years. Two of the soils were taken from the annually fertilised treatments in the Winchmore long term trial (188PA, 376PA) and the third (Fairton) was taken from a pasture which had been irrigated with meatworks effluent for over 80 years (65 kg P ha⁻¹ yr⁻¹). Each soil was subjected to 3 treatments, namely control (no nutrients added), N100 and N200. The latter treatments involved adding complete nutrient solutions with different quantities of N at rates of 100kg N ha⁻¹ (N100) and 200kg N ha⁻¹ (N200) on an area basis. The soil P fractionation scheme used was the same as that used in the Winchmore long-term trial study (i.e. NaHCO₃ P, NaOH I P, HCl P, NaOH II p). Results obtained showed that the availability to plants of different extracted inorganic P fractions, as measured by decreases in P fractions before and after 3 successive crops, followed the order: NaHCO₃ P > NaOH I P > HCl P = NaOH II P. Overall decreases in the NaHCO₃ and NaOH I inorganic P fractions were 34% and 16% respectively, while corresponding decreases in the HCl and NaOH II inorganic P fractions were small «10%) and not significant. However, a significant decrease in HCl P (16%) was observed in one soil (Fairton-N200 treatment) which was attributed to the significant decrease in soil pH (from 6.2 to 5.1) which occurred after successive cropping. Successive cropping had little or no effect on the levels of P in the different soil organic P fractions. This indicated that net soil organic P mineralisation did not contribute significantly to plant P uptake over the short-term. A short-term field experiment was also conducted to examine the effects of different soil management practices on the availability of different forms of P to plants in the long-term fertilised pasture soils. The trial was sited on selected plots of the existing annually fertilised treatments in the Winchmore long-term trial (188PA, 376PA) and comprised 5 treatments: control, 2 rates of lime (2 and 4 t ha⁻¹ ) , urea fertiliser (400kg N ha⁻¹ ) and mechanical cultivation. The above ground herbage in the uncultivated treatments was harvested on 11 occasions over a 2 year period and at each harvest topsoil (0-7.5 cm) samples were taken from all of the treatments for P analysis. The soil P fractionation scheme used in this particular trial involved sequential extractions with 0.5M NaHCO₃ @ pH 8.5 (NaHCO₃ P), 0.1M NaOH (NaOH P), ultrasonification with 0.1M NaOH (sonicate-NaOH p) and 1M HCl (HCl P). In addition, amounts of microbial P in the soils were determined. The results showed that liming resulted in small (10-21 µg P g⁻¹) though significant decreases in the NaOH soil organic P fraction in the 188PA and 376PA plots. Levels of soil microbial P were also found to be greater in the limed treatments compared with those in the controls. These results indicated that liming increased the microbial mineralisation of soil organic P in the Winchmore soils. However, pasture dry matter yields and P uptake were not significantly affected. Although urea significantly increased dry matter yields and P uptake, it did not appear to significantly affect amounts of P in the different soil P fractions. Mechanical cultivation and the subsequent fallow period (18 months) resulted in significant increases in amounts of P in the NaHCO₃ and NaOH inorganic P fractions. This was attributed to P released from the microbial decomposition of plant residues, although the absence of plants significantly reduced levels of microbial P in the cultivated soils. Practical implications of the results obtained in the present study were presented and discussed.
APA, Harvard, Vancouver, ISO, and other styles
9

Wang, Dunling. "Storage of organic and inorganic carbon of biogenic origin in the soils of the parkland-prairie ecosystem." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/nq23889.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Neto, Marcos Siqueira. "\"Estoque de carbono e nitrogênio do solo com diferentes usos no Cerrado em Rio Verde (GO)\"." Universidade de São Paulo, 2006. http://www.teses.usp.br/teses/disponiveis/64/64132/tde-11042007-113740/.

