Journal articles on the topic 'Soil and Water Sciences'

To see the other types of publications on this topic, follow the link: Soil and Water Sciences.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Soil and Water Sciences.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Raats, P. A. C. "Applications of material coordinates in the soil and plant sciences." Netherlands Journal of Agricultural Science 35, no. 3 (August 1, 1987): 361–70. http://dx.doi.org/10.18174/njas.v35i3.16731.

Full text
Abstract:
The continuum theory of mixtures is used to show the common basis of models in three areas. In each, the central problem is the description of the deformation and motion of a reference continuum and of the movement of one or more constituents relative to this reference continuum. The three applications concern the movement of solutes relative to soil water, the movement of soil water relative to the solid phase of swelling/shrinking soils, and the movement of water, solutes, and gases relative to growing plant tissues. (Abstract retrieved from CAB Abstracts by CABI’s permission)
APA, Harvard, Vancouver, ISO, and other styles
2

Thomas, R. L. "Soil and water science." Soil and Tillage Research 42, no. 1-2 (May 1997): 141–42. http://dx.doi.org/10.1016/s0167-1987(97)83358-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kroulík, M., J. Hůla, R. Šindelář, and F. Illek. "Water infiltration into soil related to the soil tillage intensity." Soil and Water Research 2, No. 1 (January 7, 2008): 15–24. http://dx.doi.org/10.17221/2098-swr.

Full text
Abstract:
Soil infiltration capacity is one of the key factors in the soil protection against unfavourable effects of water erosion. The purpose of its measuring was to compare and evaluate the changes of the soil physical properties and of water infiltration into soil caused by different intensity of soil cultivation at two individual sites. The ploughing (PL), shallow tillage (ST), and direct drilling (NT) effects on the soil physical properties, water infiltration into soil, and soil surface coverage with the crop residua under the soil condition loamy Haplic Luvisol, with long-term growing of maize (Zea mays L.) - Agroservis, 1<sup>st</sup> Agricultural, a.s., Vi&scaron;ňov&eacute; - and clay soil of Calcic Chernozem (Cooperative farm Klap&yacute;), were compared. Soil bulk density values in the variant with ploughing showed in the depth up to 0.20 m considerably lower values as compared with the variants shallow tillage and direct drilling. Nevertheless, in the subsoil layer the bulk density of soil in the variant with ploughing increased in comparison with other variants. The results were also confirmed by the cone index values. At the plots in Vi&scaron;ňov&eacute; the infiltration was evaluated utilising the double ring infiltrometer, and by means of the coloured water infiltration. The results revealed significant differences in the water infiltration rate at various stages of the soil loosening. The highest average values were recorded for ploughing (1.00 dm<sup>3</sup>/min). The lowest values were found for the shallow soil tillage (0.18 dm<sup>3</sup>/min). The variant with direct drilling showed values of 0.53 dm<sup>3</sup>/min. The coloured water infiltration evaluation showed a different character of water flow in soil. The variant with ploughing showed water saturation in the top layer, the variants with reduced tillage were characterised by vertical macropores and crack effects with the water drain into deeper layers. Ploughing proved its advantage for the short-term rainfall retention. Similar results were also brought in the evaluation on the plot with clay soil (Klap&yacute;). The loosening effect was evident during coloured water infiltration in the period of snow thawing. The loosed soil layer showed a significantly higher soil water holding capacity as compared with variants with reduced soil tillage. The result showed major differences in the water infiltration rate into soil and different characters of water infiltration into soil at different soil tillage.
APA, Harvard, Vancouver, ISO, and other styles
4

Ende, J. van den. "Water contents of glasshouse soils at field capacity and at saturation. 1. Relationships between water contents." Netherlands Journal of Agricultural Science 36, no. 3 (August 1, 1988): 265–74. http://dx.doi.org/10.18174/njas.v36i3.16678.

Full text
Abstract:
The relationship between water contents at saturation and at field capacity was determined in soils from 75 glasshouses in the Netherlands. Sandy, loamy and peaty soils were equally represented. Water contents of soils at sampling time were found to correspond closely with those at field capacity. Water contents of saturated pastes obtained from field-moist soil samples were higher than those of saturated pastes obtained from soil samples dried previously. For the relationships between water contents of field-moist soil samples and of saturated pastes obtained from field-moist and dried soil samples, correlation coefficients of 0.986 and 0.985, respectively, were found. (Abstract retrieved from CAB Abstracts by CABI’s permission)
APA, Harvard, Vancouver, ISO, and other styles
5

Bouma, Johan. "Soil Security in Sustainable Development." Soil Systems 3, no. 1 (January 8, 2019): 5. http://dx.doi.org/10.3390/soilsystems3010005.

Full text
Abstract:
The United Nations (UN) Sustainable Development Goals (SDGs) provide an excellent channel to demonstrate the significance of soils when considering e.g., food production, water availability, climate mitigation and biodiversity preservation. For environmental sciences, including soil science, the SDGs provide “a point at the horizon” for future research. Progress to achieve the SDGs by 2030 will bureaucratically be monitored by targets and indicators but questions as to how effective research should be organized remain unanswered so far. The soil security concept, based on the five Cs (capability, condition, capital, connectivity and codification) can provide a clear guideline for soil science research, defining soil functions contributing to interdisciplinary ecosystem services that, in turn, can define measures to reach SDGs. A “storyline” is proposed linking the five Cs, emphasizing connectivity that becomes increasingly important in our modern “fact-free” world. The traditional linear research model does not apply when characterizing SDGs because of many conflicting interests that don’t allow definition of specific “solutions”. But different action-perspectives can be defined as a basis for decision making, creating much needed transparency in the decision process. Soil contributions are most effective when framed in the context of soil-water-atmosphere-plant models. Proper codification, including clear and candid communication with stakeholders, is essential to link science with society, a link that needs improvement.
APA, Harvard, Vancouver, ISO, and other styles
6

Brillante, L., O. Mathieu, B. Bois, C. van Leeuwen, and J. Lévêque. "The use of soil electrical resistivity to monitor plant and soil water relationships in vineyards." SOIL 1, no. 1 (March 17, 2015): 273–86. http://dx.doi.org/10.5194/soil-1-273-2015.

Full text
Abstract:
Abstract. Soil water availability deeply affects plant physiology. In viticulture it is considered a major contributor to the "terroir" effect. The assessment of soil water in field conditions is a difficult task, especially over large surfaces. New techniques are therefore required in order to better explore variations of soil water content in space and time with low disturbance and with great precision. Electrical resistivity tomography (ERT) meets these requirements for applications in plant sciences, agriculture and ecology. In this paper, possible techniques to develop models that allow the use of ERT to spatialise soil water available to plants are reviewed. An application of soil water monitoring using ERT in a grapevine plot in Burgundy (north-east France) during the vintage 2013 is presented. We observed the lateral heterogeneity of ERT-derived fraction of transpirable soil water (FTSW) variations, and differences in water uptake depend on grapevine water status (leaf water potentials measured both at predawn and at solar noon and contemporary to ERT monitoring). Active zones in soils for water movements were identified. The use of ERT in ecophysiological studies, with parallel monitoring of plant water status, is still rare. These methods are promising because they have the potential to reveal a hidden part of a major function of plant development: the capacity to extract water from the soil.
APA, Harvard, Vancouver, ISO, and other styles
7

Pierzgalski, Edward, and Jerzy Jeznach. "Measures for soil water control in Poland." Journal of Water and Land Development 10, no. 1 (December 1, 2006): 79–89. http://dx.doi.org/10.2478/v10025-007-0007-5.

Full text
Abstract:
Measures for soil water control in Poland Polish water resources depend on precipitations, which are variable in time and space. In dry years the water balance is negative in central parts of Poland but sudden thaws and downfalls may result in periodical water excess and dangerous floods almost in the entire country. The retention capacity of artificial reservoirs in Poland permits to store only 6% of the average annual runoff, which is commonly considered insufficient. Another method to increase retention is soil water control. About fifty percent of soils in Poland consist of light and very light sandy soils with low water capacity. Loams and organogenic soils cover approximately 25% and 8.5% area of the country, respectively. Almost half of agricultural lands (48%) have relatively good water conditions, but the rest requires soil water control measures. An increase of the soil water content could be achieved by changes of soil properties, water table control and soil water management. Modernization and reconstruction of drainage and irrigation systems, which were built mainly in the period 1960-1980, is needed.
APA, Harvard, Vancouver, ISO, and other styles
8

Judy, Jonathan D., Maria L. Silveira, Sampson Agyin-Birikorang, George O'Connor, and Thomas A. Obreza. "Drinking Water Treatment Residuals to Control Phosphorus in Soils." EDIS 2019 (August 21, 2019): 6. http://dx.doi.org/10.32473/edis-ss513-2019.

Full text
Abstract:
Soils in Florida may contain excess soil phosphorus (P) resulting from fertilizer, manure or biosolids applications. Excess P in soil does not damage soil fertility but can be transported from agricultural and urban areas either dissolved in water that drains away or as particulate matter (attached to soil particles) that travels with eroding soil. Increased P in water bodies is recognized as one of the major factors responsible for eutrophication-related decrease in water quality. Most soils have the capacity to retain excess P. However, soils with low capacity to retain excess P are abundant in Florida. The use of drinking-water treatment residuals (WTR) to control excess phosphorus (P) in soils with limited P adsorption capacity has been explored as a potential low-cost method by which to reduce phosphorus losses to surface waters and a discussion of these explorations is presented here. The target audience for this publication includes state agencies, like the Florida Department of Environmental Protection (FLDEP), and water management districts trying to control P pollution, and those interested in nutrient management for agricultural and environmental purposes. This 6-page fact sheet is a minor revision written by Jonathan D. Judy, Maria L. Silveira, Sampson Agyin-Birikorang, and George A. O’Connor, and published by the UF/IFAS Department of Soil and Water Sciences, June 2019. SL 300/SS513: Drinking-Water Treatment Residuals to Control Phosphorus in Soils (ufl.edu)
APA, Harvard, Vancouver, ISO, and other styles
9

de Jonge, Lis W., Per Moldrup, and Ole H. Jacobsen. "SOIL-WATER CONTENT DEPENDENCY OF WATER REPELLENCY IN SOILS." Soil Science 172, no. 8 (August 2007): 577–88. http://dx.doi.org/10.1097/ss.0b013e318065c090.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Wang, Xiaofang, Yi Li, Yichen Wang, and Chuncheng Liu. "Performance of HYDRUS-1D for simulating water movement in water-repellent soils." Canadian Journal of Soil Science 98, no. 3 (September 1, 2018): 407–20. http://dx.doi.org/10.1139/cjss-2017-0116.

Full text
Abstract:
Soil water repellency affects soil water movement during infiltration significantly. The HYDRUS software has been popularly applied in soil water dynamics simulation for many years, but its performance in water-repellent (WR) soils has not been assessed thoroughly. Our objectives are to assess the performance of HYDRYUS-1D for cumulative infiltration (CI), wetting front (Zf), and volumetric soil water content (θv) during horizontal imbibition and vertical infiltration in wettable, slightly WR, and strongly WR soils. The key parameters of α and n in water retention curves were inversely estimated by RETension Curve software. The α and n were calibrated inversely until the observed data fitted the simulated values well enough. The α and n were then used for validation using three statistical parameters including relative root-mean-square error, R2, and Nash–Sutcliffe efficiency coefficient. The performances of calibration and validation for wettable, slightly, and strongly WR soils were good enough to be used for further simulations (RRMSE ≤20.2% for calibration and ≤21.1% for validation). Soil water movements for strongly WR soils of variable ponded depth during vertical infiltration were simulated. For Lou soil, as the ponded depth increased from 4 to 10 cm, the CI and Zf increased 2.08 and 5.5 cm, respectively. The simulations for the other three soils also showed gradually increased CI and Zf values. In conclusion, the performances of HYDRUS-1D in four different soil types with changing WR levels were good, which confirmed the application of HYDRUS-1D in WR soils.
APA, Harvard, Vancouver, ISO, and other styles
11

Kolmogorov, S. G., P. L. Klemyatsionok, and S. S. Kolmogorova. "Toward compaction of overmoistured clay soil." Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. JOURNAL of Construction and Architecture 24, no. 5 (October 27, 2022): 145–50. http://dx.doi.org/10.31675/1607-1859-2022-24-5-145-150.

Full text
Abstract:
Various complicated processes, including physical and chemical, occur in clay soils, which finally determine their strength and stress-and-strain properties. In order to use clay soils as a subgrade, it is necessary to increase their strength primarily through a compaction. In clay soil compaction, the main role belongs to physically bound water, which gathers around soil particles forming water envelopes and making the compaction difficult. The paper considers compaction of overmoistured clay soils along with vibration, that provides an intensive transition of bound water to a free state. In this case, the envelopes of physically bound water become smaller, thereby increasing the possibility of the particle bonding under pressure. This improves the contact between the soil particles and the soil compaction.
APA, Harvard, Vancouver, ISO, and other styles
12

Shober, Amy L., Alexander Joseph Reisinger, Mary G. Lusk, and Sally Ann Scalera. "Soils and Fertilizers for Master Gardeners: Soil Physical Characteristics." EDIS 2019, no. 4 (July 26, 2019): 7. http://dx.doi.org/10.32473/edis-mg458-2019.

Full text
Abstract:
Soils are a foundational component of the landscape, providing a medium for plant root growth and playing a crucial role in nutrient cycling and water movement across the landscape. This new 7-page article describes the physical properties of soils, including soil formation in Florida, the soil profile, and water dynamics within soils, and provides a thorough reference for Master Gardeners and other individuals searching for a basic understanding of soil dynamics to apply to residential landscapes. Written by Amy L. Shober, Alexander J. Reisinger, Mary G. Lusk, and Sally Ann Scalera and published by the UF/IFAS Department of Soil and Water Sciences. https://edis.ifas.ufl.edu/mg458 This document combines and supersedes the following publications: Shober, Amy. 2008. “Soils and Fertilizers for Master Gardeners: The Soil Profile and Soil Classification: SL260/MG445”. EDIS 2008 (6). https://journals.flvc.org/edis/article/view/117366. Shober, Amy. 2009. “Soils and Fertilizers for Master Gardeners: Soil Physical Properties: SL268/MG451”. EDIS 2009 (1). https://journals.flvc.org/edis/article/view/117542. Shober, Amy. 2009. “Soils & Fertilizers for Master Gardeners: Soil Drainage and Water Holding Capacity: SL272/MG453”. EDIS 2009 (1). https://journals.flvc.org/edis/article/view/117544. Shober, Amy, and Thomas Obreza. 2009. “Soils & Fertilizers for Master Gardeners: Soil Formation in Florida: SL274/MG455”. EDIS 2009 (1). https://journals.flvc.org/edis/article/view/117547.
APA, Harvard, Vancouver, ISO, and other styles
13

Zhang, Hailin, Xiuyun Liu, Jun Yi, Xiufeng Yang, Tieniu Wu, Yi He, He Duan, Muxing Liu, and Pei Tian. "Bibliometric Analysis of Research on Soil Water from 1934 to 2019." Water 12, no. 6 (June 6, 2020): 1631. http://dx.doi.org/10.3390/w12061631.

Full text
Abstract:
As an essential factor of the earth’s critical zone, soil water has a remarkable influence on nutrient cycle and energy flow in terrestrial ecosystems and has attracted the attention of considerable scholars. Based on the online database of Web of Science, the bibliometric analysis was performed to evaluate the evolution feature of soil water research from 1934 to 2019. The results showed a rapid growth of scientific outputs with a gradually increasing proportion of internationally collaborative articles. Environmental Sciences, Water Resources, and Soil Science were the most frequently used subject categories, and the Journal of Hydrology had the highest number of publications in this field. The institutions from the USA and China were the most active, and the USA occupied a leading position in soil water research, producing the most articles and having the most considerable number of citations. Clusters of authors were mostly located in North America, Western Europe, West Asia, and East Asia. Keywords analysis demonstrated that climate change, drought, evapotranspiration, remote sensing, and irrigation were the current research hotspots. Scientific issues focusing on the interaction between soil water and environmental factors, drought forecast, relationships between soil structure and water/solute transport, improving the accuracy and depth of soil moisture monitoring with satellite, and spatio-temporal scaling transform require further research.
APA, Harvard, Vancouver, ISO, and other styles
14

Nielsen, Donald R., Miroslav Kutílek, and Marc B. Parlange. "Surface soil water content regimes: opportunities in soil science." Journal of Hydrology 184, no. 1-2 (October 1996): 35–55. http://dx.doi.org/10.1016/0022-1694(95)02967-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Altobelli, Filiberto, Ronald Vargas, Giuseppe Corti, Carmelo Dazzi, Luca Montanarella, Alessandro Monteleone, Lucrezia Caon, et al. "Improving soil and water conservation and ecosystem services by sustainable soil management practices: From a global to an Italian soil partnership." Italian Journal of Agronomy 15, no. 4 (December 16, 2020): 293–98. http://dx.doi.org/10.4081/ija.2020.1765.

Full text
Abstract:
The UN Sustainable Development Goals (SDGs) identify the need to restore degraded soils in order to improve productivity and the provision of ecosystem services. The aim is to support food production, store and supply clean water, conserve biodiversity, sequester carbon, and improve soil resilience in a context of climate change. Within this framework, in order to achieve the SDGs and to correct land management in the long-term, soil management is considered mandatory. The reduction of land degradation should be based on various sustainable soil management practices that improve and maintain soil organic matter levels, increase water infiltration, and improve soil water management. This technical review - a policy paper - summarizes the sustainable and territorial impact of soil degradation, including soil water erosion, from the global level to the European and National levels. Furthermore, with the aim of sharing ongoing soil and water management actions, instruments, and initiatives, we provide information on soil and water conservation activities and prospects in Italy.
APA, Harvard, Vancouver, ISO, and other styles
16

Dong, Yi, Changfu Wei, and Ning Lu. "Identifying Soil Adsorptive Water by Soil Water Density." Journal of Geotechnical and Geoenvironmental Engineering 146, no. 7 (July 2020): 02820001. http://dx.doi.org/10.1061/(asce)gt.1943-5606.0002289.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Brillante, L., O. Mathieu, B. Bois, C. van Leeuwen, and J. Lévêque. "The use of soil electrical resistivity to monitor plant and soil water relationships in vineyards." SOIL Discussions 1, no. 1 (October 29, 2014): 677–707. http://dx.doi.org/10.5194/soild-1-677-2014.

Full text
Abstract:
Abstract. Soil water availability deeply affects plant physiology. In viticulture it is considered as a major contributor to the "terroir" expression. The assessment of soil water in field conditions is a difficult task especially over large surfaces. New techniques, are therefore required to better explore variations of soil water content in space and time with low disturbance and with great precision. Electrical Resistivity Tomography (ERT) meets these requirements, for applications in plant sciences, agriculture and ecology. In this paper, possible techniques to develop models that allow the use of ERT to spatialise soil water available to plants are reviewed. An application of soil water monitoring using ERT in a grapevine plot in Burgundy (north-east of France) during the vintage 2013 is presented. We observed the lateral heterogeneity of ERT derived Fraction of Transpirable Soil Water (FTSW) variations, and differences in water uptake depending on grapevine water status (leaf water potentials measured both at predawn and at solar noon and contemporary to ERT monitoring). Active zones in soils for water movements were identified. The use of ERT in ecophysiological studies, with parallel monitoring of plant water status, is still rare. These methods are promising because they have the potential to reveal a hidden part of a major function of plant development: the capacity to extract water from the soil.
APA, Harvard, Vancouver, ISO, and other styles
18

Hu, Jun, Xinbin Wang, Fujun Zhang, and Yuanke Zhao. "Experimental Study on the Variation of Soil Dielectric Permittivity under the Influence of Soil Compaction and Water Content." Geofluids 2022 (November 18, 2022): 1–9. http://dx.doi.org/10.1155/2022/3575541.

Full text
Abstract:
The dielectric permittivity of common soils is mainly controlled by water content and porosity, while the latter is closely related to the characteristics of compaction. By studying the changes in dielectric permittivity of soil samples with different soil water content and compaction levels, the influence of the controlling factors on the relationship model between soil water content and dielectric permittivity can be evaluated. In this paper, network analyzer was used to measure the dielectric permittivity of 7 groups of soil samples with gravimetric water content ranging from 8.09% to 14.52% and dry density ranging from 1.61 g/cm3 to 1.96 g/cm3. The results show that the dielectric permittivity increases with the increase of water content and dry density, and the effect of water content on permittivity is more significant for soils with higher dry density. Furthermore, when the water content is less than or equal to the optimal water content, Topp formula and the complex refractive index model (CRIM) can better predict the soil dry density. When the water content approaches the saturated state of soil, there is a deviation between the predicted value and the actual value. At last, the modified Topp formula and the complex refractive index model (CRIM) can accurately predict soil compactness. This provides an important basis for rapid detection of water content and compactness of highway subgrade soil by ground penetrating radar.
APA, Harvard, Vancouver, ISO, and other styles
19

Padarian, José, Budiman Minasny, and Alex B. McBratney. "Machine learning and soil sciences: a review aided by machine learning tools." SOIL 6, no. 1 (February 6, 2020): 35–52. http://dx.doi.org/10.5194/soil-6-35-2020.

Full text
Abstract:
Abstract. The application of machine learning (ML) techniques in various fields of science has increased rapidly, especially in the last 10 years. The increasing availability of soil data that can be efficiently acquired remotely and proximally, and freely available open-source algorithms, have led to an accelerated adoption of ML techniques to analyse soil data. Given the large number of publications, it is an impossible task to manually review all papers on the application of ML in soil science without narrowing down a narrative of ML application in a specific research question. This paper aims to provide a comprehensive review of the application of ML techniques in soil science aided by a ML algorithm (latent Dirichlet allocation) to find patterns in a large collection of text corpora. The objective is to gain insight into publications of ML applications in soil science and to discuss the research gaps in this topic. We found that (a) there is an increasing usage of ML methods in soil sciences, mostly concentrated in developed countries, (b) the reviewed publications can be grouped into 12 topics, namely remote sensing, soil organic carbon, water, contamination, methods (ensembles), erosion and parent material, methods (NN, neural networks, SVM, support vector machines), spectroscopy, modelling (classes), crops, physical, and modelling (continuous), and (c) advanced ML methods usually perform better than simpler approaches thanks to their capability to capture non-linear relationships. From these findings, we found research gaps, in particular, about the precautions that should be taken (parsimony) to avoid overfitting, and that the interpretability of the ML models is an important aspect to consider when applying advanced ML methods in order to improve our knowledge and understanding of soil. We foresee that a large number of studies will focus on the latter topic.
APA, Harvard, Vancouver, ISO, and other styles
20

Yu, Dandan, Feilong Hu, Kun Zhang, Li Liu, and Danfeng Li. "Available water capacity and organic carbon storage profiles in soils developed from dark brown soil to boggy soil in Changbai Mountains, China." Soil and Water Research 16, No. 1 (December 11, 2020): 11–21. http://dx.doi.org/10.17221/150/2019-swr.

Full text
Abstract:
The available water capacity (AWC) is the most commonly used parameter for quantifying the amount of soil water that is readily available to plants. Specific AWC and soil organic carbon storage (SOCS) profiles are consequences of the soil development process. Understanding the distributions of AWC and SOCS in soil profiles is crucial for modelling the coupling between carbon and water cycle processes, and for predicting the consequences of global change. In this study, we determined the variations in the AWC and SOCS from the surface to a depth of 100 cm in soils developed from dark brown soil, skeletal dark brown soil, meadow dark brown soil, white starched dark brown soil, meadow soil, and boggy soil in the Changbai Mountains area of China. The AWC and SOCS profiles were calculated for each main soil group/subgroup using only the readily available variables for the soil texture and organic matter with the soil water characteristic equations. The results showed the following. (1) The AWC and SOCS decreased initially and then increased, before decreasing again in soils developed from dark brown soil to boggy soil, where the maximum SOCS occurred in the white starched dark brown soil, and the maximum AWC in the dark brown soil. (2) The SOCS was decreased by deforestation and concomitant soil erosion, but the negative impact of this decrease in the SOCS in the Changbai Mountains area was not caused completely by reductions in AWC. (3) In the soil development process from dark brown soil to boggy soil in response to deforestation, the AWC distribution differed in the profile and even among individual layers, whereas the SOCS was mainly present in the upper layer.
APA, Harvard, Vancouver, ISO, and other styles
21

Zhang, Panpan, and Jianglong Shen. "Effect of brackish water irrigation on the movement of water and salt in salinized soil." Open Geosciences 14, no. 1 (January 1, 2022): 404–13. http://dx.doi.org/10.1515/geo-2022-0367.

Full text
Abstract:
Abstract In China, fresh water resources are scarce, while brackish water resources are abundant. Reasonable utilization of brackish water is one of the important measures to alleviate the contradiction of water shortage. In order to study the effect of brackish water irrigation on water and salt transport in saline-alkali soils, one-dimensional brackish water infiltration experiments of soil columns were conducted. The influence of brackish water with different salinities on water and salt transport in salinized soil was compared and analyzed. The results showed that under brackish water irrigation, the Kostiakov model could better simulate the change in soil infiltration rate with time, the soil infiltration capacity had a positive response to the salinity of irrigation water. There was a good linear relationship between cumulative infiltration and the wetting front distance. Under different salinity conditions, the depth of soil desalination, Na+, and Cl− removal is different, which are inversely proportional to the degree of salinity; with the increase in the salinity of irrigation water, the water salt content and the concentration of Na+ and Cl− increased gradually, but the difference in the desalination zone was not obvious. Therefore, brackish water irrigation has a certain effect on the distribution of water and salt in saline soil.
APA, Harvard, Vancouver, ISO, and other styles
22

Dari, Biswanath, Vimala D. Nair, and Willie G. Harris. "Parameters for Site-Specific Soil Phosphorus Loss Modeling from Soil Test Data." EDIS 2017, no. 2 (May 9, 2017): 4. http://dx.doi.org/10.32473/edis-ss656-2017.

Full text
Abstract:
This 4-page fact sheet is part of the Soil Phosphorus Storage Capacity (SPSC) for Phosphorus Risk Assessment and Management series. This series is intended for use by those who are interested in management practices and policies that minimize the risk of phosphorus loss from soils. Written by Biswanath Dari, Vimala D. Nair, and Willie G. Harris and published by the Department of Soil and Water Sciences, February 2017. SL442/SS656: Parameters for Site-Specific Soil Phosphorus Loss Modeling from Soil Test Data (ufl.edu)
APA, Harvard, Vancouver, ISO, and other styles
23

Kaishwa, S. J., E. M. Marwa, J. J. Msaky, and W. N. Mwakalasya. "Uranium natural levels in soil, rock and water: assessment of the quality of drinking water in Singida Urban District, Tanzania." Journal of Water and Health 16, no. 4 (April 30, 2018): 542–48. http://dx.doi.org/10.2166/wh.2018.254.

Full text
Abstract:
Abstract An analytical study was carried out to determine the level of uranium in the soil and rock and associate it with the levels in surface and underground water, which are the main sources of drinking water in Singida Urban District, Tanzania. Fifteen water samples, 12 soil samples and nine rock samples were collected in Singida Urban District in February 2016. Water samples were analysed by the Government Chemist Laboratory Agency using inductively coupled plasma optical emission spectrometry (ICP-OES) (2007) and analyses for soil and rock samples were carried out through total X-ray fluorescence (XL3 ANALYSER) at Sokoine University of Agriculture in the Department of Soil and Geological Sciences. Uranium levels in the soils and rocks samples found ranged from 3.744 to 8.754 mg kg−1, SE ± 0.849 and P-value &lt;0.001 for soil and 20.01–31.57 mg kg−1, SE ± 2.474 and P-value 0.077 for rocks respectively. The levels in soil and rock influences the levels in surface and underground water which were between 0.087 and 1.097 mg L−1 for surface water and &lt;0.01–0.46 mg L−1 for underground water, respectively. Singida Urban District has higher uranium levels in the soil and rock with a consequence of high levels in drinking water sources.
APA, Harvard, Vancouver, ISO, and other styles
24

Orfanus, Tomas, Abdel-Monem Mohamed Amer, Grzegorz Jozefaciuk, Emil Fulajtar, and Anežka Čelková. "Water vapour adsorption on water repellent sandy soils." Journal of Hydrology and Hydromechanics 65, no. 4 (December 20, 2017): 395–401. http://dx.doi.org/10.1515/johh-2017-0030.

Full text
Abstract:
AbstractSoil sorptivity is considered a key parameter describing early stages of water (rain) infiltration into a relatively dry soil and it is related to build-up complexity of the capillary system and soil wettability (contact angles of soil pore walls). During the last decade an increasing water repellency of sandy soils under pine forest and grassland vegetation has been frequently observed at Mlaky II location in SW Slovakia. The dry seasons result in uneven wetting of soil and up to hundredfold decrease in soil sorptivity in these vegetated soil as compared to reference sandy material, which was out of the reach of ambient vegetation and therefore readily wettable. As far as water binding to low moisture soils is governed by adsorption processes, we hypothesized that soil water repellency detected by water drop penetration test and by index of water repellency should also influence the water vapour adsorption parameters (monolayer water content, Wm, specific surface area, A, maximum adsorption water, Wa, maximum hygroscopic water MH, fractal dimension, DS and adsorption energies, Ea) derived from BET model of adsorption isotherms. We found however, that the connection of these parameters to water repellency level is difficult to interpret; nevertheless the centres with higher adsorption energy prevailed evidently in wettable materials. The water repellent forest and grassland soils reached less than 80% of the adsorption energy measured on wettable reference material. To get more conclusive results, which would not be influenced by small but still present variability of field materials, commercially available homogeneous siliceous sand was artificially hydrophobized and studied in the same way, as were the field materials. This extremely water repellent material had two-times lower surface area, very low fractal dimension (close to 2) and substantially lower adsorption energy as compared to the same siliceous sand when not hydrophobized.
APA, Harvard, Vancouver, ISO, and other styles
25

Ebel, B. A., E. S. Hinckley, and D. A. Martin. "Soil-water dynamics and unsaturated storage during snowmelt following wildfire." Hydrology and Earth System Sciences Discussions 9, no. 1 (January 11, 2012): 441–83. http://dx.doi.org/10.5194/hessd-9-441-2012.

Full text
Abstract:
Abstract. Many forested watersheds with a substantial fraction of precipitation delivered as snow have the potential for landscape disturbance by wildfire. Little is known about the immediate effects of wildfire on snowmelt and near-surface hydrologic responses, including soil-water storage. Montane systems at the rain-snow transition have soil-water dynamics that are further complicated during the snowmelt period by strong aspect controls on snowmelt and soil thawing. Here we present data and analysis from field measurements of snow hydrology and subsurface hydrologic and temperature responses during the first winter and spring after the September 2010 Fourmile Canyon Fire in Colorado, USA. Our observations of soil-water content and soil temperature show sharp contrasts in hydrologic and thermal conditions between north- and south-facing slopes. South-facing burned soils were ~1–2 °C warmer on average than north-facing burned soils and ~1.5 °C warmer than south-facing unburned soils, which affected soil thawing during the snowmelt period. Soil-water dynamics also differed by aspect: in response to soil thawing, soil-water content increased approximately one month earlier on south-facing burned slopes than on north-facing burned slopes. While aspect and wildfire affect soil-water dynamics during snowmelt, soil-water storage at the end of the snowmelt period reached the value at field capacity for each plot, suggesting that post-snowmelt unsaturated storage was not substantially influenced by aspect in wildfire-affected areas. Our data and analysis indicate that snowmelt-driven groundwater recharge may be larger in wildfire-impacted areas, especially on south-facing slopes, because of earlier soil thaw and longer durations of soil-water contents above field capacity in those areas.
APA, Harvard, Vancouver, ISO, and other styles
26

Shevnin, V. A., D. I. Matveychuk, and A. S. Dernova. "Mapping of water resistivity using pool water." Moscow University Bulletin. Series 4. Geology, no. 5 (October 28, 2019): 81–83. http://dx.doi.org/10.33623/0579-9406-2019-5-81-83.

Full text
Abstract:
In the papers of G.E. Archie and V.N. Dakhnov were presented formulas of dependence between resistivity (or conductivity) of soil and that of porous water. Such dependence shows that we need to know water resistivity, that means its study at each fieldwork area. In some areas places for groundwater are absent or restricted (boreholes, wells, springs) as places of surface water (rivers, streams, ponds, lakes). Can we measure water resistivity in pools? Immediately after rain such water has no relation with soil resistivity. The purpose of our study consists in determination the rules of ionic exchange between soil and rain water in time. In the paper [Brunet et al., 2010] the authors demonstrated results of water resistivity measurements at contact with soil in time. We wanted to check results of that experiment.
APA, Harvard, Vancouver, ISO, and other styles
27

Keesstra, Saskia, Srikanta Sannigrahi, Manuel López-Vicente, Manuel Pulido, Agata Novara, Saskia Visser, and Zahra Kalantari. "The role of soils in regulation and provision of blue and green water." Philosophical Transactions of the Royal Society B: Biological Sciences 376, no. 1834 (August 4, 2021): 20200175. http://dx.doi.org/10.1098/rstb.2020.0175.

Full text
Abstract:
The United Nations Sustainable Development Goal 6 aims for clean water and sanitation for all by 2030, through eight subgoals dealing with four themes: (i) water quantity and availability, (ii) water quality, (iii) finding sustainable solutions and (iv) policy and governance. In this opinion paper, we assess how soils and associated land and water management can help achieve this goal, considering soils at two scales: local soil health and healthy landscapes. The merging of these two viewpoints shows the interlinked importance of the two scales. Soil health reflects the capacity of a soil to provide ecosystem services at a specific location, taking into account local climate and soil conditions. Soil is also an important component of a healthy and sustainable landscape, and they are connected by the water that flows through the soil and the transported sediments. Soils are linked to water in two ways: through plant-available water in the soil (green water) and through water in surface bodies or available as groundwater (blue water). In addition, water connects the soil scale and the landscape scale by flowing through both. Nature-based solutions at both soil health and landscape-scale can help achieve sustainable future development but need to be embedded in good governance, social acceptance and economic viability. This article is part of the theme issue ‘The role of soils in delivering Nature's Contributions to People’.
APA, Harvard, Vancouver, ISO, and other styles
28

Mundy, G. N., K. L. Greenwood, K. B. Kelly, S. M. Austin, and K. E. Dellow. "Improved soil and irrigation management for forage production 3. Plant - soil - water relationships." Australian Journal of Experimental Agriculture 46, no. 3 (2006): 327. http://dx.doi.org/10.1071/ea04097.

Full text
Abstract:
A field experiment was conducted from January 2000 for 2.5 years, at the Department of Primary Industries, Kyabram, in northern Victoria. The experiment determined the effect of soil modification, with and without subsurface drainage, on the yield and water use of tall fescue (Festuca arundinacea), lucerne (Medicago sativa), phalaris (Phalaris aquatica) and perennial ryegrass (Lolium perenne) under 2 irrigation frequencies. The soil was a red-brown earth. The forages were spray irrigated from August to May when evaporation minus rainfall (E – R) reached 45–50 mm (frequent) or 90–100 mm (infrequent). The depth of irrigation water applied was equal to the soil water deficit (SWD) of each treatment, measured before each irrigation. Soil modification did not change the plant available water content of the soil (about 115 mm). The apparent depth of water extraction was initially different between soil management treatments but, over time, these differences disappeared. There were consistent differences between the forage species in the apparent depth of soil water extraction. Lucerne extracted water from deeper in the soil than phalaris followed by tall fescue and then perennial ryegrass. In general, the infrequently irrigated forages extracted water from deeper in the soil than did the frequently irrigated forages. The frequently irrigated treatments received slightly more water than did the infrequent treatments. The depth of water applied to the control and modified soil was similar, whereas the drained soils received more water than did the undrained treatments. There were differences between the forages in the depth of water applied, with lucerne receiving up to about 1500 mm/year and the grasses about 1100 to 1300 mm/year. Water use efficiency [kg dry matter (DM)/ha.mm] of the forages ranged from 14 to 18 kg DM/ha.mm in 2000–01 and up to 24 kg DM/ha.mm in 2001–02. The relatively high water use efficiencies were largely due to the high yields achieved, as water use was similar to that of district farms.
APA, Harvard, Vancouver, ISO, and other styles
29

Wraith, J. M. "Soil Water Dynamics." Vadose Zone Journal 3, no. 4 (November 1, 2004): 1490. http://dx.doi.org/10.2113/3.4.1490.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Haverkamp, R., F. J. Leij, C. Fuentes, A. Sciortino, and P. J. Ross. "Soil Water Retention." Soil Science Society of America Journal 69, no. 6 (November 2005): 1881–90. http://dx.doi.org/10.2136/sssaj2004.0225.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Leij, F. J., R. Haverkamp, C. Fuentes, F. Zatarain, and P. J. Ross. "Soil Water Retention." Soil Science Society of America Journal 69, no. 6 (November 2005): 1891–901. http://dx.doi.org/10.2136/sssaj2004.0226.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Wraith, Jon M. "Soil Water Dynamics." Vadose Zone Journal 3, no. 4 (November 2004): 1490. http://dx.doi.org/10.2136/vzj2004.1490.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

GERMANN, PETER. "Soil- Water Interactions." Soil Science 146, no. 3 (September 1988): 210. http://dx.doi.org/10.1097/00010694-198809000-00014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Minasny, Budiman. "Soil Water Dynamics." Geoderma 122, no. 1 (September 2004): 103–4. http://dx.doi.org/10.1016/j.geoderma.2003.11.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Su, Huidong, Yangwen Jia, Yongde Gan, Guangheng Ni, Cunwen Niu, Huan Liu, Tiantian Jin, and Yizhen Yao. "Soil water movement model for deformable soils." Journal of Water and Climate Change 11, no. 4 (July 22, 2019): 1191–202. http://dx.doi.org/10.2166/wcc.2019.262.

Full text
Abstract:
Abstract To simulate the soil water movement process of deformable soils, a modified Richards model considering soil deformation (RMSD) was established. In the model, new parameters were introduced, including deformable soil porosity, deformable soil saturated hydraulic conductivity and unsaturated hydraulic conductivity of expansive soils, which varied with soil depth and time under the effect of soil deformation. The newly introduced parameters originated from physical properties of the soils and their calculation formulas were suggested. One-dimensional infiltration–runoff experiments were performed to evaluate the performance of the RMSD. The results showed that average relative errors (ARE) of simulated runoff intensity and cumulative infiltration (by the RMSD) ranged from −10.0% to −1.0% and from −1.0% to 11.0%, respectively, and Nash efficiency coefficients (NSE) of simulated cumulative infiltration (by the RMSD) were larger than 0.90. As the RMSD model is much better than the traditional Richards model (TRID) in fitting the observations of soil cumulative infiltration and runoff intensity, it is believed that the newly suggested model provides a suitable tool to depict the soil water movement in deformable soils.
APA, Harvard, Vancouver, ISO, and other styles
36

Bolland, MDA, and MJ Baker. "Increases in soil water content decrease the residual value of superphosphate." Australian Journal of Experimental Agriculture 27, no. 4 (1987): 571. http://dx.doi.org/10.1071/ea9870571.

Full text
Abstract:
In pot experiments, levels of superphosphate incorporated through the whole soil were incubated for 30 days in 2 lateritic soils from south-western Australia at 1 of the following 5 soil water contents: air-dry for 30 days, at field capacity for 10 or 30 days, and flooded for 10 or 30 days. The soils were then air-dried for 30 days and the residual value of the superphosphate relative to freshly applied superphosphate was measured using 30-day-old triticale (x Triticosecale cv. Tyalla) and wheat (Triticum aestivum cv. Gamenya) plants. Soil samples were collected just before sowing from each pot for measurement of bicarbonate-extractable phosphorus (P) levels which were compared with the DM yield of plant tops. For all treatments there was a common relationship between the P concentration (data not shown) or P content in the tops and the DM yield. This shows that the treatments can be considered as different dilutions of the same fertiliser. Less P was taken up by plants as the moisture content and period of contact with moist soil increased, and this limited yield. The effectiveness of superphosphate incubated in dry soil was similar to the effectiveness of freshly applied superphosphate. Incubation in moist soil reduced the effectiveness of superphosphate for plant growth, by about 50% for soils incubated at field capacity and 70% for flooded incubated soils. As calculated from the P content of plant tops, the effectiveness of superphosphate incubated in dry soil was similar to the effectiveness of freshly applied superphosphate, and the effectiveness of superphosphate decreased by about 55% for soils incubated at field capacity and 75% for flooded incubated soils. The amount of P extracted by sodium bicarbonate from soil sampled just before sowing was also influenced by the incubation treatments, and decreased in the following order: freshly applied = air dry incubated > field capacity incubated > flooded incubated. Thus the bicarbonate-soluble P extracted from the soil qualitatively paralleled the yield results. However, compared with the yield results, the decreases were not as marked. When the bicarbonate-extracted P results were compared with subsequent yields of triticale or wheat, separate calibration curves were required for the different incubation treatments.
APA, Harvard, Vancouver, ISO, and other styles
37

Michal, Dohnal, Dušek Jaromír, Vogel Tomáš, and Herza Jiří. "Analysis of Soil Water Response to Grass Transpiration." Soil and Water Research 1, No. 3 (January 7, 2013): 85–98. http://dx.doi.org/10.17221/6510-swr.

Full text
Abstract:
This paper focuses on numerical modelling of soil water movement in response to the root water uptake that is driven by transpiration. The flow of water in a lysimeter, installed at a grass covered hillslope site in a small headwater catchment, is analysed by means of numerical simulation. The lysimeter system provides a well defined control volume with boundary fluxes measured and soil water pressure continuously monitored. The evapotranspiration intensity is estimated by the Penman-Monteith method and compared with the measured lysimeter soil water loss and the simulated root water uptake. Variably saturated flow of water in the lysimeter is simulated using one-dimensional dual-permeability model based on the numerical solution of the Richards&rsquo; equation. The availability of water for the root water uptake is determined by the evaluation of the plant water stress function, integrated in the soil water flow model. Different lower boundary conditions are tested to compare the soil water dynamics inside and outside the lysimeter. Special attention is paid to the possible influence of the preferential flow effects on the lysimeter soil water balance. The adopted modelling approach provides a useful and flexible framework for numerical analysis of soil water dynamics in response to the plant transpiration.
APA, Harvard, Vancouver, ISO, and other styles
38

Mylavarapu, Rao, Willie Harris, and George Hochmuth. "Agricultural Soils of Florida." EDIS 2016, no. 9 (November 9, 2016): 7. http://dx.doi.org/10.32473/edis-ss655-2016.

Full text
Abstract:
This 7-page fact sheet describes the various soil Orders in Florida, how they were developed, their characteristics, coverage in the state, and uses. This information is important for educating land owners, decision-makers, and educators about soils in Florida, leading to better soil management for agricultural and environmental sustainability. Written by Rao Mylavarapu, Willie Harris, and George Hochmuth, and published by the Soil and Water Sciences Department, October 2016. SL441/SS655: Agricultural Soils of Florida (ufl.edu)
APA, Harvard, Vancouver, ISO, and other styles
39

Chau, Henry Wai, Asim Biswas, Vladimir Vujanovic, and Bing Cheng Si. "Relationship between the severity, persistence of soil water repellency and the critical soil water content in water repellent soils." Geoderma 221-222 (June 2014): 113–20. http://dx.doi.org/10.1016/j.geoderma.2013.12.025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Hruska, K., and M. Kaevska. "Mycobacteria in water, soil, plants and air: a review." Veterinární Medicína 57, No. 12 (January 23, 2013): 623–79. http://dx.doi.org/10.17221/6558-vetmed.

Full text
Abstract:
Amazingly, despite the 24 143 papers on mycobacteria, indexed in the Web of Science database during the last six years, published by 67 008 authors from 13 128 organizations located in 166 countries or territories, internationally accepted legal directives on how to control the public health risk associated with environmental mycobacteria have yet to be developed. Mycobacteria are human and animal pathogens, causing not only tuberculosis and leprosy, but mycobacterioses of skin, soft tissues and lung. Due to their cell wall composition and their adaptability mycobacteria can survive in different habitats for years. Their immunomodulatory ability has been recognised for more than 50&nbsp;years and hundreds of papers published during the last two decades have demonstrated that small chemical products derived from mycobacterial cells participate in inflammatory pathways involved the pathogenesis of important human diseases like Crohn&rsquo;s disease, asthma, type 1 diabetes mellitus, psoriasis, arthrosis, Blau syndrom, sarcoidosis, autism etc. Mycobacteria can influence inflammatory pathways not only as live organisms, but also by means of components derived from dead cells. Pasteurisation or cooking does not affect this ability. Hence, how many mycobacterial cells are ingested, what factors play a role concurrently, and how long the harmful effect persists become important questions. This paper presents only a short review based on selected papers about mycobacteria in water, soil, plants and air with the aim of attracting attention to this significant global problem and of making the first steps towards protection of people. Selected bibliographic references of published data from 2007 to 2012 are presented in easy-to-navigate tables.
APA, Harvard, Vancouver, ISO, and other styles
41

Li, Shuang, Yun Xie, Gang Liu, Jing Wang, Honghong Lin, Yan Xin, and Junrui Zhai. "Water Use Efficiency of Soybean under Water Stress in Different Eroded Soils." Water 12, no. 2 (January 30, 2020): 373. http://dx.doi.org/10.3390/w12020373.

Full text
Abstract:
Soil erosion could change the effective storage of soil moisture and affected crop water use efficiency (WUE). To quantitative study differences in the WUE of soybean and the crop’s response to water stress for soils with different degrees of erosion in northeastern China, three erosion degrees—(1) lightly, (2) moderately and (3) severely—eroded black undisturbed soils and four years (from 2013 to 2016) of soybean pot experiments were used to control soil water content (100%, 80%, 60%, and 40% field capacity (FC)) and observe the crop growth processes. To study the relationships between erosion–water use–productivity, the following results were achieved: (1) the optimal water content was 80% FC for lightly eroded soil (L) and 100% FC for both moderately (M) and severely (S) eroded soil. Yield (Y) was best in M with the value of 3.12 t ha−1, which was 4.6% and 85.5% higher than L and S, respectively. Under the conditions of adequate water supply, there was no significant change in Land M, but the values were significantly different for the S ( p < 0.05). (2) Y and biomass (B) were sensitive to water stress except in the branching stage. (3) The values of WUEY and WUEB for the three eroded soils were the best at 80% FC. The stress coefficient (SF) values of the three eroded soils were not significantly different. In the flowering and pod formation stage, the SF reached the maximum under waterlogging stress. While the water shortage stress reached the maximum in the seed filling stage, the soil water content decreased by 10%, and the WUEB decreased by 15%, which was 2.5 times more powerful than the waterlogging stress. This study indicated the change in soybean growth with respect to the water response caused by soil erosion, and provided a scientific basis and data for the reasonable utilization of black soil with different erosion intensities. The results also provided important parameters for the growth of simulated crops.
APA, Harvard, Vancouver, ISO, and other styles
42

Orlowski, Natalie, Lutz Breuer, Nicolas Angeli, Pascal Boeckx, Christophe Brumbt, Craig S. Cook, Maren Dubbert, et al. "Inter-laboratory comparison of cryogenic water extraction systems for stable isotope analysis of soil water." Hydrology and Earth System Sciences 22, no. 7 (July 6, 2018): 3619–37. http://dx.doi.org/10.5194/hess-22-3619-2018.

Full text
Abstract:
Abstract. For more than two decades, research groups in hydrology, ecology, soil science, and biogeochemistry have performed cryogenic water extractions (CWEs) for the analysis of δ2H and δ18O of soil water. Recent studies have shown that extraction conditions (time, temperature, and vacuum) along with physicochemical soil properties may affect extracted soil water isotope composition. Here we present results from the first worldwide round robin laboratory intercomparison. We test the null hypothesis that, with identical soils, standards, extraction protocols, and isotope analyses, cryogenic extractions across all laboratories are identical. Two standard soils with different physicochemical characteristics along with deionized (DI) reference water of known isotopic composition were shipped to 16 participating laboratories. Participants oven-dried and rewetted the soils to 8 and 20 % gravimetric water content (WC), using the deionized reference water. One batch of soil samples was extracted via predefined extraction conditions (time, temperature, and vacuum) identical to all laboratories; the second batch was extracted via conditions considered routine in the respective laboratory. All extracted water samples were analyzed for δ18O and δ2H by the lead laboratory (Global Institute for Water Security, GIWS, Saskatoon, Canada) using both a laser and an isotope ratio mass spectrometer (OA-ICOS and IRMS, respectively). We rejected the null hypothesis. Our results showed large differences in retrieved isotopic signatures among participating laboratories linked to soil type and soil water content with mean differences compared to the reference water ranging from +18.1 to −108.4 ‰ for δ2H and +11.8 to −14.9 ‰ for δ18O across all laboratories. In addition, differences were observed between OA-ICOS and IRMS isotope data. These were related to spectral interferences during OA-ICOS analysis that are especially problematic for the clayey loam soils used. While the types of cryogenic extraction lab construction varied from manifold systems to single chambers, no clear trends between system construction, applied extraction conditions, and extraction results were found. Rather, observed differences in the isotope data were influenced by interactions between multiple factors (soil type and properties, soil water content, system setup, extraction efficiency, extraction system leaks, and each lab's internal accuracy). Our results question the usefulness of cryogenic extraction as a standard for water extraction since results are not comparable across laboratories. This suggests that defining any sort of standard extraction procedure applicable across laboratories is challenging. Laboratories might have to establish calibration functions for their specific extraction system for each natural soil type, individually.
APA, Harvard, Vancouver, ISO, and other styles
43

Barbour, S. Lee. "Nineteenth Canadian Geotechnical Colloquium: The soil-water characteristic curve: a historical perspective." Canadian Geotechnical Journal 35, no. 5 (October 1, 1998): 873–94. http://dx.doi.org/10.1139/t98-040.

Full text
Abstract:
The constitutive relationship between water content or degree of saturation and suction is called the soil-water characteristic curve. The soil-water characteristic curve provides a conceptual framework in which the behavior of unsaturated soils can be understood. A historical review illustrates how the work of early researchers in soil science and geotechnical engineering laid the foundation for our current understanding of this relationship. Key elements of these early studies were a conceptual understanding of the soil-water characteristic curve as a relationship between the mass or volume of water stored within the soil and the energy in the water phase. It was on the basis of this conceptual model that current methods of measuring the soil-water characteristic curve were developed. Interpretative models for the distribution and geometry of the water phase in an unsaturated soil based on the capillary model have provided a useful conceptual model for understanding the effects of soil texture, gradation, void ratio, and compaction on the soil-water characteristic curve. The capillary model has also provided the foundation for recently developed techniques to predict the functional relationship between degree of saturation and shear strength, coefficient of permeability, coefficient of diffusion, and adsorption for unsaturated soils.Key words: unsaturated soils, soil-water characteristic curve, suction, shear strength, permeability, contaminant transport.
APA, Harvard, Vancouver, ISO, and other styles
44

Centeri, Csaba. "Soil Water Erosion." Water 14, no. 3 (February 1, 2022): 447. http://dx.doi.org/10.3390/w14030447.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Ahuchaogu, Israel, Precious Ehiomogue, and Unwana Udoumoh. "Effects of soil and water conservation measures on the environment: A review." Poljoprivredna tehnika 47, no. 3 (2022): 42–55. http://dx.doi.org/10.5937/poljteh2203042a.

Full text
Abstract:
The preservation and sustainable development of soil and water resources is one of the basic principles for the development of the environment. Soil degradation was a significant global issues during the 20th century and remains of high importance in the 21 st century as it affect the environment, agronomic production, food security, and quality of life. This review provides an extensive review information on soil conservation strategies or methods and their applications. Based on this, the most promising soil conservation technologies are identified to improve the management and conservation of soil resources. This review also aims to provide general characteristics of soil and water loss, explore the relationship between soil and water conservation and sustainable development, and to provide relevant methods for soil and water conservation. The result of this review shows that measures focused on soil and water conservation by ridging, constructing earth bunds and terraces, mulching, multiple cropping, fallowing, and tree planting. Mulching, crop management, and conservation tillage are appropriate technologies for conserving sandy soils of high erosivity and low water holding capacity. Leguminous cover crops and residue management reduce the impact of rain. These measures also reported to enhance the levels of soil organic matter and nutrients, especially nitrogen, which is generally limited in tropical soils. Intercropping of compatible species is recorded as a promising cropping system, as cultures with different rooting patterns and growth cycles can promote nutrient recycling and suppress weeds.
APA, Harvard, Vancouver, ISO, and other styles
46

Ariyanto, Sandy Vikki, and Imron Rosyadi NR. "KKN-PPM: Improvement of Creativity Processing Purple Uwi into Purple Uwi Chips." Jurnal Pengabdian kepada Masyarakat (Indonesian Journal of Community Engagement) 6, no. 1 (March 31, 2020): 01. http://dx.doi.org/10.22146/jpkm.48581.

Full text
Abstract:
Based on observations by DPL and KKN students of Madura University, Blaban Village is located on a plateau of rocks that make it difficult to grow plants. The soil condition of Blaban village is barren and dry during the dry season, during the rainy season the soil is cracked so that it needs water absorption to collect rainwater in the soil and improve the structure of the dry soil during the dry season. With a combination of science from soil structure (Geophysical Science), water supply in the soil (Geophysical Science), liquid fertilizer (Agricultural Science), product processing (Industrial Engineering), quality and quantity management (Industrial Engineering and Management Science), financial management (Economics), marketing management (Industrial and Economic Engineering) even taking care of business licenses (Legal and Administrative Sciences), and online sales using applications (Informatics Engineering). In order to maximize the processing of purple uwi into purple uwi chips in Blaban Village, the initial planting of purple uwi to processing as well as selling purple uwi chips are done through offline and online methods. The results obtained are optimizing the sale of purple uwi crops into purple uwi chips, which has more demand by all consumers in various regions.
APA, Harvard, Vancouver, ISO, and other styles
47

Gomboš, Milan. "Soil water regime in clay-loam soils." Cereal Research Communications 35, no. 2 (June 2007): 417–20. http://dx.doi.org/10.1556/crc.35.2007.2.63.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Ahmad Bhat, Shakeel, Alban Kuriqi, Mehraj U. Din Dar, Owais Bhat, Saad Sh Sammen, Abu Reza Md Towfiqul Islam, Ahmed Elbeltagi, et al. "Application of Biochar for Improving Physical, Chemical, and Hydrological Soil Properties: A Systematic Review." Sustainability 14, no. 17 (September 5, 2022): 11104. http://dx.doi.org/10.3390/su141711104.

Full text
Abstract:
Biochar is a carbon-based substance made by the pyrolysis of organic waste. The amount of biochar produced is determined by the type of feedstock and pyrolysis conditions. Biochar is frequently added to the soil for various reasons, including carbon sequestration, greenhouse gas mitigation, improved crop production by boosting soil fertility, removing harmful contaminants, and drought mitigation. Biochar may also be used for waste management and wastewater treatment. Biochar’s various advantages make it a potentially appealing instrument material for current science and technology. Although biochar’s impacts on soil chemical qualities and fertility have been extensively researched, little is known about its impact on enhancing soil physical qualities. This review is intended to describe biochar’s influence on some crucial soil physical and hydrological properties, including bulk density of soil, water holding capacity, soil porosity, soil hydraulic conductivity, soil water retention, water repellence–available plant water, water infiltration, soil temperature, soil color, and surface albedo. Therefore, we propose that the application of biochar in soils has considerable advantages, and this is especially true for arable soils with low fertility.
APA, Harvard, Vancouver, ISO, and other styles
49

Orlowski, N., P. Kraft, and L. Breuer. "Exploring water cycle dynamics through sampling multitude stable water isotope pools in a small developed landscape of Germany." Hydrology and Earth System Sciences Discussions 12, no. 2 (February 6, 2015): 1809–53. http://dx.doi.org/10.5194/hessd-12-1809-2015.

Full text
Abstract:
Abstract. Conducting a dual stable water isotope (δ2H and δ18O) study in the developed landscape of the Schwingbach catchment (Germany) helped to unravel connectivity and disconnectivity between the different water cycle components. The two-year weekly to biweekly measurements of precipitation, stream, and groundwater isotopes revealed that surface and groundwater are decoupled from the annual precipitation cycle but showed bidirectional interactions between each other. Seasonal variations based on temperature effects were observed in the precipitation signal but neither reflected in stream nor in groundwater isotopic signatures. Apparently, snowmelt played a fundamental role for groundwater recharge explaining the observed differences to precipitation δ-values. A spatially distributed snapshot sampling of soil water isotopes in two soil depths at 52 sampling points across different land uses (arable land, forest, and grassland) revealed that top soil isotopic signatures were similar to the precipitation input signal. Preferential water flow paths occurred under forested soils explaining the isotopic similarities between top and subsoil isotopic signatures. Due to human-impacted agricultural land use (tilling and compression) of arable and grassland soils, water delivery to the deeper soil layers was reduced, resulting in significant different isotopic signatures. However, the land use influence smoothed out with depth and soil water approached groundwater δ-values. Seasonally tracing stable water isotopes through soil profiles showed that the influence of new percolating soil water decreased with depth as no remarkable seasonality in soil isotopic signatures was obvious at depth > 0.9 m and constant values were observed through space and time. Little variation in individual isotope time series of stream and groundwater restricted the use of classical isotope hydrology techniques e.g. mean transit time estimation or hydrograph separation. Still, tracing stable water isotopes through the water cycle was valuable for determining interactions between different water cycle components and gaining catchment specific process understanding in a developed, human-impacted landscape.
APA, Harvard, Vancouver, ISO, and other styles
50

Cresswell, HP, DE Smiles, and J. Williams. "Soil structure, soil hydraulic properties and the soil water balance." Soil Research 30, no. 3 (1992): 265. http://dx.doi.org/10.1071/sr9920265.

Full text
Abstract:
We review the influence of soil structural change on the fundamental soil hydraulic properties (unsaturated hydraulic conductivity and the soil moisture characteristic) and utilize deterministic modelling to assess subsequent effects on the soil water balance. Soil structure is reflected in the 0 to -100 kPa matric potential section of the soil moisture characteristic with marked changes often occurring in light to medium textured soils' (sands, sandy-loam, loams and clay-loams). The effect of long-term tillage on soil structure may decrease hydraulic conductivity within this matric potential range. The 'SWIM' (Soil Water Infiltration and Movement) simulation model was used to illustrate the effects of long-term conventional tillage and direct drilling systems on the water balance. The effects of plough pans, surface crusts and decreasing surface detention were also investigated. Significant structural deterioration, as evidenced by substantially reduced hydraulic conductivity, is necessary before significant runoff is generated in the low intensity rainfall regime of the Southern Tablelands (6 min rainfall intensity <45 mm h-1). A 10 mm thick plough pan (at a depth of 100 mm) in the A-horizon of a long-term conventionally tilled soil required a saturated hydraulic conductivity (K,) of less than 2.5 mm h-1 before runoff exceeded 10% of incident rainfall in this rainfall regime. Similarly, a crust K, of less than 2.5 mm h-1 was necessary before runoff exceeded 10% of incident rainfall (provided that surface detention was 2 or more). As the crust K, approached the rainfall rate, small decreases in Ks resulted in large increases in runoff. An increase in surface detention of 1 to 3 mm resulted in a large reduction in runoff where crust K, was less than 2-5 mm h-1. Deterministic simulation models incorporating well established physical laws are effective tools in the study of soil structural effects on the field water regime. Their application, however, is constrained by insufficient knowledge of the fundamental hydraulic properties of Australian soils and how they are changing in response to our land management.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography