Dissertations / Theses on the topic 'Soil erosion – Mathematical models'

To see the other types of publications on this topic, follow the link: Soil erosion – Mathematical models.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Soil erosion – Mathematical models.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Lopes, Vicente Lucio 1952. "A numerical model of watershed erosion and sediment yield." Diss., The University of Arizona, 1987. http://hdl.handle.net/10150/191125.

Full text
Abstract:
A physically based, distributed parameter, event oriented, nonlinear, numerical model of watershed response is developed to accommodate the spatial changes in topography, surface roughness, soil properties, concentrated flow patterns and geometry, and land use conditions. The Green and Ampt equation with the ponding time calculation for an unsteady rain is used to compute rainfall excess rates. The kinematic wave equations are used to describe the unsteady one-dimensional overland and channel flow. The unsteady and spatially varying erosion/deposition process on hillslopes and channel systems is described dynamically using simultaneous rates of sediment entrainment and deposition rather than the conventional approach using steady state sediment transport functions. To apply the model the watershed is represented by a simplified geometry consisting of discrete overland flow planes and channel elements. Each plane or channel is characterized by a length, width, and a roughness parameter. For channel elements, a cross-section geometry is also needed. A modular computer program called WESP (Watershed Erosion Simulation Program) is developed to provide the vehicle for performing the computer simulations. Rainfall simulator plots are used to estimate infiltration parameters, hydraulic roughness, and soil erodibility parameters for raindrop impact and overland flow. The ability of the model to simulate watershed response (hydrograph and sedigraph) to a variety of rainfall inputs and antecedent soil moisture conditions is verified using data collected on two small watersheds. The good agreement between the simulated watershed response and the observed watershed response indicates that the governing equations, initial and upper boundary conditions, and structural framework of the model can describe satisfactorily the physical processes controlling watershed response.
APA, Harvard, Vancouver, ISO, and other styles
2

Zheng, Tingting. "Mathematical modeling of soil erosion by rainfall and shallow overland flow." Thesis, Loughborough University, 2011. https://dspace.lboro.ac.uk/2134/9144.

Full text
Abstract:
New analytical and numerical solutions are developed to both the kinematic approximation to the St Venant equations and the Hairsine-Rose (HR) soil erosion model in order to gain a better physical understanding of soil erosion and sediment transport in shallow overland flow. The HR model is unique amongst physically based erosion models in that it is the only one that: considers the entire distribution of the soil s sediment size classes, considers the development of a layer of deposited non-cohesive sediment having different characteristics to the original underlying cohesive soil and considers separately the erosion processes of rainfall detachment, runoff entrainment and gravitational deposition. The method of characteristics and the method of lines were used to develop both the analytical and numerical solutions respectively. These solutions were obtained for boundary and initial conditions typical of those used in laboratory flume experiments along with physically realistic constant and time dependent excess rainfall rates. Depending on the boundary and initial conditions, interesting new solutions of the kinematic wave equation containing expansion waves, travelling shocks as well as solutions which split into an upslope and downslope drying profiles were found. Numerical solutions of the HR model were applied to the experimental flume data of Polyakov and Nearing (2003) obtained under flow conditions which periodically cycled between net erosion and net deposition conditions. While excellent agreement was found with suspended sediment data, the analysis suggested that an additional transport mechanisms, traditionally not included in soil erosion models, was occurring. While the inclusion of bed-load transport improved the ii overall model prediction, it was still not sufficient. Subsequent asymptotic analysis then showed that the interaction of the flow with an evolving bed morphology was in fact far more important than bed load transport. A very interesting finding from this work showed that the traditional criterion of validating sediment transport model based solely on suspended sediment data was not sufficient as reliable predictions could be obtained even when important transport mechanisms were neglected. Experimental plots of sediment discharge or suspended sediment concentration against water discharge in overland flow have been shown to contain significant hysteresis between the falling and rising limbs of the discharge hydrograph. In the final Chapter, the numerical solution developed for the complete system of soil erosion and kinematic flow was used to show that it was possible for the HR model to simulate three of the four hysteresis loops identified in the literature. Counter clock-wise loops, clock-wise loops and figure 8 loops could all be produced as a result of starting with different initial conditions, being mi(x; 0) = 0, mi(x; 0) = pimt and mi(x; 0) = 0:5pimt respectively. This is the first time that these types of hysteresis loops have been produced by any erosion model. The generation of these hysteresis loops are physically explainable in terms of sediment availability and is consistent with data obtained on the field scale.
APA, Harvard, Vancouver, ISO, and other styles
3

Barchyn, Thomas Edward, and University of Lethbridge Faculty of Arts and Science. "Field-based aeolian sediment transport threshold measurement : sensors, calculation methods, and standards as a strategy for improving inter-study comparison." Thesis, Lethbridge, Alta. : University of Lethbridge, Dept. of Geography, 2010, 2010. http://hdl.handle.net/10133/2616.

Full text
Abstract:
Aeolian sediment transport threshold is commonly defined as the minimum wind speed (or shear stress) necessary for wind-driven sediment transport. Threshold is a core parameter in most models of aeolian transport. Recent advances in methodology for field-based measurement of threshold show promise for improving parameterizations; however, investigators have varied in choice of method and sensor. The impacts of modifying measurement system configuration are unknown. To address this, two field tests were performed: (i) comparison of four piezoelectric sediment transport sensors, and (ii) comparison of four calculation methods. Data from both comparisons suggest that threshold measurements are non-negligibly modified by measurement system configuration and are incomparable. A poor understanding of natural sediment transport dynamics suggests that development of calibration methods could be difficult. Development of technical standards was explored to improve commensurability of measurements. Standards could assist future researchers with data syntheses and integration.
xi, 108 leaves : ill. ; 29 cm
APA, Harvard, Vancouver, ISO, and other styles
4

Navarro, Hernan Ricardo. "Flume Measurements of Erosion Characterstics of Soil at Bridge Foundations in Georgia." Thesis, Georgia Institute of Technology, 2004. http://hdl.handle.net/1853/7267.

Full text
Abstract:
Shelby tube sediment samples collected from the foundations of ten (10) bridges located in the state of Georgia were tested in the laboratory to find their erosional behavior and the correlation of erosion parameters with sediment properties in order to improve the prediction of scour around bridge foundations. These sites were spatially distributed in order to fall into different major river basins and in different physiographic regions. A description of the Valley and Ridge, Blue Ridge, Piedmont, and Coastal Plain physiographic regions of Georgia is included, and the erosion parameters found from flume measurements are associated with their respective regions. Flume measurements were performed using a rectangular, tilting, recirculating flume located in the hydraulics lab in the School of Civil and Environmental Engineering at Georgia Tech. Velocities up to 1.7 m/s and bed shear stresses up to 21 Pa can be achieved in the flume. Regression analysis was performed on erosion rates as a function of applied shear stress to determine the parameters of the erosion function. The resulting parameters, the critical shear stress and the erosion rate constant, were correlated with soil properties and physiographic regions. Experimental methodology was chosen to approach this problem because the involvement of interparticle forces for fine-grained materials makes it difficult to deal with the erosion phenomenon through other means. Nevertheless, analytical description of the erosion phenomenon was included in order to provide a better understanding of it. Linear, exponential and power regression mathematical models for erosion rate were compared, and the two best-fit regression models of erosion rate as a function of shear stress are proposed to formulate a methodology intended to characterize the behavior of a soil exposed to erosive flow conditions. One of them is a linear model to calculate critical shear stresses and low erosion rates. The second model, which is exponential, has the advantage of describing the erosion rate response for a wider range of shear stress values. It is shown that one of the most relevant predictors for the critical shear stress and erosion rate constant in the regression models is the fine material content present in the sample, which is an indirect indicator of the contribution of interparticle forces to the erosion process. Applying the described methodology, a more case-specific calculation of the erosion at bridge foundations can be performed taking into account the actual material in situ.
APA, Harvard, Vancouver, ISO, and other styles
5

Segarra, Eduardo. "A dynamic analysis of the crop productivity impacts of soil erosion: an application to the Piedmont area of Virginia." Diss., Virginia Polytechnic Institute and State University, 1986. http://hdl.handle.net/10919/51930.

Full text
Abstract:
This study was born out of the desire to analyze the complex soil management problem faced by individual economic agents as well as society. The focus of this study, however, was on the theoretical formulation and estimation of partial equilibrium dynamic economic models directed toward optimizing the private use of the soil resource. In particular, four empirical representative farm models were formulated. Solutions to the four representative farm models showed that sizable reductions in topsoil loss, which contributes to non-point source pollution, and aggravates the crop productivity impacts of soil erosion, can be accomplished by adopting alternative support practices. Because of the change in support practices, reductions in the present value of net returns are expected, but this decrease in return was found to be minimal when compared to reductions in topsoil loss. Policy implications as well as several policy recommendations stemming from those results, with respect to soil conservation, are outlined and analyzed.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
6

Mengler, Faron. "Gully erosion on rehabilitated bauxite mines." University of Western Australia. School of Earth and Geographical Sciences, 2008. http://theses.library.uwa.edu.au/adt-WU2008.0176.

Full text
Abstract:
[Truncated abstract] Landforms rehabilitated after bauxite mining can be vulnerable to soil loss by water erosion processes. On most rehabilitated sites, management controls such as deep ripping, contour mounding and landscaped sub-catchments limit erosion. Despite these measures, severe gully erosion that is anecdotally associated with steep slopes can damage rehabilitated areas and affect downstream drinking water resources. A review of erosion dynamics reveals that gullies develop episodically and in a non-linear manner. They often initiated as a near surface process and are influenced by natural climatic drivers. Despite this, local site characteristics including soil and landform can predispose an area to gully erosion. Moreover, erosion models, becoming more-widely utilized within the mining industry, may provide useful tools with which to measure, analyse, and manage gully erosion. One of these models, SIBERIA was tested to determine its suitability for application a tool to help manage erosion risk. We first surveyed 26 eroding and erosion-prone rehabilitated hillslopes to determine the common form and setting for gully erosion on these rehabilitated bauxite mines. A conceptual model was developed to include and explore the interplay between the common causes of the gullies surveyed. The conceptual model accounts for slope steepness but suggests that additionally, certain triggers and threshold effects operating under different site conditions are as influential (or even more influential) than slope steepness as determinants of gully erosion occurrence and severity. ... Soil properties and soil erodibility had some subtle influence on landform stability and erosion risk. The most-erodible media occurred where either: mine floor material was mixed with topsoil/ overburden; and/or the topsoil/overburden layer was thin or its coverage is patchy resulting in slaking subsoil, hardsetting soil and surface crusts. When erodible surface media were combined with steeper (>8[degrees]) or longer (>50 m) slopes or with any major erosion trigger, rill and gully development was greatly intensified. The SIBERIA simulation model was calibrated and its simulated outputs were compared to known locations of gully erosion on a steep, rehabilitated pit from the Willowdale mine. At a resolution of one metre, SIBERIA was able to simulate the approximate dimensions of gullies. However, SIBERIA could not simulate the exact location of individual gully headcuts. Additionally, SIBERA was able to simulate the effect of different microtopographic surface treatments but this was only achieved by increasing the grid resolution to 25 cm and reducing the size of the area simulated due to model constraints. Locations of gully headcuts were overlain onto a grid-based, Digital Elevation Model (DEM) using a Geographic Information System (GIS). The spatial distribution of gully headcut locations was compared to DEM derivatives such as slope and flow accumulation. Positive, and predictive relationships allow between the steepness of the slope of the pre-mining landform and the cell count of the area contributing to flow (catchment), as determined by GIS, may allow a mine scale indication of erosion risk using simple GIS desktop analysis.
APA, Harvard, Vancouver, ISO, and other styles
7

Cox, Christopher 1967. "Watershed master planning for St. Lucia using geographic information systems." Thesis, McGill University, 1997. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=27303.

Full text
Abstract:
A method for estimating long-term average annual soil loss under different land management scenarios from the Marquis and Soufriere watersheds on St. Lucia is presented. The Revised Universal Soil Loss Equation (RUSLE) was used, and a GIS was employed to generate the required input parameters. Model execution and results were also generated within the GIS. Modelling soil loss for the different land management scenarios was based upon a land capability classification and associated conservation treatments. Soil losses under current agricultural land-use patterns were analyzed and compared to potential soil losses under conservation treatments following the criteria specified in the land capability classification. The model predicted substantial declines in soil loss where conservation treatments were assigned, as compared to soil loss under current land-use patterns. It was found that predicted soil losses from the Soufriere watershed were four times that predicted for the Marquis watershed for all the land management scenarios modelled. Of the input parameters in the model, slope steepness was most highly correlated to predicted soil loss. It is anticipated that the findings of this study will be used in the development of a decision support system for agricultural and forestry land planning on St. Lucia.
APA, Harvard, Vancouver, ISO, and other styles
8

Castro, Luciana Gomes. "Dinâmica da água em terraços de infiltração." Universidade de São Paulo, 2001. http://www.teses.usp.br/teses/disponiveis/11/11140/tde-26062002-145103/.

Full text
Abstract:
O terraceamento é uma prática de conservação do solo que visa reduzir a perda de água e solo pela interceptação de enxurradas que ocorrem quando a intensidade da chuva supera a capacidade de infiltração de água no solo. Atualmente, o dimensionamento dos terraços tem sido feito com base em conhecimento empírico; no entanto, um conhecimento mais detalhado da física dos processos que regem o funcionamento dos terraços possibilitaria otimizar o dimensionamento dos terraços. No presente estudo foi avaliada a capacidade de infiltração de água no canal de um terraço em nível pelos métodos da densidade de fluxo e da armazenagem de água em diferentes condições de manejo agrícola (solo nu, solo gramado e solo sob preparo convencional e plantio direto para a implantação da cultura de milho) num Latossolo vermelho com declividade média de 0,08 m m-1. Em cada tratamento foram instaladas sondas de TDR em três pontos de observação no centro do canal do terraço (distanciados de 4 m entre si e considerados como repetições), nas rofundidades de 0,05, 0,10, 0,20, 0,40, 0,60 e 0,80 m. Nestas mesmas profundidades amostras indeformadas de solo foram retiradas para determinação da densidade e curva de retenção de água no solo. As leituras das guias de onda do TDR foram feitas automaticamente e a intensidade de chuva monitorada por um pluviômetro automatizado. Ao final de cada evento de chuva erosiva a deposição de solo foi medida por meio de 14 pontos de observação dispostos ao longo do centro do canal do terraço de cada tratamento. Durante a estação seca (julho-agosto), a condutividade hidráulica do solo não saturado foi determinada em cada repetição nas mesmas profundidades, utilizando o método do perfil instantâneo. Os resultados demonstraram que os manejos agrícolas influenciam na deposição de água e solo sobre o canal do terraço e estas na formação de selo superficial e na capacidade de infiltração de água do canal. Conclui-se que a alta variação comumente obtida entre as repetições de determinação da condutividade hidráulica implica em dificuldades quando se objetiva detectar pequenas diferenças nas densidades de fluxo entre tratamentos. Assim, mostrou ser inviável utilizar densidades de fluxo calculadas pela equação de Darcy-Buckingham para encontrar diferenças em taxas de infiltração em terraços em nível. Essa conclusão reforça-se devido às condições superficiais altamente variáveis encontradas em canais de terraços em nível devido a deposições irregulares do material erodido. Uma metodologia para se realizar medições da umidade nas deposições sobre o canal deve ser desenvolvida para aumentar a acurácia da medida da armazenagem. A taxa de infiltração de água no canal do terraço não pode ser estimada pela variação da armazenagem da água no solo somente, devido ao papel importante da drenagem profunda e, possivelmente, da absorção de água pela camalhão do terraço. Uma adequada estimativa da taxa de infiltração no canal do terraço, imprescindível para seu dimensionamento, deve aliar um grande número de repetições, além da medição da umidade no interior da camada de material depositado sobre o canal ao longo do tempo.
Terracing is a soil conservation practice that aims to reduce water and soil loss by interception of runoff that occurs when rainfall intensities exceed infiltration capacity. Actually, dimensions of terraces are being determined in an empirical way; however, a more detailed understanding of the physics behind the hydrological functions of terraces would allow an optimized dimensioning of terraces. In this study the infiltration capacity of a level terrace was evaluated by the methods of flux density and water storage, under different management conditions (bare soil, pasture, conventionally tilled maize and zero-tillage maize) on an oxisol with a slope of 0.08 m m-1. In each treatment TDR sensors were installed at three observation points in the middle of the terrace canal (distance between points: 4 m; considered to be repetitions) at the depths of 0.05, 0.10, 0.20, 0.40, 0.60 and 0.80 m. At the same depths, undisturbed soil samples were taken to determine soil density and soil water retention curve. TDR readings were made automatically and a rainfall gauge automatically monitored rainfall intensity. At the end of each rainfall event, soil deposition was measured at 14 locations in the terrace canal in each treatment. During the dry season (July-August), unsaturated hydraulic conductivity was determined at each repetition at the same depths by the instantaneous profile method. The results showed that agricultural management influenced water and soil deposition in the terrace canal and these affected surfaced sealing and infiltration capacity. It was concluded that the high variation usually obtained between repetitions of the hydraulic conductivity determinations makes the detection of small differences between flux densities difficult. Therefore, it showed to be impossible to use flux densities calculated by Darcy-Buckingham equation in the order to prove existence of different infiltration rates in level terraces. This conclusion was reinforced due to the highly variable surface conditions in the terrace canal. A methodology to measure water contents within the depositions in the canal should be developed to increase the precision of water storage estimation. Infiltration rates in the terrace canal cannot be estimated by storage variation alone, due to the important role of drainage and, possibly, ascension of water in the terrace hill. A correct estimate of the infiltration rate in the canal, necessary for its dimensioning, should combine a high number of repetitions with the measurement of water content within the layer of deposits over the terrace canal surface along time.
APA, Harvard, Vancouver, ISO, and other styles
9

Galdino, Sérgio. "Estimativa da perda de terra sob pastagens cultivadas em solos arenosos da bacia hidrográfica do alto Taquari - MS/MT." [s.n.], 2012. http://repositorio.unicamp.br/jspui/handle/REPOSIP/256830.

Full text
Abstract:
Orientadores: Mara de Andrade Marinho, Edson Eiji Matsura
Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Agrícola
Made available in DSpace on 2018-08-20T22:57:38Z (GMT). No. of bitstreams: 1 Galdino_Sergio_D.pdf: 11328709 bytes, checksum: e5e5fc6d26b74b20826ad8a8bc4a4cef (MD5) Previous issue date: 2012
Resumo: O assoreamento do rio Taquari constitui grave problema ambiental e socioeconômico do Pantanal Brasileiro e decorre principalmente da erosão acelerada do solo ocupado com pastagens degradadas na parte alta da bacia. Um dos modelos mais utilizado para estimar a perda média anual de solo é a Equação Universal de Perda de Solo (USLE). Novas pesquisas foram realizadas para melhorar as estimativas do modelo, originando a Equação Universal de Perda de Solo Revisada (RUSLE). A principal mudança foi na forma de determinação do fator de uso e manejo do solo (C). Na USLE o fator C é obtido a partir do monitoramento constante da perda de solo em parcelas experimentais durante vários anos, constituindo sério empecilho a sua determinação, principalmente no Brasil. Na RUSLE o fator C para pastagens é estimado mais rapidamente, a partir de levantamentos de parâmetros do solo e da vegetação. O objetivo geral do trabalho foi ajustar os fatores da RUSLE às condições locais da bacia do alto Taquari (BAT) e estimar as taxas de perda de solo por erosão, para posterior estudo de cenários de manejo e identificação das práticas mais protetoras dos solos na bacia. O estudo compreendeu áreas de pastagens cultivadas em solos arenosos da BAT. Os parâmetros necessários para estimativas da razão de perda de solo (SLR) e fator C da RUSLE foram levantados em nove parcelas (pastagens) em duas épocas do ano. Análise da SLR e do fator C identificaram valores de C representativos de pastagem não degradada e com níveis de degradação; baixo/médio e alto. Na espacialização do fator C na BAT utilizou-se o modelo linear de mistura espectral. Para a estimativa das perdas de solo nas áreas de pastagens também foram espacializados os demais fatores da RUSLE. A erosividade das chuvas (Fator R) foi estimada a partir de registros mensais e anuais de precipitação de postos pluviométricos localizados na BAT e entorno. Na estimativa da erodibilidade do solo (Fator K) foram utilizados parâmetros físico-químicos do solo levantados no campo. O fator topográfico (LS da RUSLE) foi obtido empregando algoritmo de contribuição de área a montante e modelo digital de elevação do Banco de Dados Geomorfométricos do Brasil (TOPODATA). O fator de práticas conservacionistas do solo (Fator P) foi considerado unitário na estimativa da perda de solo atual na BAT. Também foram estimadas as perdas de solo para dois cenários futuros de manejo adequado do solo e da pastagem. Resultado evidenciou que os valores do fator C estimados pela RUSLE para pastagens se assemelham àqueles determinados pela USLE. A média da perda de solo nas pastagens da BAT em 2010 foi estimada em 9,638 Mg ha-1 ano-1. O estudo de cenários permitiu uma redução em até 75,97% das taxas de perda de solo por erosão com a implementação de manejo adequado do solo e da pastagem. Conclui-se que a RUSLE apresenta bom potencial de estimativa do fator de uso e cobertura do solo, e que se ajustou bem às condições locais da BAT na estimativa da perda de solo
Abstract: The river siltation Taquari constitutes serious environmental and socioeconomic problem of the Brazilian Pantanal and arises principally from accelerated erosion of land occupied by degraded pastures in the upper basin. One of the models used to estimate the average annual soil loss is the Universal Soil Loss Equation (USLE). New research has been done to improve the model estimates, yielding the Revised Universal Soil Loss Equation (RUSLE). The main change was in the method determines the use and soil management factor (C). With USLE, the C factor is obtained from the constant monitoring of soil loss in plots for several years, constituting serious impediment to their determination, especially in Brazil. With RUSLE, the C factor for pastures is estimated sooner, using surveys of soil parameters and vegetation. The overall goal of this work was to adjust RUSLE factors to upper Taquari basin (UTB) local conditions and to estimate soil loss rates due to erosion, for further management scenarios studies and more protective soil identification practices in the basin. The study included pastures grown on sandy soils of the UTB. The required parameters for soil loss ratio estimates (SLR) and the RUSLE C factor were raised in nine plots (pastures) in two seasons. Further SLR analysis identified C factor values for non-degraded, low, medium and highly degraded pasture levels. C factor spatialization for the UTB used the linear spectral mixture model. To estimate soil loss in grazing areas other RUSLE factors were also spatialized. The rainfall erosivity factor (R) was estimated from records of monthly and annual precipitation of rain gauge stations located in and around the UTB. For soil erodibility (K factor) estimation, physic-chemical soil parameters collected in the area were used. The topographic factor (LS RUSLE) was obtained using algorithm contribution of the upstream area and Brazilian geomorphometric digital elevation model data from TOPODATA. The soil conservation practices factor (P) unit was considered estimating soil loss in the UTB. Two future soil loss scenarios were also estimated. Results showed that the C factor values estimated by RUSLE for pastures resemble those determined by USLE. The average soil loss in the pastures of the UTB in 2010 was estimated at 9.638 Mg ha-1 yr-1. The scenario study allowed for a reduction up to 75.97% in the rates of soil loss due to erosion by implementing proper soil and pasture management. We conclude that the RUSLE estimation shows good potential for land use techniques, which fits well into the UTB local conditions and in the estimation of soil loss
Doutorado
Planejamento e Desenvolvimento Rural Sustentável
Doutor em Engenharia Agrícola
APA, Harvard, Vancouver, ISO, and other styles
10

Dissart, Jean-Christophe. "The economics of erosion and sustainable practices : the case of the Saint-Esprit watershed." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape10/PQDD_0006/MQ44158.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Psaris, Alexander Michael. "Assessing Hydrologic and Water Quality Sensitivities to Precipitation Changes, Urban Growth and Land Management Using SWAT." PDXScholar, 2014. https://pdxscholar.library.pdx.edu/open_access_etds/1783.

Full text
Abstract:
Precipitation changes and urban growth are two factors altering the state of water quality. Changes in precipitation will alter the amount and timing of flows, and the corresponding sediment and nutrient dynamics. Meanwhile, densification associated with urban growth will create more impervious surfaces which will alter sediment and nutrient loadings. Land and water managers often rely on models to develop possible future scenarios and devise management responses to these projected changes. We use the Soil and Water Assessment Tool (SWAT) to assess the sensitivities of stream flow, sediment, and nutrient loads in two urbanizing watersheds in Northwest Oregon, USA to various climate and urbanization scenarios. We evaluate the spatial patterns climate change and urban growth will have on water, sediment and nutrient yields. We also identify critical source areas (CSAs) and investigate how implementation of vegetative filter strips (VFS) could ameliorate the effects of these changes. Our findings suggest that: 1) Water yield is tightly coupled to precipitation. 2) Large increases in winter and spring precipitation provide enough sub-surface storage to increase summertime water yields despite a moderate decrease in summer precipitation. 3) Expansion of urban areas increases surface runoff and has mixed effects on sediment and nutrients. 4) Implementation of VFS reduces pollutant loads helping overall watershed health. This research demonstrates the usefulness of SWAT in facilitating informed land and water management decisions.
APA, Harvard, Vancouver, ISO, and other styles
12

Zhong, Yiming. "Modelling sediment transportation and overland flow." Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:a45eefae-5a0f-4917-9abb-261ae792f2ee.

Full text
Abstract:
The erosion and transport of fertile topsoil is a serious problem in the U.S., Australia, China and throughout Europe. It results in extensive environmental damage, reduces soil fertility and productivity, and causes significant environmental loss. It is as big a threat to the future sustainability of global populations as climate change, but receives far less attention. With both chemicals (fertilizers, pesticides, herbicides) and biological pathogens (bacteria, viruses) preferentially sorbing to silt and clay sized soil particles, estimating contaminant fluxes in eroded soil also requires predicting the transported soils particle size distribution. The Hairsine-Rose (HR) erosion model is considered in this thesis as it is one of the very few that is specifically designed to incorporate the effect of particle size distribution, and differentiates between non-cohesive previously eroded soil compared with cohesive un-eroded soil. This thesis develops a new extended erosion model that couples the HR approach with the one-dimensional St Venant equations, and an Exner bed evolution equation to allow for feedback effects from changes in the local bed slope on surface hydraulics and erosion rates to be included. The resulting system of 2I +3 (where I = number of particle size classes) nonlinear hyperbolic partial differential equations is then solved numerically using a Liska-Wendroff predictor corrector finite difference scheme. Approximate analytical solutions and series expansions are derived to overcome singularities in the numerical solutions arising from either boundary or initial conditions corresponding to a zero flow depth. Three separate practical applications of the extended HR model are then considered in this thesis, (i) flow through vegetative buffer strips, (ii) modelling discharge hysteresis loops and (iii) the growth of antidunes, transportational cyclic steps and travelling wave solutions. It is shown by comparison against published experimental flume data that predictions from the extended model are able to closely match measurements of deposited sediment distribution both upstream and within the vegetative buffer strip. The experiments were conducted with supercritical inflow to the flume which due to the increased drag from the vegetative strip, resulted in a hydraulic jump just upstream of the vegetation. As suspended sediment deposited at the jump, this resulted in the jump slowly migrating upstream. The numerical solutions were also able to predict the position and hydraulic jump and the flow depth throughout the flume, including within the vegetative strip, very well. In the second application, it is found that the extended HR model is the first one that can produce all known types of measured hysteresis loops in sediment discharge outlet data. Five main loop types occur (a) clockwise, (b) counter-clockwise, (c,d) figure 8 of both flow orientations and (e) single curve. It is clearly shown that complicated temporal rainfall patterns or bed geometry are not required to developed complicated hysteresis loops, but it is the spatial distribution of previously eroded sediment that remains for the start of a new erosion event, which primarily governs the form of the hysteresis loop. The role of the evolution of the sediment distribution in the deposited layer therefore controls loop shape and behavior. Erosion models that are based solely on suspended sediment are therefore unable to reproduce these hysteretic loops without a priori imposing a hysteretic relationship on the parameterisations of the erosion source terms. The rather surprising result that the loop shape is also dominated by the suspended concentration of the smallest particle size is shown and discussed. In the third application, a linear stability analysis shows that instabilities, antidunes, will grow and propagate upstream under supercritical flow conditions. Numerical simulations are carried out that confirm the stability analysis and show the development and movement of antidunes. For various initial parameter configurations a series of travelling antidunes, or transportational cyclic steps, separated by hydraulic jumps are shown to develop and evolve to a steady form and wave speed. Two different forms arise whereby (a) the deposited layer completely shields the underlying original cohesive soil so that the cohesive layer plays no role in the speed or shape of the wave profile or (b) the cohesive soil is exposed along the back of the wave such that both the non-cohesive and cohesive layers affect the wave profile. Under (a) the solutions are obtained up to an additive constant as the actual location of the boundary of the cohesive soil is not required, whereas for (b) this constant must be determined in order to find the location on the antidune from where the cohesive soil becomes accessible. For single size class soils the leading order travelling wave equations are fairly straightforward to obtain for both cases (a) and (b). However for multi-size class soils, this becomes much more demanding as up to 2I + 3 parameters must be found iteratively to define the solution as each size class has its own wave profile in suspension and in the antidune.
APA, Harvard, Vancouver, ISO, and other styles
13

Karimov, Vladimir Rustemovich. "Mathematical modeling of ephemeral gully erosion." Diss., Kansas State University, 2017. http://hdl.handle.net/2097/38230.

Full text
Abstract:
Doctor of Philosophy
Department of Biological & Agricultural Engineering
Aleksey Y. Sheshukov
As the world faces an increasing demand for food due to the growing global population and the pernicious effects of land degradation, there is a need to overcome this challenge by using sustainable management practices for agricultural productions. One of the problems, which sustainable agriculture seeks to address, is the loss of topsoil due to soil erosion. Changing weather patterns also contribute to the average annual rainfall across the globe with an excess precipitation, which creates runoff and causes soil erosion. One of the significant yet less studied types of soil erosion is ephemeral gully erosion. Formed by the concentrated overland flow during intensive rainfall events, ephemeral gullies are channels on agricultural fields that can be removed by tillage operations but appear at the same location every year. Even though simplified ephemeral gully models estimate soil losses, they do not account for complicated hydrological and soil erosion processes of channel formations. The purpose of this research work is to investigate sediment sources and develop tools that can predict ephemeral gully erosion more efficiently. To achieve this goal, an experimental study was conducted on an agricultural field in central Kansas by tracking channel development, monitoring soil moisture content, and recording the amount of rainfall. Runoff and sediment loads from contributing catchment and critical and actual shear stresses were estimated by the computer model, and conclusions were made on the effect of saturation dynamics on the erosion processes. Furthermore, a two-dimensional subsurface water flow and soil erosion model was developed with the variable soil erodibility parameters which account for the subsurface fluxes and the effects on the soil detachment process. The model was applied to study the impacts of variable soil erodibility parameters on the erosion process for different soils and various antecedent soil moisture conditions. Also developed to estimate the soil losses at the field scale was an integrated spatially-distributed ephemeral gully model with dynamic time-dependent channel development. The model showed good fit by matching the experimental data. The results from this work can be used to advance the research of soil erosion prediction from concentrated flow channels and ephemeral gullies formed on agricultural fields.
APA, Harvard, Vancouver, ISO, and other styles
14

Greener, Mark. "Incorporating sediment transport competence into existing soil erosion models." Thesis, University of Leicester, 2001. http://hdl.handle.net/2381/30393.

Full text
Abstract:
Competence in this thesis is defined as a limit to the maximum size of particle that can be detached and transported in rain-impacted interrill overland flow. Although there is evidence to show that there is some form of size selectivity occurring in rain-impacted interrill overland flow (i.e. competence), most modern soil erosion models do not simulate competence as a limit to erosion. Existing competence equations were not developed in the shallow rain-impacted flow that occurs in interrill areas. A new competence equation was developed in the laboratory under rain-impacted flow. The new competence equation was used to form the basis of an algorithm designed to incorporate competence in existing soil erosion models. SMODERP was chosen as a suitable model used to assess the effect of competence on rain-impacted interrill erosion. The code of SMODERP was studied and the variables required by the competence algorithm located. The competence algorithm required an input of erosion per model time step, SMODERP did not provided this and had to be modified to yield erosion per time step. The new versions of SMODERP were tested on plot scale data. The effect of competence was found to be large, reducing erosion by a factor of between 3 and 65 times. Competence had the greatest effect on erosion on lower rainfall intensity events. The competence algorithm assumed that there was no spatial or temporal change in surface texture. This assumption was investigated at the field, plot and laboratory scale. There was found to be some temporal and spatial variation in surface texture but only at the laboratory scale and to a lesser extent at the plot scale. This suggests that at smaller scales there is a spatial and temporal variation in surface texture but this variation does not occur at larger scales where other processes may dominate. This thesis has identified a limit (competence) not simulated in most soil erosion models and provided an approach to including this limit into soil erosion models. The effects of competence was shown to be large but more work is need in this area to more fully assess the effect of incorporating sediment transport competence into existing soil erosion models.
APA, Harvard, Vancouver, ISO, and other styles
15

Favis-Mortlock, David. "Use and abuse of soil erosion models in Southern England." Thesis, University of Brighton, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.260393.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Ma, Ning. "Mathematical Modelling of Water Soil Erosion and Sediment Yield in Large Catchments." Thesis, Link to the online version, 2006. http://hdl.handle.net/10019/575.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Bobe, Bedadi Woreka. "Evaluation of soil erosion in the Harerge region of Ethiopia using soil loss models, rainfall simulation and field trails." Pretoria : [s.n.], 2004. http://upetd.up.ac.za/thesis/available/etd-08022004-141533.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Barrett, Gary Edward. "Infiltration in water repellent soil." Thesis, University of British Columbia, 1988. http://hdl.handle.net/2429/28618.

Full text
Abstract:
Observations made at Goat Meadows - a small sub-alpine basin located near Pemberton, British Columbia -demonstrated that a layer which is either water repellent or has only a limited affinity for water is present at most vegetated sites. The layer is typically a few centimetres in thickness, and is usually located at or near the top of the profile: it was present only in the zone of accumulation of organic matter. The spatial distribution of the layer did not appear to be related to the distribution of any particular species of plant. Sampling of sub-alpine sites in the Cascade, Selkirk, and Purcell Mountains indicated that such layers are common in the alpine - sub-alpine ecotone of southern British Columbia. The relationship between ponding depth and infiltration rate was explored through experiments conducted on samples collected near Ash Lake, in Goat Meadows. These samples were chosen for analysis because the repellent layer was in excess of thirty centimetres thick at this site. Infiltration rates remained below 2x10⁻⁹ m/s for all samples, even given ponding depths of up to forty centimetres. Breakthrough of liquid water was not observed, even after one month, which implies that most of the infiltration occurred as vapour transfer. In order to observe the movement of liquid water through water repellent media, a plexiglas cell was constructed. A synthetic water repellent sand with uniform surface properties was used as the medium. It was found that up to some critical depth, there was no entry of water into the medium. As the ponding depth was increased in steps, the front would advance in steps: it remained stationary between these step-increases in ponding depth. As the front advanced, protuberances or "fingers" began to develop. At some critical ponding depth, a finger would grow without bound. These observations pose a challenge to existing models of infiltration, since it appears that heterogeneity at the scale of individual pores must be invoked to explain them, but it is usually assumed that the properties of a porous medium are continuous at this scale. The thermodynamics of filling and emptying of pores is considered with emphasis on the effects of pore shape and of variations in the physicochemical properties at the scale of the pore. This thermodynamic analysis provides the conceptual basis for development of a model of infiltration in which pore-scale heterogeneity is preserved. Although it was not developed as such, the model follows the approach of cellular automata, in which local relations between pores or "cells" govern the behaviour of the system. The model replicated the observations of infiltration into synthetic water repellent porous media well: both the halting advance of the front as the ponding depth was increased and the development of fingers were simulated. The fact that such complex behaviour was predicted using only a simple set of physically based rules confirms the power of the approach.
Arts, Faculty of
Geography, Department of
Graduate
APA, Harvard, Vancouver, ISO, and other styles
19

Crudge, Steven. "Quantification of rill erosion using field measurements and remote sensing techniques." Thesis, University of British Columbia, 1987. http://hdl.handle.net/2429/26196.

Full text
Abstract:
This research examines the use of remote sensing techniques to quantify rill erosion in two agricultural fields in the Lower Fraser Valley. Soil erosion during the winter is particularly problematic in some of the sloping soils developed from loess over glacio-marine parent materials. New techniques are needed to quantify rill erosion on a timely basis, and this research focuses on measuring the extent and rate of rill erosion from field and aerial photograph measurements. A model which used rill measurements as input, was used to determine the rill plan areas, rill volumes, and thus rill erosion rates in the test area. Using field rillometer measurements of rills as input into the model resulted in a soil loss estimate of 49m³ /ha/yr or 38.4 t/ha/yr for the test site. This soil loss estimate is deemed to be more reliable than erosion plot and Universal Soil Loss Equation estimates of soil loss for the test area. The rill volume and plan area of three main rills, using three different rill measurement methods for input into the model, were compared. Using field measuring tape measurements of rills as input into the model, resulted in a soil loss estimate which was 16 % greater than the estimate from rillometer measurements. Using photo rill width measurements and an estimation of rill depths and bottom widths from field data as model input, resulted in a soil loss estimate which was 22 % less than the estimate from rillometer measurements. Spectral reflection measurements made in rill, interrill and depositional areas were found to be significantly different, confirming that rill erosion could be assessed in a quantitative manner using digital image analysis techniques. The spectral separation was largely due to differences in organic matter, surface roughness and imaging geometry. The latter is of particular importance in creating darker shadowed rill sides opposite bright sun-facing rill sides within a single rill. A maximum likelihood classifier, used as part of the computer based image analysis, determined the rill plan area for a sample area to be 9 % less than the rill plan area obtained from the model using rillometer input. This indicates the potential of digital analysis to quickly determine the plan area of larger rills. Digital elevation and moisture content data confirmed that the topographic shape of the field is important in determining the spatial pattern of rill formation. The combination of such data with image analysis and geographic information systems (GIS) have great potential in the timely quantification of erosion in the future.
Land and Food Systems, Faculty of
Graduate
APA, Harvard, Vancouver, ISO, and other styles
20

Sorooshian, Soroosh, and Vijai Kumar Gupta. "Improving the Reliability of Compartmental Models: Case of Conceptual Hydrologic Rainfall-Runoff Models." Department of Hydrology and Water Resources, University of Arizona (Tucson, AZ), 1986. http://hdl.handle.net/10150/614011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Romanel, Celso 1952. "DYNAMIC SOIL-STRUCTURE INTERACTION IN A LAYERED MEDIUM." Thesis, The University of Arizona, 1987. http://hdl.handle.net/10150/276511.

Full text
Abstract:
The most popular method in dynamic soil-structure interaction analysis is the finite element method. The versatility in problems involving different materials and complex geometries is its main advantage, yet FEM can not simulate unbounded domains completely. A hybrid method is proposed in this research, which models the near field (structure and surrounding soil) by finite elements and the far field by a continuum approach. The system is excited by monochromatic body waves (P and SV) propagating with oblique incidence and harmonic time dependence. The far field problem is solved using Thomson-Haskell formulation associated with the delta matrix technique. The soil profile does not contain any soft layer and the layers are assumed to be linearly elastic, isotropic, homogeneous and perfectly bonded at the interfaces. Two-dimensional (in-plane) formulation is considered and the analysis is performed on both k- and o-planes through time and spatial Fourier transforms of the field equations and boundary conditions. (Abstract shortened with permission of author.)
APA, Harvard, Vancouver, ISO, and other styles
22

Choi, Daniel Mintae. "Rainfall intensity and soil erosion by water : limitations of current erosion models and implications for erosion model-based studies under future climates." Thesis, University of Oxford, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.604890.

Full text
Abstract:
Existing simulation studies of the effects of future climate change upon erosion indicate that, under land usages that leave the soil unprotected, even minor increases in rainfall amounts are likely to result in disproportionately large increases in erosion, but commonly make the simplifying assumption that distributions of future rainfall intensities remain unchanged from the present. This research aims to determine implications of rainfall -intensity changes on soil erosion using computerised models. Thus, this thesis is a step towards the ultimate goal of predicting future rates of soil erosion caused by future rainfall intensity changes. Three soil erosion models, WEPP, EUROSEM, and RillGrow are employed to investigate impacts of various rainfall intensities on runoff and soil loss rates. Two extreme daily rainfall events in summer and autumn are subjectively selected from the tipping-bucket rainfall data, and runoff and soil losses are simulated using three erosion models. Estimated runoff and soil loss rates with high resolution rainfall data are greater than those with low temporal resolution rainfall data. Within-Storm Intensity Patterns (WSIPs) affect soil erosion amount, although runoff was not much affected. An additional daily rainfall event with Within-Storm Gaps (WSGs) is also selected to investigate effects of WSG removals on soil erosion. For a given amount of rainfall, events with constant low intensity (constant WSIP) produced dramatically less erosion: thus it appears that assuming a constant (or averaged) intensity throughout a storm does not provide a good representation of a real rainfall with its continuously varying intensity. Analyses of outputs from WEPP simulations revealed a problem that WEPP modifies original rainfall intensity and, thus, simulates erroneous runoff and erosion rates. Future soil erosion rates are estimated using WEPP and CLIGEN data. 30 year-long weather is generated by CLIGEN. Likely future rainfall frequency and intensity are anticipated by changing the mean maximum 30 minutes peak intensity also known as MX.SP. No fu ture rainfall amount change is assumed. WEPP simulation results suggest that where mean maximum 30-min peak intensity of the wet months increases soil erosion increases at a greater rate than runoff. This research assists in improving the performance of erosion models with respect to changes of rainfall intensity by highlighting where current problem exists. In conclusion, greater knowledge found here will, once future changes in rainfall intensity become better known and appropriate rainfall data become available, improve our ability to estimate future rates of erosion.
APA, Harvard, Vancouver, ISO, and other styles
23

Sun, Hua. "Digital terrain modelling of catchment erosion and sedimentation /." Title page, contents and abstract only, 1998. http://web4.library.adelaide.edu.au/theses/09PH/09phs9565.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Park, Soojin. "Modelling soil-landform continuum on a three-dimensional hillslope." Thesis, University of Oxford, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.670238.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Mtundu, Nangantani Davies Godfrey. "The Stochastic Behavior of Soil Moisture and Its Role in Catchment Response Models." PDXScholar, 1987. https://pdxscholar.library.pdx.edu/open_access_etds/527.

Full text
Abstract:
The object of current efforts at investigating catchment response is to derive a physically based stochastic model of the watershed. Recent studies have, however, indicated that a limiting factor in deriving such models is the dependence of hydrologic response on initial soil moisture. The dependence affects the distributions and moments of the hydrological processes being investigated. A stochastic model of soil moisture dynamics is developed in the form of a pair of stochastic differential equations (SDE's) of the Ito type. The sources of stochasticity are linked to the random inputs of rainfall and evapotranspiration (ET). One of the SDE's describes the "surplus" case, in which sufficient infiltration always occurs to allow for moisture depletion by the processes of drainage through and ET out of the root zone. The other SDE represents the "deficit" case, in which lack of adequate moisture leads only to an ET-controlled depletion process. Sample functions and moments of moisture evolution are obtained from the SDE's. From the general model of soil moisture, a specific model of initial soil moisture (the moisture at the beginning of a rainstorm event) is developed and its moments are derived. Furthermore, the probability distribution of initial moisture is postulated to permit the assessment of how initial moisture affects the estimation of hydrologic response. The moisture dynamics model reveals that the stochastic properties of moisture ae sensitive to initial conditions in the watershed only for less permeable soils under the "surplus" state but are practically insensitive to such conditions for more permeable soils. The stochastic properties are also less sensitive to initial conditions for all soil types whenever under the "deficit" state. These results suggest that hydrologic processes, such as precipitation excess and infiltration, depend on initial moisture only in regions where the soils are generally less permeable and where the climate tends to sustain a "wet" environment, whereas in arid or semi-arid regions, such processes would not depend on initial moisture. These conclusions imply that, in arid regions, an effective value of initial moisture such as the mean can be used to estimate the properties of the hydrologic processes, whereas in "wet" environments, more accurate values of the properties must be "weighted" based on the probability distribution of initial soil moisture.
APA, Harvard, Vancouver, ISO, and other styles
26

Musa, Zulkarnain 1964. "An accelerated conjugate direction procedure for slope stability analysis." Thesis, The University of Arizona, 1988. http://hdl.handle.net/10150/276912.

Full text
Abstract:
CSLIP2 (De Natale, 1987) is the only slope stability program that utilizes a "direction set" optimization routine in its search for the minimum safety factor. However, CSLIP2 which employs Powell's Conjugate Direction Method permits only the horizontal and vertical directions (x and y) to be used as the initial direction set. The efficiency of the existing search routine is improved by replacing the x-y coordinate directions with initial directions that are parallel to and perpendicular to the principal axis of the safety factor contours.
APA, Harvard, Vancouver, ISO, and other styles
27

Romanel, Celso. "A global-local approach for dynamic soil-structure interaction analysis of deeply embedded structures in a layered medium." Diss., The University of Arizona, 1989. http://hdl.handle.net/10150/184762.

Full text
Abstract:
The most popular method for dynamic soil-structure interaction analysis is the finite element method. The versatility in problems involving different materials and complex geometries is its main advantage, yet the FEM can not simulate unbounded domains completely. Several schemes have been proposed to overcome this shortcoming, such as the use of either imperfect or perfect transmitting boundaries, infinite elements and hybrid techniques. However, most of them were derived on the assumption that the soil mass can be represented as a homogeneous material despite the fact that stratified soil deposits are a common occurrence in nature. A hybrid method is proposed in this research for soil-structure interaction analysis in the frequency domain involving a multilayered linear elastic half-space. The near field region (structure and a portion of soil surrounding it) is modeled by finite elements while the far field formulation is obtained through the classical wave propagation theory based on the assumption that the actual scattered wave fields can be represented by a set of line sources. Traction reciprocity between the two regions is satisfied exactly, while the displacement continuity across the common interface is enforced in a least-squares sense. The two-dimensional system is excited by harmonic body waves (P and SV) propagating with oblique incidence. The structure can be considered either on the surface or deeply embedded in the multilayered half-space. Analytic solutions for the far field domain is obtained through the combined response of four simple problems that take into account the overall effects of the incident, reflected and scattered wave fields. The delta matrix technique is employed in order to eliminate the loss of precision problem associated with the Thomson-Haskell matrix method in its original form. Special numerical schemes are used to transform the solution from the κ- into the ω-plane due to the presence of poles on the path of integration. The few numerical examples studied in this research validate the proposed hybrid technique, but the relatively high computational cost required for evaluation of the Green's functions is still a serious drawback. Some suggestions are made to minimize the problem as well as to extend this technique to cases involving material attenuation and forced vibrations.
APA, Harvard, Vancouver, ISO, and other styles
28

Sande, Leif Andrew. "Experimental Studies on Infiltration/Soil-Water Movement Processes and Green-AMPT Modeling." Thesis, North Dakota State University, 2011. https://hdl.handle.net/10365/29329.

Full text
Abstract:
Experimental studies on infiltration/soil-water movement processes are vital to better understanding movement of soil-water in the vadose zone. The objective of this experimental research was to investigate infiltration/soil-water movement processes utilizing laboratory experiments and computer modeling. Small scale laboratory soil box infiltration experiments were conducted and utilized for the improved parameterization of the Green-Ampt (GA) saturated moisture content parameter to produce an effective moisture content parameter (Be) for utilization in a modified GA model. By incorporating ?e values into GA modeling, modeling results showed greatly improved wetting front prediction across different soil conditions. A new soil packing method was proposed for replicating complex microtopographical surfaces with uniform bulk densities in laboratory soil box experiments which proved efficient and effective at accomplishing both objectives. A rainfall simulator and an instantaneous-profile laser scanner were used to simulate rainfall and quantify surface microtopography for experiments. The results clearly show the effect of microtopography on infiltration and soil-water movement characteristics. This offers valuable insight into infiltration/soil-water movement processes as affected by different soil and surface microtopographic conditions.
National Science Foundation (Grant No. EAR-0907588)
APA, Harvard, Vancouver, ISO, and other styles
29

Hendrickson, Jene Diane, and Soroosh Sorooshian. "CALIBRATION OF RAINFALL-RUNOFF MODELS USING GRADIENT-BASED ALGORITHMS AND ANALYTIC DERIVATIVES." Department of Hydrology and Water Resources, University of Arizona (Tucson, AZ), 1987. http://hdl.handle.net/10150/614186.

Full text
Abstract:
In the past, derivative-based optimization algorithms have not frequently been used to calibrate conceptual rainfall -riff (CRR) models, partially due to difficulties associated with obtaining the required derivatives. This research applies a recently- developed technique of analytically computing derivatives of a CRR model to a complex, widely -used CRR model. The resulting least squares response surface was found to contain numerous discontinuities in the surface and derivatives. However, the surface and its derivatives were found to be everywhere finite, permitting the use of derivative -based optimization algorithms. Finite difference numeric derivatives were computed and found to be virtually identical to analytic derivatives. A comparison was made between gradient (Newton- Raphsoz) and direct (pattern search) optimization algorithms. The pattern search algorithm was found to be more robust. The lower robustness of the Newton-Raphsoi algorithm was thought to be due to discontinuities and a rough texture of the response surface.
APA, Harvard, Vancouver, ISO, and other styles
30

Ibrahim, Norkhair. "An analysis of the sensitivity of soil erosion models within a geographical information system." Thesis, University of Nottingham, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.243472.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Huang, Xin, and 黃昕. "Exploring critical-state behaviour using DEM." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2014. http://hdl.handle.net/10722/206742.

Full text
Abstract:
The critical state soil mechanics (CSSM) framework originally proposed by Schofield & Wroth (1968) has been shown to capture the mechanical behaviour of soils effectively. The particulate implementation of the discrete element method (DEM) can replicate many of the complex mechanical characteristics associated with sand. This research firstly shows that the CSSM framework is useful to assess whether a DEM simulation gives a response that is representative of a real soil. The research then explores the capacity of DEM to extend understanding of soil behaviour within the CSSM framework. The influence of sample size on the critical-state response observed in DEM simulations that use rigid-wall boundaries was examined. The observed sensitivity was shown to be caused by higher void ratios and lower contact densities adjacent to the boundaries. When the void ratio (e) and mean stress (p’) of the homogeneous interior regions were considered, the influence of sample size on the position of the critical state line (CSL) in e-log(p’) space diminished. A parametric study on the influence of the interparticle friction (μ) on the load-deformation response was carried out. The macro-scale stress-deformation characteristics were nonlinearly related to μ and the particle-scale measures (fabric, contact force distribution, etc.) varied systematically with μ. The limited effect of increases in μ on the overall strength at high μ values (μ>0.5) is attributable to transition from sliding-dominant to rolling-dominant contact behaviour. A μ value higher than 0.5 leads to a CSL in e-log(p’) space that does not capture real soil response. True-triaxial simulations with different intermediate stress ratios (b) were performed. The dependency of strength on b agreed with empirical failure criteria for sands and was related to a change of buckling modes of the strong force chains as b increased. DEM simulations showed that the position of the CSL in e-log(p’) space depends on the intermediate stress ratio b. This sensitivity seems to be related to the dependency of the directional fabric anisotropy on b. The link between the state parameter and both soil strength and dilatancy proposed by Jefferies & Been (2006) was reproduced in DEM simulations. A new rotational resistance model was proposed and it was shown that the new model can qualitatively capture the influence of particle shape on the mechanical behaviour of sand. However, it was shown that the effect of rotational resistance is limited and to quantitatively compare the DEM simulation results with laboratory testing data, e.g., the critical-state loci, it is necessary to use non-spherical particles.
published_or_final_version
Civil Engineering
Doctoral
Doctor of Philosophy
APA, Harvard, Vancouver, ISO, and other styles
32

Bobe, Bedadi Woreka. "Evaluation of soil erosion in the Harerge region of Ethiopia using soil loss models, rainfall simulation and field trials." Thesis, University of Pretoria, 2004. http://hdl.handle.net/2263/26929.

Full text
Abstract:
Accelerated soil erosion is one of the major threats to agricultural production in Ethiopia and the Harerge region is not exceptional. It is estimated that about 1.5 billion tones of soil is being eroded every year in Ethiopia. In the extreme cases, especially for the highlands, the rate of soil loss is estimated to reach up to 300 t ha-1yr-1 with an average of about 70 t ha -1yr-1 which is beyond any tolerable level. The government have made different attempts to avert the situation since 1975 through initiation of a massive program of soil conservation and rehabilitation of severely degraded lands. Despite considerable efforts, the achievements were far bellow expectations. This study was aimed at assessing the effect of some soil properties, rainfall intensity and slope gradients on surface sealing, soil erodibility, runoff and soil loss from selected sites in the Harerge region, eastern Ethiopia, using simulated rainfall. Soil loss was also estimated for the sites using Soil Loss Estimation Model for Southern Africa (SLEMSA) and the Universal soil Loss Equation (USLE). Moreover, the effectiveness of various rates and patterns of wheat residue mulching in controlling soil loss was also evaluated for one of the study sites, (i.e. Regosol of Alemaya University), under both rainfall simulation and field natural rainfall conditions. For most of the erosion parameters, the interaction among soil texture, slope gradient and rainfall intensity was significant. In general however, high rainfall intensity induced high runoff, sediment yield and splash. The effect of slope gradients on most of the erosion parameters was not significant as the slope length was too small to bring about a concentrated flow. The effect of soils dominated by any one of the three soil separates on the erosion parameters was largely dependent on rainfall intensity and slope gradient. The soils form the 15 different sites in Harerge showed different degrees of vulnerability to surface sealing, runoff and sediment yield. These differences were associated with various soil properties. Correlation of soil properties to the erosion parameters revealed that aggregate stability was the main factor that determined the susceptibility of soils to sealing, runoff and soil loss. This was in turn affected by organic carbon content, percent clay and exchangeable sodium percentage (ESP). Soils with relatively high ESP such as those at Babile (13.85) and Gelemso (7.18) were among the lowest in their aggregate stability (percent water stable aggregates of 0.25 –2.0mm diameter); and have highest runoff and sediment yield as compared to other soils in the study. Similarly, most of those soils with relatively low ESP, high organic carbon content (OC%) and high water stable aggregates such as Hamaressa, AU (Alemaya University) vertisol and AU regosol were among the least susceptible to sealing and interrill erosion. Nevertheless, some exceptions include soils like those of Hirna where high runoff was recorded whilst having relatively high OC%, low ESP and high water stable aggregates. Both the SLEMSA and USLE models were able to identify the erosion hazards for the study sites. Despite the differences in the procedures of the two models, significant correlation (r = 0.87) was observed between the values estimated by the two methods. Both models estimated higher soil loss for Gelemso, Babile, Karamara and Hamaressa. Soil loss was lower for Diredawa, AU-vertisol and AU-Alluvial all of which occur on a relatively low slope gradients. The high soil loss for Babile and Gelemso conforms with the relative soil erodibility values obtained under rainfall simulation suggesting that soil erodibility, among others, is the main factor contributing to high soil loss for these soils. The difference in the estimated soil losses for the different sites was a function of the interaction of the various factors involved. Though the laboratory soil erodibility values were low to medium for Hamaressa and Karamara, the estimated soil loss was higher owing to the field topographic situations such as high slope gradient. SLEMSA and USLE showed different degrees of sensitivities to their input variables for the conditions of the study sites. SLEMSA was highly sensitive to changes in rainfall kinetic energy (E) and soil erodibility (F) and less sensitive to the cover and slope length factors. The sensitivity of SLEMSA to changes in the cover factor was higher for areas having initially smaller percentage rainfall interception values. On the other hand, USLE was highly sensitive to slope gradient and less so to slope length as compared to the other input factors. The study on the various rates and application patterns of wheat residue on runoff and soil loss both in the laboratory rainfall simulation and under field natural rainfall conditions revealed that surface application of crop residue is more effective in reducing soil loss and runoff than incorporating the same amount of the residue into the soil. Likewise, for a particular residue application method, runoff and soil loss decreased with increasing application rate of the mulch. However, the difference was not significant between 4 Mg ha-1 and 8 Mg ha-1 wheat straw rates suggesting that the former can effectively control soil loss and can be used in areas where there is limitation of crop residues provided that other conditions are similar to that of the study site (AU Regosols). The effectiveness of lower rates of straw (i.e. less than 4 Mg ha-1 ) should also be studied. It should however be noted that the effectiveness of mulching in controlling soils loss and runoff could be different under various slope gradients, rainfall characteristics and cover types that were not covered in this study. Integrated soil and water conservation research is required to develop a comprehensive database for modelling various soil erosion parameters. Further research is therefore required on the effect of soil properties (with special emphasis to aggregate stability, clay mineralogy, exchangeable cations, soil texture and organic matter), types and rates of crop residues, cropping and tillage systems, mechanical and biological soil conservation measures on soil erosion and its conservation for a better estimation of the actual soil loss in the study sites. Copyright 2004, University of Pretoria. All rights reserved. The copyright in this work vests in the University of Pretoria. No part of this work may be reproduced or transmitted in any form or by any means, without the prior written permission of the University of Pretoria. Please cite as follows: Bobe, BW 2004, Evaluation of soil erosion in the Harerge region of Ethiopia using soil loss models, rainfall simulation and field trials, PhD thesis, University of Pretoria, Pretoria, viewed yymmdd < http://upetd.up.ac.za/thesis/available/etd-08022004-141533 / >
Thesis (PhD (Soil Science))--University of Pretoria, 2004.
Plant Production and Soil Science
unrestricted
APA, Harvard, Vancouver, ISO, and other styles
33

Galadima, A., and J. C. Silvertooth. "Mathematical Models of Potassium Release Kinetics for Sonoran Desert Soils of Arizona." College of Agriculture, University of Arizona (Tucson, AZ), 1998. http://hdl.handle.net/10150/210381.

Full text
Abstract:
The objective of this study was to determine the potassium (K) release kinetics of clay samples from 10 agricultural representative soils of Arizona by successive extraction using Ca-saturated cation resin. A 1993 physical and chemical characterization of the soils revealed that all soils contain smectite-mica K bearing minerals. Four mathematical models (power function, Elovich, parabolic diffusion and first-order) were used to describe the nonexchangeable K release reaction involving 700-hr cumulative reaction time. Comparison of the models using the coefficient of determination (r²) and the standard error of the estimate (SE) indicated that the Elovich and the power function equations overall displayed the best fit. The first-order rate and for the most part, the parabolic diffusion equation did not describe the K release very well. The constants a and b for the Elovich and the power function equations, which represent the intercept and the release rate of the nonexchangeable K respectively, are at least in the order of magnitude as those found by others in several previous studies.
APA, Harvard, Vancouver, ISO, and other styles
34

Hashem, Nadeem. "Use of high resolution remote sensing and GIS to parameterise spatially-distributed soil erosion models." Thesis, King's College London (University of London), 2002. https://kclpure.kcl.ac.uk/portal/en/theses/use-of-high-resolution-remote-sensing-and-gis-to-parameterise-spatiallydistributed-soil-erosion-models(de9a0828-c481-4b60-8acf-c2664f1ee1f1).html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Zhao, Qian, and 赵倩. "A thermomechanical approach to constitutive modeling of geomaterials." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2011. http://hub.hku.hk/bib/B47166836.

Full text
Abstract:
Modeling of the mechanical behavior of geomaterials is a fundamental yet very difficult problem in geotechnical engineering. The difficulty lies in that the engineering behavior of geomaterials is strongly nonlinear and anisotropic, depending on confining pressure, void ratio, stress history, and drainage conditions. A traditional approach to the modeling of geomaterials is to formulate empirical equations to fit experimental data. Generally, this approach is not able to provide physical insights into the diverse responses observed in the soil mechanics laboratories. Another conventional approach is to make use of the classical plasticity theory, established mainly for metals, to develop constitutive models for geomaterials. While this approach is capable of shedding light on the mechanisms involved, it has been recognized that such models may violate the basic laws of physics. The objective of this thesis is to apply a new approach to constructing constitutive models for geomaterials, by making use of thermomechanical principles. The essence of the new approach is that the constitutive behavior of geomaterials can be completely determined once two thermomechanical potentials, i.e. the free energy and dissipation rate functions, are specified. The yield function and flow rule in the classical plasticity theory can be established from the two potentials, and the models so derived satisfy the basic laws of physics automatically. In this thesis, the theoretical framework for constructing thermomechanical models is introduced. Several concepts in relation to plastic work, dissipated and stored energy are discussed. Both the isotropic and anisotropic models are formulated and realized in this framework and the generated predictions are compared with the test data of a series of triaxial compression tests on sand. To address the important density- and pressure-dependent behaviors of sand in the framework, a state-dependent thermomechanical model is developed, by introducing the state parameter into the dissipation rate function such that a unique set of model parameters is able to predict the behaviors of sand for a wide variation of densities and pressures. Finally, a thermomechanical model for predicting the complex unloading and reloading behaviors of sand is developed by modifying the hardening laws, and the performance of this model is investigated.
published_or_final_version
Civil Engineering
Master
Master of Philosophy
APA, Harvard, Vancouver, ISO, and other styles
36

He, Shu Yu. "Field study on influence of atmospheric parameters and vegetation on variation of soil suction around tree vicinity." Thesis, University of Macau, 2018. http://umaclib3.umac.mo/record=b3868734.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Wade, Charles Robert. "Evaluation of Best Management Practices for Bladed Skid Trail Erosion Control and Determination of Erosion Model Accuracy and Applicability." Thesis, Virginia Tech, 2010. http://hdl.handle.net/10919/35714.

Full text
Abstract:
Sediment is one of the leading non-point source pollutants in the U.S and has detrimental effects on biological communities such as aquatic communities; human use such as recreation; and natural processes such as flood water storage. For silvicultural operations, the majority of sediment is produced from erosion on highly disturbed areas, such as skid trails, haul roads, and log landings. Erosion from silvicultural activities not only has the potential to introduce sediment into waterways but can also decrease site productivity through the removal of topsoil. In order to minimize erosion from silvicultural operations, forestry Best Management Practices (BMPs) have been developed, but efficacies of various BMP options are not well documented. This study evaluated five closure and cover BMPs for the control of erosion on bladed skid trails through both field based measurements with sediment traps and soil erosion modeling. The erosion models used were the Universal Soil Loss Equation for Forestry (USLE â Forest), the Revised Universal Soil Loss Equation version 2 (RUSLE2), and the Water Erosion Prediction Project for Forest Roads (WEPP â Forest Roads). Erosion model predictions were also regressed against field based results to determine accuracy. The bladed skid trail BMP treatments evaluated were: 1) water bar only (Control); 2) water bar and grass seed (Seed); 3) water bar, grass seed, and straw mulch (Mulch); 4) water bar and piled hardwood slash (Hardwood Slash); and 5) water bar and piled pine slash (Pine Slash). Field based results show that the Control treatment was the most erosive (137.7 tonnes/ha/yr), followed by the Seed treatment (31.5 tonnes/ha/yr), Hardwood Slash treatment (8.9 tonnes/ha/yr), Pine Slash treatment (5.9 tonnes/ha/yr), and finally the Mulch treatment was the most effective erosion control technique (3.0 tonnes/ha/yr). Model accuracy results show that RUSLE2 performed the best overall. Both USLE â Forest and WEPP â Forest Roads under predicted values on the Control treatment, where erosion rates were very high. WEPP â Forest Roads under predicted these values the most. All models generally show that the Control was the most erosive followed by the Seed, Hardwood Slash, Pine Slash, and Mulch treatments.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
38

Richard, Paul François. "A computer analysis of the flow of water and nutrients in agricultural soils as affected by subsurface drainage." Thesis, University of British Columbia, 1988. http://hdl.handle.net/2429/29171.

Full text
Abstract:
A computer model was developed in order to determine the effects of drainage practices on nutrient losses from level agricultural soils. The model performs a daily simulation of the vertical flow of water, nitrogen, phosphorus, and heat, and of the growth of crops. A water flow submodel calculates the depth of the water table based on daily predictions of evaporation, transpiration, flow to drains and ditches, and deep percolation. An original saturated-unsaturated flow algorithm is used to determine moisture infiltration, redistribution, and upward flow in the soil matrix, as well as bypassing flow in the soil macropores and horizontal flux between the soil matrix and the macropores, and surface runoff. Nutrient movement occurs by mass flow. Heat flow, nutrient biochemical transformations, and crop growth are determined by using well established relations. Field tests were carried out for a period of two years on an experimental site in the Lower Fraser Valley of British Columbia. The water table depth was measured on a continuous basis. Grab samples of drainwater and observation wells were obtained periodically and analyzed for nitrogen (N0₃-N, NH₄-N, and TKN) and phosphorus (P0₄-P and TP). The field results show a decrease in the concentration of all nutrients over the sampling period, and provide evidence that denitrification and bypassing flow are important mechanisms affecting the nutrient balance of this soil. These results were used to calibrate the model. An excellent fit of the observed water table profile and an adequate fit of the observed drain concentration of nitrate were obtained. The simulation revealed that bypassing flow is a very important transfer mechanism in this soil and must be included in order to obtain a satisfactory fit of the experimental data. A sensitivity analysis of the model showed that the patterns of moisture flow have a predominant influence on the rate of nutrient leaching. In particular, it was found that the nutrient concentration in drain water is a strong function of the hydraulic conductivity of the soil matrix and of the horizontal distance between the soil macropores, which control the ratio of moisture flow in the soil matrix to the macropore flow and the lateral diffusion of nutrients between the soil matrix and the macropores. The effects of four different drainage designs on nutrient losses were simulated over a period of two years for three different soils and two different nutrient distributions in the soil. It was found that there is a large difference between the amount of nutrients leached from drainage systems using different drainage coefficients. There was also a large difference in the response of two drainage designs based on the same drainage coefficient but using different depth and spacing of drains. Transient effects, as determined by the initial vertical distribution of the nutrients, were seen to remain dominant over the two year duration of the simulation. The model was found to be useful in explaining the apparent contradictions found in the literature assessing the effects of subsurface drainage on nutrient losses. The results from the model show these effects to be strongly site and condition specific. Furthermore, the model shows that soils and drainage designs that produce similar volumes of drain flow may exhibit very different leaching responses, and that drainage designs equivalent from a hydraulic standpoint can be very dissimilar in their potential for leaching nutrients. The model provides a tool which can be used to determine the appropriateness of different drainage designs in soils where minimizing nutrient losses is critical.
Science, Faculty of
Resources, Environment and Sustainability (IRES), Institute for
Graduate
APA, Harvard, Vancouver, ISO, and other styles
39

Ahmad, Faheem. "Numerical modelling of transport of pollutant through soils." Thesis, This resource online, 1991. http://scholar.lib.vt.edu/theses/available/etd-08182009-040239/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Liu, Ying, and 劉影. "Limit equilibrium methods for slope stability analysis." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2002. http://hub.hku.hk/bib/B42576684.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Akinola, Akinrotimi Idowu. "Temporal and Thermal Effects on Fluvial Erosion of Cohesive Streambank Soils." Diss., Virginia Tech, 2018. http://hdl.handle.net/10919/96768.

Full text
Abstract:
In the United States, the annual cost of on-site soil erosion problems such as soil and nutrient losses, and off-site soil erosion problems such as sedimentation of lakes and river, loss of navigable waterways, flooding and water quality impairment, has been estimated at 44 billion USD (Pimentel, 1995; Telles, 2011). While eroding sediment sources can either be from land or from stream/river systems, the erosion from streambanks can be quite significant, reaching up to 80% of sediment leaving a watershed (Simon et al 2002; Simon and Rinaldi 2006). Despite many decades of research one the erosion of cohesive soils by flowing water (fluvial erosion), this significant aspect of environmental sustainability and engineering is still poorly understood. While past studies have given invaluable insight into fluvial erosion, this process is still poorly understood. Therefore, the objective of this dissertation was to examine the relationship between time and erosion resistance of remolded cohesive soils, and to quantify and model the effects soil and water temperature on the fluvial erosion of cohesive soils First, erosion tests were performed to investigate how soil erosion resistance develops over time using three natural soils and testing in a laboratory water channel. Results showed that the erosion rate of the soils decreased significantly over the time since the soils were wetted. This study indicates researchers need to report their sample preparation methods in detail, including the time between sample wetting and sample testing. Second, erosion tests were performed at multiple soil and water temperatures. Results showed that increases in water temperature led to increased erosion rates while increases in soil temperature resulted in decreased erosion rate. When soil and water temperatures were equal, erosion results were not significantly different. Results also showed a linear relationship between erosion rate and the difference between soil and water temperatures, indicating erosion resistance decreased as heat energy was added to the soil. Lastly, two common erosion models (the excess shear stress and the Wilson models) were evaluated, and were modified to account for soil and water temperature effects. Results showed that, compared to the original models, the modified models were better in predicting erosion rates. However, significant error between model predictions and measured erosion rates still existed. Overall, these results improve the current state of knowledge of how erosion resistance of remolded cohesive soils evolves with time, showing the importance of this factor in the design of cohesive erosion experiments. Also, the results show that by accounting for thermal effects on erosion rate, the usability of erosion models can be improved in their use for erosion predictions in soil and water conservation and engineering practice.
PHD
APA, Harvard, Vancouver, ISO, and other styles
42

Sun, Tek-kei, and 孫廸麒. "Numerical modeling of skin friction and penetration problems in geotechnical engineering." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2013. http://hdl.handle.net/10722/195991.

Full text
Abstract:
Numerical modeling using finite element method (FEM) is well-recognized as a powerful method for both engineers and researchers to solve boundary value problems. In the modeling of geotechnical problems, the analyses are often limited to simple static problems with either steady-state effective or total stress approach while the transient response (development and dissipation of excess pore water pressure, uex) is seldom considered. Besides, infinitesimal small soil deformation is usually assumed. The simulation is further complicated when the soil-structure interaction problems involve significant soil displacements; like a pile subject to negative skin friction (NSF) and a cone/pile penetration. However, conventional FEM analysis prematurely terminates due primarily to excessive mesh distortion. One could see that simulating a transient problem with large deformation and distortion remains a great challenge. In this study, advanced FE simulations are performed to give new insights into the problems of (1) a pile subject to NSF; and (2) a cone penetration. The transient response of the NSF problem is modeled with the fluid-coupled consolidation technique and geometric nonlinearity. The fluid-coupled cone penetration problem is modeled with a newly developed adaptive approach. The NSF and cone penetration simulations involve complex soil-structure interface modeling. Two types of modified interface responses are developed and verified which consider fluid coupling. The developed algorithm is applied to back analyze a case history of a pile subject to NSF induced by surcharge loading. Promising results were shown. Development of dragload and neutral plane (NP) with time is studied. NP locates at 75% of the pile embedded length (D) in long-term. Next, a parametric study is performed to investigate the influences of pile geometries, ground compressibility and loading conditions towards the pile responses. The long-term NP locates at around 0.55D to 0.65D in the studied engineering scenarios. The maximum downdrag can be up to 10% of the pile diameter. NP shifts upward when the head load increases. A simple design chart is proposed which helps engineers to estimate the long-term axial load distribution. An illustrative example is given to demonstrate the application and performance of the chart. The study is extended to investigate the cone penetration problem. An advanced adaptive method is developed and implemented into the FE package ABAQUS to resolve the problems of numerical instability, excessive mesh distortion and premature termination. The proposed method is verified by modeling a ground consolidation problem. Next, total stress back analysis of cone penetration is conducted with the proposed method. The development of cone factor predicted by the proposed method gives a better match with the laboratory result when comparing with the built-in ALE method. Next, the development and dissipation of uex during cone advancing with the proposed method and fluid-coupled technique is investigated. uex develops dramatically around the cone tip. The soil permeability is back calculated from the dissipation test and agrees well with the input value. It is believed that the construction effects of a press-in pile and the subsequence NSF on that pile can be modeled by utilizing the finding of this study.
published_or_final_version
Civil Engineering
Doctoral
Doctor of Philosophy
APA, Harvard, Vancouver, ISO, and other styles
43

SOMASUNDARAM, SUJITHAN. "CONSTITUTIVE MODELLING FOR ANISOTROPIC HARDENING BEHAVIOR WITH APPLICATIONS TO COHESIONLESS SOILS (INDUCED, KINEMATIC, NON-ASSOCIATIVENESS)." Diss., The University of Arizona, 1986. http://hdl.handle.net/10150/188165.

Full text
Abstract:
A constitutive model based on rate-independent elastoplasticity concepts is developed to simulate the behavior of geologic materials under arbitrary three-dimensional stress paths, stress reversals and cyclic loading. The model accounts for the various factors such as friction, stress path, stress history, induced anisotropy and initial anisotropy that influence the behavior of geologic materials. A hierarchical approach is adapted whereby models of progressively increasing sophistication are developed from a basic isotropic-hardening associative model. The influence of the above factors is captured by modifying the basic model for anisotropic (kinematic) hardening and deviation from normality (nonassociativeness). Both anisotropic hardening and deviation from normality are incorporated by introducing into the formulation a second order tensor whose evolution is governed by the level of induced anisotropy in the material. In the stress-space this formulation may be interpreted as a translating potential surface Q that moves in a fixed field of isotropic yield surfaces. The location of the translating surface in the stress-space, at any stage of the deformation, is given by the 'induced anisotropy' tensor. A measure to represent the level of induced anisotropy in the material is defined. The validity of this representation is investigated based on a series of special stress path tests in the cubical triaxial device on samples of Leighton Buzzard sand. The significant parameters of the models are defined and determined for three sands based on results of conventional laboratory test results. The model is verified with respect to laboratory multiaxial test data under various paths of loading, unloading, reloading and cyclic loading.
APA, Harvard, Vancouver, ISO, and other styles
44

Davary, Kamran. "Soil moisture redistribution modeling with artificial neural networks." Thesis, McGill University, 2001. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=36905.

Full text
Abstract:
This study sought to investigate the application of artificial neural networks (ANN) and fuzzy inference systems (FIS) to variably saturated soil moisture (VSSM) redistribution modelling. An enhanced approach to such modelling, that lessens computation costs, facilitates input preparation, handles data uncertainty, and realistically simulates soil moisture redistribution, was our main objective.
An initial review of existing soil hydrology models provided greater insight into current modelling challenges and a general classification of the models. The application of AI techniques as alternative tools for soil hydrology modelling was explored.
A one-dimensional (1D) model based on ANN and FIS was developed. To estimate fluxes more accurately, multiple ANNs were trained and combined by way of an FIS. The main body of the model employed the ANN-FIS module to model soil moisture redistribution throughout the profile. When tested against the SWAP93 model, the ANN-FIS model gave a good match and maximum error of <8%; however, it did not show a notable computation cost shift.
The investigation proceeded with development of another ANN-based 1D modelling approach. This time, the soil profile or flow region, regardless of its depth, was divided into ten equal parts (compartments). The ANN was trained to estimate moisture patterns for a whole soil profile, from the previous day's soil moisture pattern and boundary conditions, and the current day's boundary conditions. The model was tested against SWAP93 where an average SCORE of 90.4 indicated a good match. The computation cost of the ANN-based model was about one-third that of SWAP93.
At this point the study sought to develop a 3D modelling approach. The ANN was trained to estimate the nodal soil moisture changes through time under the influence of six neighbouring nodes (in a 3D space, two on each axis). The model's accuracy was tested against the SWMS-3D model. An average SCORE of 91 and a 15-fold decrease in computation costs showed a quite acceptable performance. Results suggest that this approach is potentially capable of realistically modelling 3D VSSM redistribution with less computation time.
Finally, pros and cons of these ANN-based modelling approaches are compared and contrasted, and some recommendations on future work are given.
APA, Harvard, Vancouver, ISO, and other styles
45

Chin, Victor B. L. "The dynamic response of pile-soil interfaces during pile driving and dynamic testing events." Monash University, Dept. of Civil Engineering, 2003. http://arrow.monash.edu.au/hdl/1959.1/9421.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Odeh, Inakwu Ominyi Akots. "Soil pattern recognition in a South Australian subcatchment /." Title page, contents and abstract only, 1990. http://web4.library.adelaide.edu.au/theses/09PH/09pho23.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Deknatel, William Brockway. "USE OF THE SOLUTION MODELS TO CALCULATE THE ACTIVITY COMPOSITION RELATIONS OF MAGNESIAN CALCITES (SOLID, CARBONATES)." Thesis, The University of Arizona, 1985. http://hdl.handle.net/10150/291512.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Abou, Nahra Joumana. "Modeling phosphorus transport in soil and water." Thesis, McGill University, 2006. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=102946.

Full text
Abstract:
The main objective of this project was to investigate and model phosphorus (P) transport in soil column studies. A model named HYDRUS-NICA was developed, by coupling a hydrological and transport model (HYDRUS-1D model) with an aqueous chemical model (non-ideal competitive adsorption - NICA), to improve the predictions of P transport in soil and water. The HYDRUS-NICA model was developed by replacing the non-linear empirical (Freundlich and Langmuir) equations of the HYDRUS-1D model with the NICA model equations. The numerical accuracy of the HYDRUS-NICA model was then evaluated by comparing the relative errors produced by the HYDRUS-NICA and HYDRUS-1D models. The results showed that the numerical schemes of the HYDRUS-NICA code are stable.
The ability of the NICA model to describe phosphate (PO4) adsorption to soil particles was tested using soils collected from agricultural fields in southern Quebec. The surface charge and PO4 adsorption capacity of these soils were measured. Results were used to estimate the NICA model parameters using a non-linear fitting function. The NICA model accurately described the surface charge of these soils and the PO4 adsorption processes.
The HYDRUS-1D model was applied to simulate water flow and PO4 transport in re-constructed soil column experiments. The HYDRUS-1D model was calibrated based on physical and chemical parameters that were estimated from different experiments. Overall, the HYDRUS-1D model successfully simulated the water flow in the columns; however, it overestimated the final adsorbed PO4 concentrations in the soil. The discrepancies in the results suggested that the HYDRUS-1D model could not account for the differences in the soil structure found in the columns, or that the Freundlich isotherm could not adequately describe PO4 adsorption.
The HYDRUS-NICA model was calibrated and validated with results from re-packed column experiments. The simulated results were then compared with results obtained by the HYDRUS-1D model. The overall goodness-of-fit for the HYDRUS-1D model simulations was classified as poor. The HYDRUS-NICA model improved significantly the prediction of PO4 transport, with the coefficient of modeling efficiency values being close to unity, and the coefficient of residual mass values being close to zero. The HYDRUS-NICA model can be used as a tool to improve the prediction of PO4 transport at the field scale.
APA, Harvard, Vancouver, ISO, and other styles
49

Yamamoto, Nobutaka. "Numerical analysis of shallow circular foundations on sands." University of Western Australia. School of Civil and Resource Engineering, 2006. http://theses.library.uwa.edu.au/adt-WU2006.0038.

Full text
Abstract:
This thesis describes a numerical investigation of shallow circular foundations resting on various types of soil, mainly siliceous and calcareous sands. An elasto-plastic constitutive model, namely the MIT-S1 model (Pestana, 1994), which can predict the rate independent behaviour of different types of soils ranging through uncemented sands, silts and clays, is used to simulating the compression, drained triaxial shear and shallow circular foundation responses. It is found that this model provides a reasonable fit to measured behaviour, particularly for highly compressible calcareous sands, because of the superior modelling of the volumetric compression. The features of the MIT-S1 model have been used to investigate the effects of density, stress level (or foundation size), inherent anisotropy and material type on the response of shallow foundations. It was found that the MIT-S1 model is able to distinguish responses on dilatant siliceous and compressible calcareous sands by relatively minor adjustment of the model parameters. Kinematic mechanisms extracted from finite element calculations show different deformation patterns typical for these sands, with a bulb of compressed material and punching shear for calcareous sand, and a classical rupture failure pattern accompanied by surface heave for siliceous sand. Moreover, it was observed that the classical failure pattern transforms gradually to a punching shear failure pattern as the foundation size increases. From this evidence, a dimensional transition between these failure mechanisms can be defined, referred to as the critical size. The critical size is also the limiting foundation size to apply conventional bearing capacity analyses. Alternative approaches are needed, focusing mainly on the soil compressibility, for shallow foundations greater than the critical size. Two approaches, 1-D compression and bearing modulus analyses, have been proposed for those foundation conditions. From the validations, the former is applicable for extremely large foundations, very loose soil conditions and highly compressible calcareous materials, while the latter is suitable for moderate levels of compressibility or foundation size. It is suggested that appropriate assessment of compression features is of great importance for shallow foundation analysis on sand.
APA, Harvard, Vancouver, ISO, and other styles
50

Faria, Rogério Teixeira de. "Simulation of irrigation requirements for Parana State, Brazil." Thesis, McGill University, 1993. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=41290.

Full text
Abstract:
A risk analysis of drought and an assessment of irrigation requirements were ascertained for a wheat (Triticum aestivum L.) crop in Parana, Brazil, using 28 years of historical weather data. Two soil moisture models, The Versatile Soil Moisture Budget (VB4) and SWACROP models, were compared using data from six wheat cropping periods. The models showed good performance in predicting soil moisture contents, but SWACROP underpredicted soil evaporation and runoff, and VB4 did not separate evapotranspiration into its components. Therefore, a new soil moisture model was proposed. In the new model, a Darcy type equation was used to calculate fluxes in the soil profile, and inputs of daily rainfall and potential evapotranspiration were partitioned during the day using simple disaggregation methods. Crop growth input parameters, interacting with weather and soil inputs, were used to calculate a detailed output of the water balance components. The validation of the model showed predictions of soil water contents and evapotranspiration in close agreement with field data.
A crop yield model based on the stress day index approach was selected from an evaluation of seven crop-water production functions using wheat field data. This model was combined with the soil moisture model to assess risks of drought during the establishment and development of non-irrigated wheat crops with different planting dates. Irrigation management strategies were simulated to identify net system delivery capacities and application frequencies that promote maximum yield with minimum requirements of water. Yield reductions in non-irrigated wheat due to water stress varied between 16%, for early plantings, to 50%, for late plantings. Maximum yields with minimum applied water was obtained by the use of low intensity (5 to 10 mm) and frequent (3 to 5 days) irrigations. System delivery capacity requirements varied from 1.5 to 3.0 mm/day, according to planting dates.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography