Academic literature on the topic 'Soil borne diseases- Fusarium'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Soil borne diseases- Fusarium.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Soil borne diseases- Fusarium"
Nikitin, Dmitry A., Ekaterina A. Ivanova, Mikhail V. Semenov, Alena D. Zhelezova, Natalya A. Ksenofontova, Azida K. Tkhakakhova, and Vladimir A. Kholodov. "Diversity, Ecological Characteristics and Identification of Some Problematic Phytopathogenic Fusarium in Soil: A Review." Diversity 15, no. 1 (January 1, 2023): 49. http://dx.doi.org/10.3390/d15010049.
Full textMohammed, Tajudin A., Alemayehu H. Welderufael, and Bayoush B. Yeshinigus. "Assessment and Distribution of Foliar and Soil-Borne Diseases of Capsicum Species in Ethiopia." International Journal of Phytopathology 10, no. 2 (October 3, 2021): 125–39. http://dx.doi.org/10.33687/phytopath.010.02.3629.
Full textSu, Lv, Lifan Zhang, Duoqian Nie, Eiko E. Kuramae, Biao Shen, and Qirong Shen. "Bacterial Tomato Pathogen Ralstonia solanacearum Invasion Modulates Rhizosphere Compounds and Facilitates the Cascade Effect of Fungal Pathogen Fusarium solani." Microorganisms 8, no. 6 (May 27, 2020): 806. http://dx.doi.org/10.3390/microorganisms8060806.
Full textSodikov, B., A. Khakimov, U. Rakhmonov, A. Omonlikov, R. Gulmatov, and S. Utaganov. "Soil-borne plant pathogenic fungi biodiversity of sunflower." IOP Conference Series: Earth and Environmental Science 1068, no. 1 (July 1, 2022): 012018. http://dx.doi.org/10.1088/1755-1315/1068/1/012018.
Full textGupta, Sheetanshu, and A. K. Sharma. "Suppression of Sclerotium rolfsii and Fusarium oxysporum through Glomalin a Glycoprotein Produced by Arbuscular Mycorrhizal Fungi under in vitro Condition." International Journal of Environment and Climate Change 13, no. 7 (May 8, 2023): 396–405. http://dx.doi.org/10.9734/ijecc/2023/v13i71891.
Full textBowen, Alison, Ryan Orr, Anna V. McBeath, Anthony Pattison, and Paul N. Nelson. "Suppressiveness or conduciveness to Fusarium wilt of bananas differs between key Australian soils." Soil Research 57, no. 2 (2019): 158. http://dx.doi.org/10.1071/sr18159.
Full textDeng, Xiao, Qin Fen Li, Chun Yuan Wu, and Jing Kun Liu. "Influence of the Number of Pathogen Causing Banana Fusarium Wilt and Soil Factors on the Infection Degree of Banana Plants." Advanced Materials Research 781-784 (September 2013): 1989–93. http://dx.doi.org/10.4028/www.scientific.net/amr.781-784.1989.
Full textSong, Zhaoxin, Sebastien Massart, Dongdong Yan, Hongyan Cheng, Mathilde Eck, Chadi Berhal, Canbin Ouyang, Yuan Li, Qiuxia Wang, and Aocheng Cao. "Composted Chicken Manure for Anaerobic Soil Disinfestation Increased the Strawberry Yield and Shifted the Soil Microbial Communities." Sustainability 12, no. 16 (August 5, 2020): 6313. http://dx.doi.org/10.3390/su12166313.
Full textSaygı, Sevilay, Muharrem Türkkan, and İsmail Erper. "Toprak Kökenli Bitki Patojeni Funguslarla Mücadelede Biofumigasyonun Kullanım Olanakları." Turkish Journal of Agriculture - Food Science and Technology 7, no. 9 (September 10, 2019): 1245. http://dx.doi.org/10.24925/turjaf.v7i9.1245-1248.1569.
Full textAsif, Mamoona, Muhammad Saleem Haider, and Adnan Akhter. "Impact of Biochar on Fusarium Wilt of Cotton and the Dynamics of Soil Microbial Community." Sustainability 15, no. 17 (August 28, 2023): 12936. http://dx.doi.org/10.3390/su151712936.
Full textDissertations / Theses on the topic "Soil borne diseases- Fusarium"
Magambo, Betty. "Generating transgenic banana (cv. Sukali Ndizi) resistant to Fusarium Wilt." Thesis, Queensland University of Technology, 2012. https://eprints.qut.edu.au/61024/1/Betty_Magambo_Thesis.pdf.
Full textHiguita, Didier Mauricio Chavarriaga. "Biological control of Fusarium spp. and other soil-borne pathogens on tree seedlings." Thesis, University of Aberdeen, 2003. http://digitool.abdn.ac.uk/R?func=search-advanced-go&find_code1=WSN&request1=AAIU602315.
Full textCerdà, Alexandra Puértolas. "Detection and management of soil-borne pathogens in the nursery trade." Thesis, University of Aberdeen, 2017. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=235373.
Full textLewis, Katherine JoAnn. "Studies on the spread of Verticicladiella procera by soil-borne and insect-borne propagules." Thesis, Virginia Polytechnic Institute and State University, 1985. http://hdl.handle.net/10919/91132.
Full textM.S.
McQuilken, Mark Patrick. "Development of Pythium oligandrum drechsler for biological control of fungal soil-borne diseases." Thesis, University of Sheffield, 1990. http://etheses.whiterose.ac.uk/1875/.
Full textLevenfors, Jens. "Soil-borne pathogens in intensive legume cropping - Aphanomyces spp. and root rots /." Uppsala : Dept. of Plant Pathology and Biocontrol Unit, Swedish Univ. of Agricultural Sciences, 2003. http://epsilon.slu.se/a393.pdf.
Full textLutchmeah, R. S. "Biology of Pythium oligandrum drechsler in relation to biological control of soil-borne fungal plant diseases." Thesis, University of Sheffield, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.381416.
Full textBhattarai, Shuvash. "Interactions between the potato cyst nematode globodera pallida and soil-borne fungus, rhizoctonia solani (AG3) diseases in potatoes." Thesis, Harper Adams University College, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.548754.
Full textChidburee, Siripun. "Biological control of soil-borne disease in soybean by denitrifying antagonistic bacteria : the possible role of reduced nitrogen compounds for control of plant pathogens." Thesis, University of Aberdeen, 1998. http://digitool.abdn.ac.uk/R?func=search-advanced-go&find_code1=WSN&request1=AAIU602299.
Full textSouthwood, Michael J. "Evolution and detection of Fusarium oxysporum f. sp. cepae in onion in South Africa." Thesis, Stellenbosch : Stellenbosch University, 2010. http://hdl.handle.net/10019.1/4499.
Full textENGLISH ABSTRACT: In the Western Cape onion industry in South Africa, Fusarium oxysporum Schlechtend.:Fr. f.sp. cepae (H.N. Hans.) W.C. Snyder & H.N. Hans. (Focep) has been identified as the leading cause of harvest and storage losses. This pathogen is of world-wide importance and causes Fusarium basal rot of onions (Allium cepa), affecting all onion growth stages. No information is available on the evolution, genetic diversity, molecular detection and inoculum sources of the South African Focep population. Similar to what is the case for South Africa, limited information is available on Focep in other regions of the world. World-wide, four vegetative compatibility groups (VCGs) and two single-member VCGs (SMVs) have been identified among two Japanese and 19 Colorado (USA) isolates. This polyphyletic origin of Focep suggested by VCG analyses was confirmed through molecular analyses of isolates from a few countries. Only the mating type (MAT)1-1 idiomorph has been reported for Focep isolates from Welsh onion (Allium fistulosum). The development of sustainable management strategies of Focep is dependent on knowledge of (i) the genetic diversity and evolution of Focep, (ii) whether high throughput molecular methods can be developed for identifying the most virulent and widespread Focep genotypes and (iii) the role of seedlings and seeds as primary inoculum sources, and the Focep genotypes associated with these growth stages. Therefore, the three main aims of the current study were to investigate the aforementioned three aspects. In the first aim of the study, the genetic diversity and evolution of Focep was investigated using a collection of 79 F. oxysporum isolates from South Africa (27 Focep and 33 non-pathogenic isolates) and Colorado (19 Focep isolates). VCG analyses revealed the presence of six VCGs, four among the Colorado Focep isolates (VCGs 0421, 0422, 0423 and 0424) and two among the South African bulb-associated isolates (VCGs 0425 and 0426). VCG 0421 and VCG 0425 were the two main VCGs in Colorado and South Africa, respectively. Four SMVs and one heterokaryon selfincompatible (HSI) isolate were also identified. The