Full text
Abstract:
A mudança do uso da terra modifica os ciclos dos elementos no solo, com alterações nos fluxos dos gases do efeito estufa (GEE). O tempo de implantação do sistema plantio direto associado a uma planta de cobertura (SPD) pode recuperar o estoque de carbono (C) no solo e mitigar o aumento da temperatura global devido à elevação da concentração dos gases do efeito estufa. Assim, o objetivo deste trabalho foi avaliar as alterações nos estoques de C e N do solo com o tempo de implantação do SPD tomando como referência absoluta a condição original (Cerradão) e, também com referencia relativa áreas com mudança do uso da terra, uma sob pastagem, e outra sob plantio convencional. O estudo foi realizado em áreas situadas no município de Rio Verde-GO (17º50\' a 18º20\' S e 51º43\' a 50º19\' O), em um Latossolo Vermelho distrófico com teores de argila entre 50 e 70 %. O delineamento experimental empregado foi inteiramente casualisados com parcelas subdivididas, constando de doze áreas, estas divididas em três sub-áreas cada qual com seis pontos de amostragem e cinco profundidades (0-5, 5-10, 10-20, 20-30 e 30-40 cm). As áreas amostradas foram três sob Cerradão (CE, 2CE e 3CE); uma sob pastagem (PA), uma sob plantio convencional (PC), e sete em SPD com uma área de conversão do plantio convencional para o SPD (PD 0) e áreas com 4, 5, 7, 8, 10 e 12 anos de implantação do sistema (PD 4, PD 5, PD 7, PD 8, PD 10, PD 12). As variáveis estudadas foram: os atributos físicos e químicos, os estoques de C e N e a composição isotópica do 13C/12C e 15N/14N. Os fluxos dos GEE (CO2, N2O e CH4) foram determinados no CE, PA PC e PD com 8, 10 e 12 anos, além das quantidades de N-inorgânico e C e N-microbiano. Os resultados deste estudo mostraram que o SPD promoveu melhoria nos atributos físicos como a redução da compactação do solo, e nos atributos químicos como o aumento do pH e da disponibilidade de K, P, Ca e magnésio nas camadas superficiais do solo. Os estoques de C e N foram maiores nas áreas sob Cerradão (80 e 4 Mg ha-1, respectivamente para o C e N). Os menores valores nos estoques de C foram reportados no PD 0, PC e PA (54; 62 e 64 Mg ha-1, respectivamente). O tempo de implantação do SPD aumentou o estoque de C no solo, de modo que no PD 12 foi encontrado estoque de C igual as áreas sob Cerradão. A taxa anual de acúmulo de C no SPD foi calculada em 1,26 Mg ha-1 ano-1 (0-40 cm). As quantidades médias de C e N-microbiano e N-inorgânico foram encontradas no CE, o Nnitrato correspondeu a 60 % do total em todas as áreas. A maior emissão total em Cequivalente foi observado na PA (160 kg ha-1 ano-1), no CE foi de 135 kg ha-1 ano-1, enquanto que para o PC e SPD as emissões foram de 121 e 129 kg ha-1 ano-1, respectivamente. O seqüestro de C no solo sob SPD para a situação avaliada foi de 1,13 Mg ha-1 ano-1. O SPD mostrou neste estudo, que é uma prática agrícola que melhora as condições do solo, promovendo o aumento no estoque de C sem o aumento nas emissões de N2O e CH4 podendo tornar-se uma alternativa para mitigar as emissões dos GEE, garantindo a sustentabilidade do sistema produtivo
The land-use change transforms the elements cycles in the soil, with alterations in the greenhouse gas (GHG) emissions. The time of implementation of the no-tillage system associated with a cover crop (NT) can recover the carbon (C) stocks in the soil and thus mitigate the global temperature increase due increasing GHG concentration. Therefore, the objective of this work was to evaluate the alterations of the soil carbon and nitrogen stocks following implementation time of no-tillage (NT) system taking as absolute reference the original condition (Cerradão) and, also, as relative reference, areas with other land use change, one under pasture, and other under conventional tillage. The study was done in areas located at Rio Verde (Goias state, Brazil) (17°50\' to 18°20\' S and 51°43\' to 50°19\' W), in a Oxisol (very clayed Red Dystrofic typic Latosol) with clay contents in the range 50 - 70 %. At each site, samples were taken randomly with subdivided parcels; these sites were divided in three sub-areas with six sampling locations and five depths (0-5, 5-10, 10-20, 20-30, 30-40 cm.). The sampled sites were three under ?Cerradão? (CE, 2CE and 3CE); one pasture (PA), one conventional tillage (CT), and seven situations under no-tillage system with an area recently converted from conventional tillage to no-tillage (NT 0), and areas with 4, 5, 7, 8, 10 and 12 years of implementation of the no-tillage (NT-4, NT-5, NT-7, NT-8, NT-10 and NT- 12). The variables studied were: physical and chemical attributes, the C and N stocks and the isotopic composition of 13C/12C and 15N/14N. The GHG emissions (CO2, N2O and CH4) were measured in CE, PA, CT and NT with 8, 10, and 12 years together with the quantity of inorganic-N and microbial C and N. The results of this study showed that these no-tillage systems guaranteed the physical attribute improvement with the decrease of the soil compaction and in the chemical attributes with increase of pH and of the availability of K, P, Ca and magnesium in the soil superficial layers. The carbon and nitrogen stocks were higher in ?Cerradão? (80 and 4 Mg ha-1, respectively to C and N). The lowest values in the carbon stocks were reported in NT-0, CT and PA (54; 62 and 64 Mg ha-1, respectively). The implementation time of no-tillage (NT) system increased the carbon stock in the soil, leading to carbon stock in the NT-12 area in the same level of the ?Cerradão? areas. The annual soil C accumulation in the NT system was calculated in 1,26 Mg ha-1 yr?1 (0-30 cm). For all areas, the average quantities of C and microbial-N and inorganic-N were found in CE, nitrate-N corresponded 60 % of the total. The highest total emission in C-equivalent was observed in PA (160 kg ha-1 yr-1), in CE it was 135 kg ha-1 yr-1, and amounted 121 and 129 135 kg ha-1 yr-1 for the CT and NT respectively. The carbon sequestration in the soil under (NT) for the studied situations was 1,13 Mg ha-1 yr-1. The No-tillage (NT) system studied showed to be an agricultural practice that improves the soil condition, promoting the increase of carbon stock without the increase of N2O and CH4 emissions, being thus an alternative to diminish the GHG emissions, and guaranteeing the sustainability of the productive system
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Soil Inorganic Carbon"

