Academic literature on the topic 'Soil carbon'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Soil carbon.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Soil carbon"
Zhang, Xiuwei, and Feihai Yu. "Physical disturbance accelerates carbon loss through increasing labile carbon release." Plant, Soil and Environment 66, No. 11 (November 2, 2020): 584–89. http://dx.doi.org/10.17221/257/2020-pse.
Full textLiu, Yufei, Xiaoxu Fan, Tong Zhang, Xin Sui, and Fuqiang Song. "Effects of atrazine application on soil aggregates, soil organic carbon and glomalin-related soil protein." Plant, Soil and Environment 67, No. 3 (March 1, 2021): 173–81. http://dx.doi.org/10.17221/594/2020-pse.
Full textTobiašová, E., G. Barančíková, E. Gömöryová, J. Makovníková, R. Skalský, J. Halas, Š. Koco, Z. Tarasovičová, J. Takáč, and M. Špaňo. "Labile forms of carbon and soil aggregates." Soil and Water Research 11, No. 4 (October 12, 2016): 259–66. http://dx.doi.org/10.17221/182/2015-swr.
Full textMa, Xuexi, Zhengzhong Jin, Yingju Wang, and Jiaqiang Lei. "Effects of Shelter Forests on Soil Organic Carbon of Irrigated Soils in the Taklimakan Desert." Sustainability 13, no. 8 (April 19, 2021): 4535. http://dx.doi.org/10.3390/su13084535.
Full textKadlec, V., O. Holubík, E. Procházková, J. Urbanová, and M. Tippl. "Soil organic carbon dynamics and its influence on the soil erodibility factor." Soil and Water Research 7, No. 3 (July 10, 2012): 97–108. http://dx.doi.org/10.17221/3/2012-swr.
Full textTobiašová, E., G. Barančíková, E. Gömöryová, B. Dębska, and M. Banach-Szott. "Humus substances and soil aggregates in the soils with different texture." Soil and Water Research 13, No. 1 (January 24, 2018): 44–50. http://dx.doi.org/10.17221/31/2017-swr.
Full textCotching, W. E. "Carbon stocks in Tasmanian soils." Soil Research 50, no. 2 (2012): 83. http://dx.doi.org/10.1071/sr11211.
Full textWhalen, Joann K., Shamim Gul, Vincent Poirier, Sandra F. Yanni, Myrna J. Simpson, Joyce S. Clemente, Xiaojuan Feng, et al. "Transforming plant carbon into soil carbon: Process-level controls on carbon sequestration." Canadian Journal of Plant Science 94, no. 6 (August 2014): 1065–73. http://dx.doi.org/10.4141/cjps2013-145.
Full textZhengzhong, Jin, Wang Yingju, and Lei Jiaqiang. "Influence of plantation of a shelter-belt on component of organic carbon in the Taklimakan desert over last decade." E3S Web of Conferences 53 (2018): 04041. http://dx.doi.org/10.1051/e3sconf/20185304041.
Full textKumar, Kewat Sanjay. "Sustainable Management of Soil for Carbon Sequestration." Science & Technology Journal 5, no. 2 (July 1, 2017): 132–40. http://dx.doi.org/10.22232/stj.2017.05.02.10.
Full textDissertations / Theses on the topic "Soil carbon"
Renforth, Phil. "Mineral carbonation in soils : engineering the soil carbon sink." Thesis, University of Newcastle Upon Tyne, 2011. http://hdl.handle.net/10443/1216.
Full textBurgos, Hernández Tania D. "Investigating Soil Quality and Carbon Balance for Ohio State University Soils." The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1577141132704637.
Full textGottschalk, Pia. "Modelling soil organic carbon dynamics under land use and climate change." Thesis, University of Aberdeen, 2012. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=186643.
Full textGmach, Maria Regina. "Sugarcane straw removal from the soil surface: effects on soil soluble products." Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/11/11140/tde-18012019-174951/.
Full textO interesse no uso da palha de cana-de-açúcar como matéria-prima para a produção de bioenergia vem crescendo consideravelmente. No entanto, a remoção excessiva da palha pode afetar negativamente o funcionamento do solo. Portanto, o objetivo deste trabalho foi quantificar e caracterizar a solução ao longo do perfil sob níveis de remoção de palha da superfície do solo. Para isso, foi construído um sistema de lisímetros com colunas de 1, 20, 50 e 100 cm de solo, de textura franco argilo arenosa, proveniente de área comercial de cana-de-açúcar em Piracicaba-SP, Brasil. O experimento foi conduzido em área aberta, sujeito a precipitação e luz natural. Depois da estabilização do solo dentro dos tubos, foram adicionados os seguintes tratamentos: 0, 3, 6 e 12 Mg ha-1 de massa seca, representando 100 (solo nu), 75, 50 e 0% de intensidade de remoção de palha, respectivamente, sendo adicionados novamente após um ano. A solução percolada foi coletada e quantificada por 17 meses, a umidade do solo foi determinada por dois meses usando sensores. A concentração de carbono orgânico dissolvido (COD) foi mensurada com analisador automático. A solução do solo e solução da palha, feita por infusão em água, foram caracterizadas em HPLC para verificar a presença de compostos tóxicos. Posteriormente, as soluções da palha e solo foram usadas em testes de sementes de soja para avaliar os efeitos na germinação e crescimento inicial. Ao final do experimento, foram realizadas análises de densidade do solo e carbono orgânica do solo (COS). A palha remanescente foi pesada após um ano, anterior a nova adição, e pesada novamente ao final do experimento, para determinar a taxa de decomposição. O volume de solução percolado foi 30, 11 e 4% menor em 100, 75 e 50% do que em 0% de remoção, respectivamente. O solo descoberto armazenou menos água, indicando susceptibilidade à perda de água por evaporação. A simulação mostrou que 100 e 75% de remoção induzem longos períodos de restrição hídrica, que pode prejudicar o crescimento da planta. A produção de COD na camada superficial foi maior no solo sem remoção; a retenção foi maior de 1 a 20 cm em solo sem remoção, e maior em 20 a 50 cm em 50 e 75% de remoção. O solo descoberto liberou mais COD em de 20 cm do que em superfície, indicando perda de C. Abaixo de 100 cm, o COD lixiviado foi similar nos tratamentos, indicando grande retenção de C e pequenas perdas por lixiviação, mesmo em alta produção de COD. Mesmo com diferenças na retenção de COD, não foi identificado aumento no estoque de C abaixo de 5 cm. Foram encontrados compostos fenólicos na solução da palha, não encontrados na solução do solo, indicando que em condições naturais a palha não libera quantidades significativas de compostos tóxicos na solução do solo. O crescimento de plantas foi negativamente afetado pela solução da palha, mas não pela solução do solo. Nossos resultados sugerem que a manutenção de quantidade média de palha previne perdas e variação no conteúdo de água do solo. Maior quantidade de palha aumenta a produção de COD, que provavelmente altera sua composição, alterando a retenção no solo. O estoque de C não aumentou consideravelmente em subsuperfície, mas muito provavelmente aumentará em escala de tempo maior. Quanto maior a remoção de palha, proporcionalmente maior as taxas de C liberadas na forma de CO2 e COD em subsuperfície, consequentemente, menor a retenção de C no solo. Maiores quantidades de palha na superfície liberam mais C para o solo, retido ou translocado com a água, podendo ser estocado em maiores profundidades do solo. Maior percolação de água no solo não significa maiores perdas de C por lixiviação em profundidade.
Kuntz, Marianne. "Carbon : an important regulator of denitrification in arable soil." Thesis, University of Aberdeen, 2017. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=232081.
Full textChen, Yujuan. "The Influence of Urban Soil Rehabilitation on Soil Carbon Dynamics, Greenhouse Gas Emission, and Stormwater Mitigation." Diss., Virginia Tech, 2013. http://hdl.handle.net/10919/51240.
Full textPh. D.
Tifafi, Marwa. "Different soil study tools to better understand the dynamics of carbon in soils at different spatial scales, from a single soil profile to the global scale." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLV021/document.
Full textSoils are the major components ofthe terrestrial ecosystems and the largest organiccarbon reservoir on Earth, being very reactive tohuman disturbance and climate change. Despiteits importance within the carbon reservoirs, soilcarbon dynamics is an important source ofuncertainties for future climate predictions. Theaim of the thesis was to explore different aspectsof soil carbon studies (Experimentalmeasurements, modeling, and databaseevaluation) at different spatial scales (from thescale of a profile to the global scale). Wehighlighted that the estimation of the global soilcarbon stocks is still quite uncertain.Consequently, the role of soil carbon in theclimate dynamics becomes one of the majoruncertainties in the Earth system models (ESMs)used to predict future climate change. Thesecond part of thesis deals with the presentationof a new version of the IPSL-Land SurfaceModel called ORCHIDEE-SOM, incorporatingthe 14C dynamics in the soil. Several tests doneassume that model improvements should focusmore on a depth dependent parameterization,mainly for the diffusion, in order to improve therepresentation of the global carbon cycle inLand Surface Models, thus helping to constrainthe predictions of the future soil organic carbonresponse to global warming
Jenkins, Anthony Blaine. "Organic carbon and fertility of forest soils on the Allegheny Plateau of West Virginia." Morgantown, W. Va. : [West Virginia University Libraries], 2002. http://etd.wvu.edu/templates/showETD.cfm?recnum=2486.
Full textTitle from document title page. Document formatted into pages; contains x, 282 p. : ill. (some col.). Vita. Includes abstract. Includes bibliographical references.
Stewart, Laura. "Carbon storage in an artificial soil." Thesis, Durham University, 2012. http://etheses.dur.ac.uk/3420/.
Full textPallasser, Robert Joseph. "Technique innovation in soil carbon measurement." Thesis, The University of Sydney, 2013. http://hdl.handle.net/2123/10062.
Full textBooks on the topic "Soil carbon"
Hartemink, Alfred E., and Kevin McSweeney, eds. Soil Carbon. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04084-4.
Full textKutsch, Werner L., Michael Bahn, and Andreas Heinemeyer, eds. Soil Carbon Dynamics. Cambridge: Cambridge University Press, 2009. http://dx.doi.org/10.1017/cbo9780511711794.
Full textVercammen, James. Dynamic economic modeling of soil carbon. [Ottawa]: Agriculture and Agri-Food Canada, 2002.
Find full textJensen, Earl H. Soil survey of Carbon area, Utah. [Washington, D.C.?]: The Service, 1988.
Find full textR, Lal, ed. Assessment methods for soil carbon. Boca Raton, Fla: Lewis Publishers, 2001.
Find full textCycles of soil: Carbon, nitrogen, phosphorus, sulfur, micronutrients. New York: Wiley, 1986.
Find full textStevenson, F. J. Cycles of soil: Carbon, nitrogen, phosphorus, sulfur, micronutrients. 2nd ed. New York: Wiley, 1999.
Find full textSmith, W. Soil degradation risk indicator: Organic carbon component. Ottawa: Agriculture and Agri-Food Canada, 1997.
Find full textR, Lal, ed. Management of carbon sequestration in soil. Boca Ration, Fla: CRC Press, 1998.
Find full text1960-, Kutsch Werner, Bahn Michael, and Heinemeyer Andreas, eds. Soil carbon dynamics: An integrated methodology. New York: Cambridge University Press, 2009.
Find full textBook chapters on the topic "Soil carbon"
Berryman, Erin, Jeffrey Hatten, Deborah S. Page-Dumroese, Katherine A. Heckman, David V. D’Amore, Jennifer Puttere, Michael SanClements, Stephanie J. Connolly, Charles H. Perry, and Grant M. Domke. "Soil Carbon." In Forest and Rangeland Soils of the United States Under Changing Conditions, 9–31. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-45216-2_2.
Full textMesic, Milan, Márta Birkás, Zeljka Zgorelec, Ivica Kisic, Ivana Sestak, Aleksandra Jurisic, and Stjepan Husnjak. "Soil Carbon Variability in Some Hungarian and Croatian Soils." In Soil Carbon, 419–26. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04084-4_41.
Full textFunakawa, Shinya, Kazumichi Fujii, Atsunobu Kadono, Tetsuhiro Watanabe, and Takashi Kosaki. "Could Soil Acidity Enhance Sequestration of Organic Carbon in Soils?" In Soil Carbon, 209–16. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04084-4_22.
Full textMcBratney, Alex B., Uta Stockmann, Denis A. Angers, Budiman Minasny, and Damien J. Field. "Challenges for Soil Organic Carbon Research." In Soil Carbon, 3–16. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04084-4_1.
Full textWills, Skye, Terrance Loecke, Cleiton Sequeira, George Teachman, Sabine Grunwald, and Larry T. West. "Overview of the U.S. Rapid Carbon Assessment Project: Sampling Design, Initial Summary and Uncertainty Estimates." In Soil Carbon, 95–104. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04084-4_10.
Full textTunega, Daniel, Adelia J. A. Aquino, Georg Haberhauer, Hans Lischka, Gabriele E. Schaumann, and Martin H. Gerzabek. "Molecular Models of Cation and Water Molecule Bridges in Humic Substances." In Soil Carbon, 107–15. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04084-4_11.
Full textAskari, Mohammad Sadegh, and Nicholas M. Holden. "Rapid Evaluation of Soil Quality Based on Soil Carbon Reflectance." In Soil Carbon, 117–26. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04084-4_12.
Full textKiss, Klaudia, Zoltán Szalai, Gergely Jakab, Balázs Madarász, and Nóra Zboray. "Characterization of Soil Organic Substances by UV-Vis Spectrophotometry in Some Soils of Hungary." In Soil Carbon, 127–36. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04084-4_13.
Full textAtanassova, Irena D., Stefan H. Doerr, and Gary L. Mills. "Hot-Water-Soluble Organic Compounds Related to Hydrophobicity in Sandy Soils." In Soil Carbon, 137–46. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04084-4_14.
Full textYost, Jenifer L., Corey E. Palmer, and Louise M. Egerton-Warburton. "The Contribution of Soil Aggregates to Carbon Sequestration in Restored Urban Grasslands." In Soil Carbon, 147–54. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04084-4_15.
Full textConference papers on the topic "Soil carbon"
Al-Kaisi, Mahdi. "Soil Carbon Sequestration Potential." In Proceedings of the 10th Annual Integrated Crop Management Conference. Iowa State University, Digital Press, 2000. http://dx.doi.org/10.31274/icm-180809-676.
Full textAl-Kaisi, Mahdi, and Brent A. Brueland. "Managing Soil Carbon Sequestration." In Proceedings of the 13th Annual Integrated Crop Management Conference. Iowa State University, Digital Press, 2003. http://dx.doi.org/10.31274/icm-180809-768.
Full textTudor, Clara. "SOIL CARBON AND SEWAGE WATER." In 18th International Multidisciplinary Scientific GeoConference SGEM2018. Stef92 Technology, 2018. http://dx.doi.org/10.5593/sgem2018/3.2/s13.062.
Full textBARTEL, PAUL, and MIKE MCGAHUEY. "SOIL CARBON SEQUESTRATION IN AFRICA." In International Seminar on Nuclear War and Planetary Emergencies 25th Session. Singapore: World Scientific Publishing Co. Pte. Ltd., 2001. http://dx.doi.org/10.1142/9789812797001_0073.
Full textOtero-Fariña, Alba, Helena Brown, Ke-Qing Xiao, Pippa Chapman, Joseph Holden, Steven Banwart, and Caroline Peacock. "The role of soil organic carbon chemistry in soil aggregate formation and carbon preservation." In Goldschmidt2022. France: European Association of Geochemistry, 2022. http://dx.doi.org/10.46427/gold2022.9955.
Full textSingh, Shikha, Sindhu Jagadamma, Junyi Liang, Gangsheng Wang, and Melanie Mayes. "SENSITIVITY OF MICROBIAL PROCESSING OF SOIL CARBON TO SOIL MOISTURE IN DIFFERENTLY-TEXTURED SOILS." In 67th Annual Southeastern GSA Section Meeting - 2018. Geological Society of America, 2018. http://dx.doi.org/10.1130/abs/2018se-312541.
Full textBaumgartl, Thomas, J. Chan, F. Bucka, and E. Pihlap. "Soil organic carbon in rehabilitated coal mine soils as an indicator for soil health." In 14th International Conference on Mine Closure. QMC Group, Ulaanbaatar, 2021. http://dx.doi.org/10.36487/acg_repo/2152_121.
Full textKarklina, Ilze, Andis Lazdins, Jelena Stola, Aldis Butlers, Zaiga Anna Zvaigzne, and Dana Purvina. "Soil carbon stock in fertilized forest stands with mineral soils." In Research for Rural Development 2021 : annual 27th International scientific conference proceedings. Latvia University of Life Sciences and Technologies, 2021. http://dx.doi.org/10.22616/rrd.27.2021.007.
Full textBārdulis, Andis, Ainārs Lupiķis, and Jeļena Stola. "Carbon balance in forest mineral soils in Latvia modelled with Yasso07 soil carbon model." In Research for Rural Development, 2017. Latvia University of Agriculture, 2017. http://dx.doi.org/10.22616/rrd.23.2017.004.
Full textMeador, T., J. Niedzwiecka, S. Jabinski, T. Picek, R. Angel, and H. Šantrůčková. "Modes of Soil Organic Carbon Sequestration and Carbon Use Efficiency Determined by Soil Aeration Status." In 30th International Meeting on Organic Geochemistry (IMOG 2021). European Association of Geoscientists & Engineers, 2021. http://dx.doi.org/10.3997/2214-4609.202134129.
Full textReports on the topic "Soil carbon"
Wielopolski, Lucian, G. Hendrey, I. Orion, S. Prior, H. Rogers, B. Runion, and A. Torbert. NON-DESTRUCTIVE SOIL CARBON ANALYZER. Office of Scientific and Technical Information (OSTI), February 2004. http://dx.doi.org/10.2172/15007355.
Full textAndress, D. Soil carbon changes for bioenergy crops. Office of Scientific and Technical Information (OSTI), April 2004. http://dx.doi.org/10.2172/834706.
Full textSawyer, John E., Mahdi Al-Kaisi, Daniel W. Barker, and Weston Dittmer. Soil Nitrogen and Carbon Management Project. Ames: Iowa State University, Digital Repository, 2002. http://dx.doi.org/10.31274/farmprogressreports-180814-1507.
Full textMontz, A., V. R. Kotamarthi, and H. Bellout. Soil carbon response to rising temperature. Office of Scientific and Technical Information (OSTI), September 2012. http://dx.doi.org/10.2172/1051236.
Full textFultz-Waters, Sydney. Introduction to Carbon Sensing in Soil. Office of Scientific and Technical Information (OSTI), May 2022. http://dx.doi.org/10.2172/1869374.
Full textFancher, J. D. Carbon tetrachloride ERA soil-gas baseline monitoring. Office of Scientific and Technical Information (OSTI), July 1994. http://dx.doi.org/10.2172/10167614.
Full textZinke, P. J., A. G. Stangenberger, W. M. Post, W. R. Emanual, and J. S. Olson. Worldwide organic soil carbon and nitrogen data. Office of Scientific and Technical Information (OSTI), September 1986. http://dx.doi.org/10.2172/543663.
Full textLarson, Steven, Ryan Busby, W. Andy Martin, Victor Medina, Peter Seman, Christopher Hiemstra, Umakant Mishra, and Tom Larson. Sustainable carbon dioxide sequestration as soil carbon to achieve carbon neutral status for DoD lands. Engineer Research and Development Center (U.S.), November 2017. http://dx.doi.org/10.21079/11681/25406.
Full textAl-Kaisi, Mahdi, and David Kwaw-Mensah. Long-term Tillage and Crop Rotation Effects on Soil Carbon and Soil Productivity. Ames: Iowa State University, Digital Repository, 2014. http://dx.doi.org/10.31274/farmprogressreports-180814-1191.
Full textAl-Kaisi, Mahdi, and David Kwaw-Mensah. Long-term Tillage and Crop Rotation Effects on Soil Carbon and Soil Productivity. Ames: Iowa State University, Digital Repository, 2013. http://dx.doi.org/10.31274/farmprogressreports-180814-1239.
Full text