polyphyletic nature of Focep in South Africa and Colorado was shown through a combined translation elongation factor 1α (EF-1α) and mitochondrial small-subunit (mtSSU) phylogeny. The phylogeny divided the Focep isolates into two main clades, of which one contained the two main VCGs (0421 and 0425), SMVs and non-pathogenic isolates. The second, ancestral clade contained the HSI isolate, VCGs 0422, 0423 and 0424, and non-pathogenic isolates. Unlike the clade containing the two main VCGs, which were highly virulent toward onion bulbs, the ancestral clade contained isolates that were mostly moderately virulent. The incongruence of the EF-1α and mtSSU datasets with an intergenic spacer (IGS) region data set, and the presence of both MAT idiomorphs within the same isolate for some isolates, suggested possible exchange of genetic material between isolates. The second aim of the study was to develop molecular methods for identifying the two main Focep VCGs (0425 and 0421), using DNA fingerprinting methods and sequence-characterized amplified region (SCAR) markers. These techniques were first developed using the F. oxysporum isolates from the first aim, and were then used to investigate the prevalence of VCG 0425 among 88 uncharacterized F. oxysporum isolates from onion bulbs in South Africa. Two random amplified polymorphic DNA primers provided two diagnostic amplicons for VCG 0425, but attempts to develop SCAR markers from these amplicons were unsuccessful. In contrast, an interretrotransposon amplified polymorphism (IRAP) fingerprinting method enabled the developed of a multiplex IR-SCAR polymerase chain reaction method that detected the VCG 0421, 0425 and SMV 4 isolates as a group. Fingerprinting and SCAR marker testing of the 88 uncharacterized F. oxysporum isolates from South Africa (65 Focep and 23 non-pathogenic) confirmed that VCG 0425 is the main VCG in South Africa associated with mature onion bulbs, since 63 of the Focep isolates had the molecular characteristics of VCG 0425. The third aim of the study was to determine whether seed and seedling transplants are inoculum sources of Focep, and whether the same genotype (VCG 0425) that dominated on mature bulbs could be detected from these sources. Focep isolates were obtained from seven of the 13 investigated onion seed lots, as well as from onion seedling transplants that were collected from all five onion nurseries in the Western Cape. Focep seedling infection more than doubled from the 6-week growth stage to the 14-week growth stage. Seed infections by Focep were low, but the seedborne nature of Focep was confirmed by showing that a green fluorescent protein labelled Focep transformant could be transmitted from infected soil to onion seed via the onion bulbs and seedstalks. It is thus clear that commercial seed and seedlings are inoculum sources of Focep. However, the Focep genotypes on seed and seedlings are different from those in mature bulbs and were not dominated by VCG 0425. Furthermore, most (≤ 60%) of the seed and seedling isolates were moderately virulent, as compared to the mostly highly virulent isolates from mature bulbs.
AFRIKAANSE OPSOMMING: In die Wes-Kaapse uiebedryf in Suid-Afrika is Fusarium oxysporum Schlechtend.:Fr. f.sp. cepae (H.N. Hans.) W.C. Snyder & H.N. Hans. (Focep) geïdentifiseer as die vernaamste oorsaak van oes- en opbergingsverliese. Hierdie patogeen is van wêreldwye belang; dit veroorsaak Fusarium-bolvrot van uie (Allium cepa) en affekteer alle plantgroeistadia. In Suid-Afrika is daar geen inligting beskikbaar oor die evolusie, genetiese diversiteit, molekulêre opsporing en inokulumbronne van die Focep-populasie nie. Soortgelyk aan wat die geval in Suid-Afrika is, is daar beperkte inligting beskikbaar oor Focep in ander wêrelddele. Wêreldwyd is daar vier vegetatiewe versoenbaarheidsgroepe (VVGe) en twee enkellid VVGe (ELVe) geïdentifiseer onder twee Japannese en 19 Colorado (VSA) isolate. Hierdie veelvuldige oorsprong van Focep wat deur VVG-analise voorgestel was, is deur die molekulêre analises van isolate uit ’n paar ander lande bevestig. Slegs die paringstipe (PT)1-1 idiomorf is vir Focep-isolate uit Walliese-tipe uie (ook bekend as ‘lenteuie’ in Suid Africa) (Allium fistulosum) berig. Die ontwikkeling van volhoubare bestuurstrategieë vir Focep steun op kennis van (i) die genetiese diversiteit en evolusie van Focep, (ii) of hoë-deurset molekulêre metodes ontwikkel kan word vir die identifisering van die mees virulente en wydverspreide Focep-genotipes en (iii) die rol van saailinge en saad as primêre inokulumbronne, en die Focep-genotipes wat met hierdie groeistadia geassosieer word. Daarom was die hoof doelstellings van hierdie studie om die bogenoemde drie aspekte te bestudeer. Om die eerste doel van die studie te bereik is die genetiese diversiteit en evolusie van Focep bestudeer deur gebruik te maak van ‘n versameling van 79 F. oxysporum-isolate uit Suid-Afrika (27 Focep en 33 nie-patogeniese isolate) en uit Colorado (19 Focep-isolate). VVG-analises het die teenwoordigheid van ses VVGe aangetoon – vier onder die Colorado Focep-isolate (VVGe 0421, 0422, 0423 en 0424) en twee onder die Suid-Afrikaanse bol-geassosieerde isolate (VVGe 0425 en 0426). VVG 0421 en VVG 0425 was die twee hoof VVGe in onderskeidelik Colorado en Suid-Afrika. Vier ELVe en een meerkernige self-onversoenbare (MSO) isolaat is ook geïdentifiseer. Die veelvuldige oorsprong van Focep in Suid-Afrika en Colorado is ook aangetoon deur ‘n gekombineerde translasie verlengings faktor 1α (VF-1α) en mitokondriale klein-subeenheid (mtKSE) filogenie. Dié filogenie het die Focepisolate in twee groepe verdeel, waarvan die een groep die twee hoof VVGe (0421 en 0425), ELVe en nie-patogeniese isolate bevat het. Die tweede, basal groepering het die MSO-isolaat, VVGe 0422, 0423 en 0424, en nie-patogeniese isolate bevat. In teenstelling met die eersgenoemde groepering wat hoogs virulente isolate van uiebolle bevat het, het die basale groepering isolate bevat wat meestal matig virulent was. Die inkongruensie van die VF-1α en mtKSE-datastelle met ‘n intergeen-gespasieerde (IGS) area datastel – asook die teenwoordigheid van beide PT-idiomorwe binne dieselfde isolaat by sommige isolate – het op ’n moontlike uitruiling van genetiese materiaal tussen isolate gedui. Die tweede doel van die studie was om molekulêre metodes te ontwikkel vir die identifisering van die twee hoof Focep VVGe (0425 en 0421) deur gebruik te maak van DNA-vingerafdrukke en nukleotied-gekarakteriseerde geamplifiseerde area (NKAA) merkers. Hierdie tegnieke is ontwikkel deur van die F. oxysporum-isolate van die eerste doelstelling gebruik te maak en is daarna gebruik om die frekwensie van VVG 0425 onder 88 ongekarakteriseerde F. oxysporum-isolate van uiebolle in Suid-Afrika te ondersoek. Twee gerandomiseerde geamplifiseerde polimorfiese DNS (RAPD) merkers het twee diagnostiese nukleotiedbasis-areas vir VVG 0425 gelewer, maar pogings om NKAA-merkers uit hierdie geamplifiseerde nukleotiedbasis-areas te onwikkel was onsuksesvol. In teenstelling hiermee het ‘n inter-retrotransposon geamplifiseerde polimorfisme (IRAP) vingerafdrukmetode die ontwikkeling van ‘n multipleks IR-NKAA polimerase kettingreaksiemetode moontlik gemaak wat die VVG 0421-, VVG 0425- en ELV 4-isolate as ’n groep aangedui het. Vingerafdruktoetsing en NKAA-merkertoetsing van die 88 ongekaraktariseerde F. oxysporum isolate van Suid-Afrika (65 Focep en 23 nie-patogenies) het bevestig dat VVG 0425 die hoof VVG in Suid-Afrika is wat met volwasse bolle geassosieer word, aangesien 63 van die Focep-isolate die molekulêre eienskappe van VVG 0425 gehad het. Die derde doel van die studie was om vas te stel of saad en saailinge inokulumbronne van Focep is, en of dieselfde genotipe (VVG 0425) wat op volwasse bolle dominant is, waargeneem kon word op hierdie bronne. Focep-isolate is verkry van sewe van die 13 uiesaadlotte asook van uiesaailinge wat in al vyf uiesaailingkwekerye in die Wes-Kaap versamel is. Focep-saailinginfeksie was meer as dubbel in die 14-week groeistadium as wat dit in die 6-week stadium was. Saadinfeksies deur Focep was laag, maar die saadgedraagde aard van Focep is bevestig deur aan te toon dat ’n Focep-transformant wat met ‘n groen fluoreserende proteïen geëtiketeer is, van geïnfekteerde grond na uiesaad oorgedra kon word via die uiebolle en -saadstele. Dit is dus duidelik dat kommersiële saad en saailinge as inokulumbronne van Focep dien. Die Focep-genotipes op saad en saailinge verskil egter van dié in volwasse bolle en is nie deur VVG 0425 gedomineer nie. Verder was die meeste (≤ 60%) saad- en saailingisolate matig virulent, in teenstelling met die meestal hoogs virulente isolate uit volwasse bolle.
Books on the topic "Soil borne diseases- Fusarium"
European Foundation for Plant Pathology. Conference. Biotic interactionsand soil-borne diseases. Amsterdam: Elsevier, 1991.
Find full textJenkins, Rob. Advances in soil-borne plant diseases. Jaipur, India: Oxford Book Co., 2010.
Find full textK, Sarbhoy A., Gangawane L. V, and Agarwal D. K, eds. Compendium of soil borne plant pathogens. New Delhi: Malhotra Pub. House, 1987.
Find full textAdams, M. J. Soil-borne mosaic viruses of cereals: The UK situation. London: Home-Grown Cereals Authority, 1992.
Find full textD, Hornby, and Cook R. James 1937-, eds. Biological control of soil-borne plant pathogens. Wallingford [England]: CAB International, 1990.
Find full textAkhtar, C. M. Biological control of some soil borne vegetable diseases: Final report. [Faisalabad], Pakistan: University of Agriculture, Faisalabad, 1989.
Find full textJames, Robert L. Effects of preplant soil treatments on Fusarium and Trichoderma populations and fungal root colonization of 2-0 nondiseased western white pine seedlings - USDA Forest Service Nursery, Coeur d'Alene, Idaho. Missoula, MT: U.S. Dept. of Agriculture, Forest Service, Northern Region, 2002.
Find full textR, Beemster A. B., ed. Biotic interactions and soil-borne diseases: Proceedings of the First Conference of the European Foundation for Plant Pathology. Amsterdam: Elsevier, 1991.
Find full textJames, Robert L. Effects of spring applications of dazomet on root diseases and performance of Douglas-fir and western white pine transplants, USDA Forest Service Nursery, Coeur d'Alene, Idaho. Missoula, MT: U.S. Dept. of Agriculture, Forest Service, Northern Region, 2002.
Find full textJames, Robert L. An evaluation of the effects of dazomet on soil-borne diseases and conifer seedling production: USDA Forest Service Lucky Peak Nursery, Boise, Idaho. Missoula, MT: U.S. Dept. of Agriculture, Forest Service, Northern Region, 1999.
Find full textBook chapters on the topic "Soil borne diseases- Fusarium"
Ndayihanzamaso, Privat, Sheryl Bothma, Diane Mostert, George Mahuku, and Altus Viljoen. "An Optimised Greenhouse Protocol for Screening Banana Plants for Fusarium Wilt Resistance." In Efficient Screening Techniques to Identify Mutants with TR4 Resistance in Banana, 65–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 2022. http://dx.doi.org/10.1007/978-3-662-64915-2_5.
Full textKhiabani, Behnam Naserian. "In Vitro Based Mass-Screening Technique for Early Selection of Banana Mutants Resistant to Fusarium Wilt." In Efficient Screening Techniques to Identify Mutants with TR4 Resistance in Banana, 47–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 2022. http://dx.doi.org/10.1007/978-3-662-64915-2_4.
Full textStouvenakers, Gilles, Peter Dapprich, Sebastien Massart, and M. Haïssam Jijakli. "Plant Pathogens and Control Strategies in Aquaponics." In Aquaponics Food Production Systems, 353–78. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-15943-6_14.
Full textSeifert, Horst S. H. "Soil-borne Diseases." In Tropical Animal Health, 271–323. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-009-0147-6_6.
Full textHasegawa, Shinsaku, Fujio Kodama, and Norio Kondo. "Soil-Borne Diseases in Japan." In ACS Symposium Series, 417–25. Washington, DC: American Chemical Society, 1991. http://dx.doi.org/10.1021/bk-1991-0449.ch030.
Full textFortunato, Alessandro Antônio, Fabrício A. Rodrigues, and Lawrence E. Datnoff. "Silicon Control of Soil-borne and Seed-borne Diseases." In Silicon and Plant Diseases, 53–66. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-22930-0_3.
Full textChiaramonte, Josiane Barros, Lucas William Mendes, and Rodrigo Mendes. "Rhizosphere Microbiome and Soil-Borne Diseases." In Rhizosphere Biology: Interactions Between Microbes and Plants, 155–68. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-6125-2_7.
Full textShafi, Zaryab, Talat Ilyas, Mohammad Shahid, Shailesh K. Vishwakarma, Deepti Malviya, Bavita Yadav, Pramod K. Sahu, et al. "Microbial Management of Fusarium Wilt in Banana: A Comprehensive Overview." In Detection, Diagnosis and Management of Soil-borne Phytopathogens, 413–35. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-8307-8_17.
Full textKiritani, Keizi, Fusao Nakasuji, and Shun’ichi Miyai. "Systems Approaches for Management of Insect-Borne Rice Diseases." In Advances in Soil Science, 57–80. New York, NY: Springer New York, 1987. http://dx.doi.org/10.1007/978-1-4612-4688-6_3.
Full textWeingartner, D. P. "Potato Viruses with Soil-borne Vectors." In Virus and Virus-like Diseases of Potatoes and Production of Seed-Potatoes, 177–94. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-007-0842-6_19.
Full textConference papers on the topic "Soil borne diseases- Fusarium"
Kiruthiga, C., and K. Dharmarajan. "Machine Learning in Soil Borne Diseases, Soil Data Analysis & Crop Yielding: A Review." In 2023 International Conference on Intelligent and Innovative Technologies in Computing, Electrical and Electronics (IITCEE). IEEE, 2023. http://dx.doi.org/10.1109/iitcee57236.2023.10091016.
Full textBogoescu, Marian, and Daniela Iorga. "-97- Prevention and control of nematodes and soil borne diseases by grafting peppers." In VII South-Eastern Europe Syposium on Vegetables & Potatoes. University of Maribor Press, 2017. http://dx.doi.org/10.18690/978-961-286-045-5.71.
Full textChen, A., M. Jacob, G. Shoshani, M. Dafny-Yelin, O. Degani, and O. Rabinovitz. "25. Early detection of soil-borne diseases in field crops via remote sensing." In 13th European Conference on Precision Agriculture. The Netherlands: Wageningen Academic Publishers, 2021. http://dx.doi.org/10.3920/978-90-8686-916-9_25.
Full textMorton, Vince. "A Review of Chemical Seed Treatments for Control of Seed and Soil Borne Diseases." In Proceedings of the 1995 Integrated Crop Management Conference. Iowa State University, Digital Press, 1996. http://dx.doi.org/10.31274/icm-180809-532.
Full textRippa, Massimo, Andrea Pasqualini, Pasquale Mormile, and Catello Pane. "Infrared imaging for proximal and remote detection of soil-borne diseases on wild rocket." In Remote Sensing for Agriculture, Ecosystems, and Hydrology XXV, edited by Christopher M. Neale and Antonino Maltese. SPIE, 2023. http://dx.doi.org/10.1117/12.2679125.
Full textRatti, Claudio, Marco De Biagg, Piergiorgio Stevanato, Rita Resea, Enrico Biancardi, and Concepcion Rubies Autonell. "A Multiplex RT-PCR assay for sugar-beet soil-borne virus diseases survey in Italy." In 33rd Biennial Meeting of American Society of Sugarbeet Technologist. ASSBT, 2005. http://dx.doi.org/10.5274/assbt.2005.51.
Full textAhmed MAHMOOD, Abeer. "ISOLATION AND IDENTIFICATION OF AIR BORNE FUNGI IN HOUSE 'S ROOMS OF MOSUL CITY AND RELATION OF SENSITIVITY DISEASES." In VI.International Scientific Congress of Pure,Applied and Technological Sciences. Rimar Academy, 2022. http://dx.doi.org/10.47832/minarcongress6-50.
Full textReports on the topic "Soil borne diseases- Fusarium"
Kistler, Harold Corby, and Talma Katan. Identification of DNA Unique to the Tomato Fusarium Wilt and Crown Rot Pathogens. United States Department of Agriculture, September 1995. http://dx.doi.org/10.32747/1995.7571359.bard.
Full textCohen, Roni, Kevin Crosby, Menahem Edelstein, John Jifon, Beny Aloni, Nurit Katzir, Haim Nerson, and Daniel Leskovar. Grafting as a strategy for disease and stress management in muskmelon production. United States Department of Agriculture, January 2004. http://dx.doi.org/10.32747/2004.7613874.bard.
Full text