1

Monitoring of inorganic contaminants associated with irrigation drainage in Stillwater National Wildlife Refuge and Carson Lake, west-central Nevada, 1994-96. Carson City, NV: U.S. Dept. of the Interior, U.S. Geological Survey, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kirchman, David L. Microbial growth, biomass production, and controls. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198789406.003.0008.

Full text
Abstract:
Soon after the discovery that bacteria are abundant in natural environments, the question arose as to whether or not they were active. Although the plate count method suggested that they were dormant if not dead, other methods indicated that a large fraction of bacteria and fungi are active, as discussed in this chapter. It goes on to discuss fundamental equations for exponential growth and logistic growth, and it describes phases of growth in batch cultures, continuous cultures, and chemostats. In contrast with measuring growth in laboratory cultures, it is difficult to measure in natural environments for complex communities with co-occurring mortality. Among many methods that have been suggested over the years, the most common one for bacteria is the leucine approach, while for fungi it is the acetate-in ergosterol method. These methods indicate that the growth rate of the bulk community is on the order of days for bacteria in their natural environment. It is faster in aquatic habitats than in soils, and bacteria grow faster than fungi in soils. But bulk rates for bacteria appear to be slower than those for phytoplankton. All of these rates for natural communities are much slower than rates measured for most microbes in the laboratory. Rates in subsurface environments hundreds of meters from light-driven primary production and high organic carbon conditions are even lower. Rates vary greatly among microbial taxa, according to data on 16S rRNA. Copiotrophic bacteria grow much faster than oligotrophic bacteria, but may have low growth rates when conditions turn unfavorable. Some of the factors limiting heterotrophic bacteria and fungi include temperature and inorganic nutrients, but the supply of organic compounds is perhaps most important in most environments.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Soil Inorganic Carbon"

1

Monger, H. Curtis. "Soils as Generators and Sinks of Inorganic Carbon in Geologic Time." In Soil Carbon, 27–36. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04084-4_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lorenz, Klaus, and Rattan Lal. "Soil Inorganic Carbon Stocks in Terrestrial Biomes." In Soil Organic Carbon Sequestration in Terrestrial Biomes of the United States, 147–73. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-95193-1_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Mikhailova, Elena, Christopher Post, Larry Cihacek, and Michael Ulmer. "Soil inorganic carbon sequestration as a result of cultivation in the mollisols." In Carbon Sequestration and Its Role in the Global Carbon Cycle, 129–33. Washington, D. C.: American Geophysical Union, 2009. http://dx.doi.org/10.1029/2005gm000313.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Milanolo, Simone. "From Soil to Cave: The Inorganic Carbon in Drip Water." In Sources and Transport of Inorganic Carbon in the Unsaturated Zone of Karst, 107–24. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29308-0_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Pal, D. K. "Is Soil Inorganic Carbon (CaCO3, SIC) Sequestration a Bane or a Hidden Treasure in Soil Ecosystem Services?" In Ecosystem Services and Tropical Soils of India, 53–64. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-22711-1_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Pilli, Kiran, Bishnuprasad Dash, Biswabara Sahu, Jaison M, and Durgam Sridhar. "Soil Inorganic Carbon in Dry Lands: An Unsung Player in Climate Change Mitigation." In Enhancing Resilience of Dryland Agriculture Under Changing Climate, 247–57. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-9159-2_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wang, Jiaping, Xiujun Wang, and Juan Zhang. "Land Use Impacts on Soil Organic and Inorganic Carbon and Their Isotopes in the Yanqi Basin." In Springer Earth System Sciences, 69–88. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-7022-8_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kuria, Peter, Josiah Gitari, Saidi Mkomwa, and Peter Waweru. "Effect of conservation agriculture on soil properties and maize grain yield in the semi-arid Laikipia county, Kenya." In Conservation agriculture in Africa: climate smart agricultural development, 256–69. Wallingford: CABI, 2022. http://dx.doi.org/10.1079/9781789245745.0015.

Full text
Abstract:
Abstract Low and unreliable rainfall, along with poor soil health, is a main constraint to maize production in the semi-arid parts of Kenya that account for over 79% of the country's land area. In the vast county of Laikipia, farmers continue to plant maize despite the predominantly low quantities of precipitation. Participatory farmer experimentation with Conservation Agriculture (CA) was undertaken for six consecutive growing seasons between July 2013 and December 2016 to determine the effectiveness of CA as a method of improving soil properties and enhancing maize yields with the limited rainfall quantities received in these parts of Kenya. The main CA practices tested include chisel tine furrow opening (ripping) and live legume (Lablab purpureus) cover crop, as well as maize stover mulches, all implemented under varying inorganic fertilizer rates. The research was done across 12 administrative locations of Laikipia County where soils are mainly Phaeozems and Vertisols with a clay-loam texture. The research design used was researcher-designed and farmer-managed. In each of the 12 trial sites, participatory farmers' assessments and field days were carried out as a way of outreach to the bigger farming communities around the trial sites. The research findings obtained demonstrated that the use of CA impacts positively on soil properties and is a viable practice for enhancing maize yields in these moisture deficit-prone parts of the country. Soil chemical analysis assessment results showed that CA impacted positively on a number of soil mineral components including organic carbon, total nitrogen, phosphorus, potassium, calcium and pH. Midseason chlorophyll content assessment of the maize crop showed that there was good response to fertilizer application, as well as to mulching with crop residues for soil cover. Maize grain yield data also showed that the use of a CA package comprising chisel tine ripping combined with mulching by plant residues and use of mineral fertilizer resulted in a two- to threefold increase in grain yields above the farmer practice control. Mean maize grain yield in farmer practice plots was 1067 kg ha-1 compared with the CA-treated plot with mineral fertilization that yielded 2192 kg ha-1.
APA, Harvard, Vancouver, ISO, and other styles
9

Donald, L. Suarez. "Carbon: Soil Inorganic." In Managing Global Resources and Universal Processes, 185–93. CRC Press, 2020. http://dx.doi.org/10.1201/9780429346132-20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Nordt, Lee. "Inorganic Carbon." In Encyclopedia of Soil Science, Second Edition. CRC Press, 2005. http://dx.doi.org/10.1201/noe0849338304.ch181.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Soil Inorganic Carbon"

1

Ghahremani, Zahra, Jennifer Pierce, David Huber, Linda Reynard, Erin Murray, and Caitlyn Swanson. "THE IMPORTANCE OF DUST IN THE FORMATION OF SOIL INORGANIC CARBON IN DRYLANDS." In Joint 118th Annual Cordilleran/72nd Annual Rocky Mountain Section Meeting - 2022. Geological Society of America, 2022. http://dx.doi.org/10.1130/abs/2022cd-374097.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Yang, Haiqing, Weiqiang Luo, Ning Xu, and Abdul M. Mouazen. "Prediction of organic and inorganic carbon contents in soil: Vis-NIR vs. MIR spectroscopy." In 2012 2nd International Conference on Consumer Electronics, Communications and Networks (CECNet). IEEE, 2012. http://dx.doi.org/10.1109/cecnet.2012.6202181.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Stanbery, Christopher. "CONTROLS ON THE PRESENCE AND AMOUNT OF SOIL INORGANIC CARBON IN A TRANSITIONAL SEMI-ARID WATERSHED." In 68th Annual Rocky Mountain GSA Section Meeting. Geological Society of America, 2016. http://dx.doi.org/10.1130/abs/2016rm-276261.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

S.Shete, Rahul, Manisha M. Patil, Pallavi R.Bhosale, Amol A. Chougule, and Prakash D.Raut. "Impact Assessment of Solid Waste on Groundwater and Soil in and around of Dumping site, Kasba Bawada, Kolhapur." In 7th GoGreen Summit 2021. Technoarete, 2021. http://dx.doi.org/10.36647/978-93-92106-02-6.17.

Full text
Abstract:
This research paper includes a 6 months environmental study of impact assessment of solid waste on Groundwater and Soil in and around of dumping site at Kasba Bawada, Kolhapur that includes a detailed study of the groundwater and soil characteristics. The dumping and open burning practices will led to the percolation of waste into the soil and groundwater which will eventually lead to various health and environment issues. In order to assess the groundwater and soil quality, assessment was carried out for the Groundwater and Soil near the dumping and landfill site around the 1 km radius in ecosystem is indeed an important resource which has yet to be studied on a bigger scale to meet the ever increasing demand for the water and soil for their use as resources. 6 Groundwater and 5 Soil sampling sites are selected in and around the dumping site. During the project, various physical, organic, inorganic and nutrient parameters were studied and also the detection of the heavy metals was carried out for soil and groundwater analysis. Most of the groundwater parameters are within the limit of BIS and WHO standards of drinking water except Total Solids which is higher in all sites and Nitrate which are higher than the limits in 2 sites when compared with the standards as these sites are near and around the dumping sites. The Nutrient parameters of Soil like Organic Carbon, Organic Matter, Available Phosphorous are present higher than the limit in all the sampling sites. The presence of high organic Carbon and the Organic matter with Available Phosphorous indicates the good fertility of the soil in and around the dumping site. The heavy metals are within the limit in soil when compared with the standards whereas in the groundwater, Lead, Copper, Nickel and Cadmium are present higher than the limit when compared drinking water quality standards established by the BIS and the WHO standards during the post monsoon of 2019 and pre monsoon of 2020 for other parameters.
APA, Harvard, Vancouver, ISO, and other styles
5

"Advanced thermo-chemical treatment of waste Bambusa Vulgaris for sustainable resource recovery." In Sustainable Processes and Clean Energy Transition. Materials Research Forum LLC, 2023. http://dx.doi.org/10.21741/9781644902516-22.

Full text
Abstract:
Abstract. Bambusa Vulgaris or Bamboo is one of the rapidly growing woody plants among different species and not being utilized properly around the world. Hence, the utilization of bamboo for sustainable resource recovery is required to avoid deforestation. This study is focused on thermo-chemical treatment of bamboo waste to investigate the physico-chemical properties of generated products. Experiments were carried out in semi batch, four zone electrically heated, rotary kiln reactor, with reaction time of 90 minutes and heating rate of 25 °C/min, for yield optimization. Products were analyzed through TGA, XRF, SEM/EDS, GCMS and FTIR. From the GCMS study, it was found that the bio-oil obtained through thermo-chemical treatment, contains high amount of alcohols, aldehydes, ketone and phenolic compounds. XRF of biochar showed 11 % inorganic components, among them K and Ca were found to be the major elements. XRF and EDS results were in good agreement and confirmed high carbon content. Biochar had the calorific value of 30.97 MJ/kg, which makes it suitable as energy source for commercial applications. Biochar contained carbonyl (C=O), hydroxyl (HO-), and carboxyl (HOOC) groups, which are responsible for ion exchange reactions during soil amendment. Low ash and high carbon content along with high porosity promotes its usage as high value material in different non-agricultural applications. Additionally, high amount of carbon is beneficial for maximizing the carbon storage and making the process environmentally sustainable.
APA, Harvard, Vancouver, ISO, and other styles
6

Sheldon, Nathan, and Rebecca Dzombak. "SOILS, PLANTS, AND THE EVOLUTION OF THE INORGANIC CARBON CYCLE ON LAND." In GSA Connects 2021 in Portland, Oregon. Geological Society of America, 2021. http://dx.doi.org/10.1130/abs/2021am-371246.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Onishi, Bruno Seiki Domingos, Ricardo Bortoletto-Santos, Elias Paiva Ferreira Neto, and Sidney José Lima Ribeiro. "Development of hybrid organic-inorganic coating based on carbon dots on bacterial cellulose using sol-gel route." In Latin America Optics and Photonics Conference. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/laop.2022.m3c.5.

Full text
Abstract:
The luminescence quenching by aggregation of carbon dots (CD) could be solved by functionalizing the surface with an alkoxysilane, bounding the nanoparticle directly in the polymer network.The reaction was monitored with ATR-FTIR and bacterial cellulose (BC) was coated with the precursor using sol-gel route, showing blue luminescence of CD.
APA, Harvard, Vancouver, ISO, and other styles
8

Fakhari, Amir Hossein, Ayat Gharehghani, Mohammad Mahdi Salahi, Amin Mahmoudzadeh Andwari, Maciej Mikulski, Jacek Hunicz, and Juho Könnö. "Numerical Investigation of Ammonia-Diesel Fuelled Engine Operated in RCCI Mode." In 16th International Conference on Engines & Vehicles. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2023. http://dx.doi.org/10.4271/2023-24-0057.

Full text
Abstract:
<div class="section abstract"><div class="htmlview paragraph">Ammonia, which is one of the most produced inorganic chemicals worldwide, has gained significant attention in recent years as a carbon-free fuel due to its significant energy density in maritime and power plant applications. This fuel offers several advantages including low production costs and being safe for storage and transport. Reactivity controlled compression ignition (RCCI) combustion mode is considered as a promising strategy reducing the level of nitrogen oxides (NOx) emissions and particulate matters (PM) in internal combustion engines (ICEs) due to the lower combustion temperatures and charge homogeneity. Ammonia-based RCCI combustion strategy can offer a simultaneous reduction of CO<sub>2</sub> and NO<sub>x</sub>. In this study, a RCCI engine fuelled by ammonia and diesel is numerically simulated considering chemical reactions kinetics mechanism of the combustion. After validating the simulation results with literature experimental data, the effect of engine operational parameters such as the initial charge temperature together with injection timing on the engine operational characteristic including in-cylinder pressure, heat release rate (HRR), indicated mean effective pressure (IMEP) and emission levels are investigated and discussed accordingly. The results indicated that advancing the start of injection (SOI) timing from 20 to 100 CAD bTDC, increased the NOx emissions concentration at the initial intake charge temperatures of 460 and 480 K. Higher initial intake charge temperature increased the level of NOx emissions while advancing SOI timing from 20 to 100 CAD bTDC did not disturb the level of CO emission significantly.</div></div>
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Soil Inorganic Carbon"

1

Bar-Tal, Asher, Paul R. Bloom, Pinchas Fine, C. Edward Clapp, Aviva Hadas, Rodney T. Venterea, Dan Zohar, Dong Chen, and Jean-Alex Molina. Effects of soil properties and organic residues management on C sequestration and N losses. United States Department of Agriculture, August 2008. http://dx.doi.org/10.32747/2008.7587729.bard.

Full text
Abstract:
Objectives - The overall objective of this proposal was to explore the effects of soil properties and management practices on C sequestration in soils and off-site losses of N.The specific objectives were: 1. to investigate and to quantify the effects of soil properties on C transformations that follow OW decomposition, C losses by gaseous emission, and its sequestration by organic and mineral components of the soil; 2. to investigate and to quantify the effects of soil properties on organic N mineralization and transformations in soil, its losses by leaching and gaseous emission; 3. to investigate and to quantify the effects of management practices and plants root activity and decomposition on C and N transformations; and 4. to upgrade the models NCSOIL and NCSWAP to include inorganic C and root exudation dynamics. The last objective has not been fulfilled due to difficulties in experimentally quantification of the effects of soil inorganic component on root exudation dynamics. Objective 4 was modified to explore the ability of NCSOIL to simulate organic matter decomposition and N transformations in non- and calcareous soils. Background - Rates of decomposition of organic plant residues or organic manures in soil determine the amount of carbon (C), which is mineralized and released as CO₂ versus the amount of C that is retained in soil organic matter (SOM). Decomposition rates also greatly influence the amount of nitrogen (N) which becomes available for plant uptake, is leached from the soil or lost as gaseous emission, versus that which is retained in SOM. Microbial decomposition of residues in soil is strongly influenced by soil management as well as soil chemical and physical properties and also by plant roots via the processes of mineral N uptake, respiration, exudation and decay.
APA, Harvard, Vancouver, ISO, and other styles
2

Litaor, Iggy, James Ippolito, Iris Zohar, and Michael Massey. Phosphorus capture recycling and utilization for sustainable agriculture using Al/organic composite water treatment residuals. United States Department of Agriculture, January 2015. http://dx.doi.org/10.32747/2015.7600037.bard.

Full text
Abstract:
Objectives: 1) develop a thorough understanding of the sorption mechanisms of Pi and Po onto the Al/O- WTR; 2) determine the breakthrough range of the composite Al/O-WTR during P capturing from agro- wastewaters; and 3) critically evaluate the performance of the composite Al/O-WTR as a fertilizer using selected plants grown in lysimeters and test-field studies. Instead of lysimeters we used pots (Israel) and one- liter cone-tainers (USA). We conducted one field study but in spite of major pretreatments the soils still exhibited high enough P from previous experiments so no differences between control and P additions were noticeable. Due to time constrains the field study was discontinued. Background: Phosphorous, a non-renewable resource, has been applied extensively in fields to increase crop yield, yet consequently has increased the potential of waterway eutrophication. Our proposal impetus is the need to develop an innovative method of P capturing, recycling and reuse that will sustain agricultural productivity while concurrently reducing the level of P discharge from and to agricultural settings. Major Conclusions & Achievements: An innovative approach was developed for P removal from soil leachate, dairy wastewater (Israel), and swine effluents (USA) using Al-based water treatment residuals (Al- WTR) to create an organic-Al-WTR composite (Al/O-WTR), potentially capable of serving as a P fertilizer source. The Al-WTR removed 95% inorganic-P, 80% to 99.9% organic P, and over 60% dissolved organic carbon from the agro-industrial waste streams. Organic C accumulation on particles surfaces possibly enhanced weak P bonding and facilitated P desorption. Analysis by scanning electron microscope (SEM- EDS), indicated that P was sparsely sorbed on both calcic and Al (hydr)oxide surfaces. Sorption of P onto WW-Al/O-WTR was reversible due to weak Ca-P and Al-P bonds induced by the slight alkaline nature and in the presence of organic moieties. Synchrotron-based microfocused X-ray fluorescence (micro-XRF) spectrometry, bulk P K-edge X-ray absorption near edge structure spectroscopy (XANES), and P K-edge micro-XANES spectroscopy indicated that adsorption was the primary P retention mechanism in the Al- WTR materials. However, distinct apatite- or octocalciumphosphatelike P grains were also observed. Synchrotron micro-XRF mapping further suggested that exposure of the aggregate exteriors to wastewater caused P to diffuse into the porous Al-WTR aggregates. Organic P species were not explicitly identified via P K-edge XANES despite high organic matter content, suggesting that organic P may have been predominantly associated with mineral surfaces. In screen houses experiments (Israel) we showed that the highest additions of Al/O-WTR (5 and 7 g kg⁻¹) produced the highest lettuce (Lactuca sativa L. var. longifolial) yield. Lettuce yield and P concentration were similar across treatments, indicating that Al/O- WTR can provide sufficient P to perform similarly to common fertilizers. A greenhouse study (USA) was utilized to compare increasing rates of swine wastewater derived Al/O-WTR and inorganic P fertilizer (both applied at 33.6, 67.3, and 134.5 kg P₂O₅ ha⁻¹) to supply plant-available P to spring wheat (TriticumaestivumL.) in either sandy loam or sandy clay loam soil. Spring wheat straw and grain P uptake were comparable across all treatments in the sandy loam, while Al/O-WTR application to the sandy clay loam reduced straw and grain P uptake. The Al/O-WTR did not affect soil organic P concentrations, but did increase phosphatase activity in both soils; this suggests that Al/O-WTR application stimulated microorganisms and enhance the extent to which microbial communities can mineralize Al/O-WTR-bound organic P. Implications: Overall, results suggest that creating a new P fertilizer from Al-WTR and agro-industrial waste sources may be a feasible alternative to mining inorganic P fertilizer sources, while protecting the environment from unnecessary waste disposal.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography