To see the other types of publications on this topic, follow the link: Software defined radio receiver.

Dissertations / Theses on the topic 'Software defined radio receiver'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Software defined radio receiver.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Ödquist, Matilda. "Software-Defined Radio Receiver for IEEE 802.11n." Thesis, Linköpings universitet, Kommunikationssystem, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-170724.

Full text
Abstract:
This thesis studies the physical layer (PHY layer) of the IEEE 802.11n wireless local area network (WLAN) standard. The possibility of integrating a receiver designed according to the standard with software-defined radios is investigated. The proposed design was implemented in MATLAB and tested using two softwaredefined radios. One of the radios transmitted IEEE 802.11n signals whilst the other one captured them and sent them to a computer for decoding. In this way, evaluation of the proposed receiver design was done. The tests resulted in successfully decoded WLAN packets, although errors occured regularly due to distortions in the air. The proposed MATLAB design can be developed further, with more features, for future tests and research.
APA, Harvard, Vancouver, ISO, and other styles
2

Don, Michael L. "A Low-Cost Software-Defined Telemetry Receiver." International Foundation for Telemetering, 2015. http://hdl.handle.net/10150/596410.

Full text
Abstract:
ITC/USA 2015 Conference Proceedings / The Fifty-First Annual International Telemetering Conference and Technical Exhibition / October 26-29, 2015 / Bally's Hotel & Convention Center, Las Vegas, NV
The Army Research Laboratories has developed a PCM/FM telemetry receiver using a low-cost commercial software-defined radio (SDR). Whereas traditional radio systems are implemented in hardware, much of the functionality of software-defined radios is defined in software. This gives them the flexibility to accommodate military telemetry standards as well as other specialized functions. After a brief review of telecommunication theory, this paper describes the receiver implementation on a commercial SDR platform. Data rates up to 10 Mbs were obtained through the customization the SDR's field programmable gate array.
APA, Harvard, Vancouver, ISO, and other styles
3

Sanfuentes, Juan L. "Software defined radio design for synchronization of 802.11A receiver." Thesis, Monterey, California. Naval Postgraduate School, 2007. http://hdl.handle.net/10945/3197.

Full text
Abstract:
Constant improvements in techniques applied to different radio communication system stages, including coding, modulation, synchronization and security, make any implementation quickly obsolete. On the other hand, different communication standards used among military and public safety agencies make difficult the necessary interoperability. These reasons force users to replace equipment frequently, increasing cost and implementation time. Software Defined Radios (SDRs), partly implemented in software, can solve these problems, making full use of programmable modules. This thesis presents an implementation of the necessary algorithms that solve the synchronization requirements of IEEE 802.11a WLAN receivers. This is a continuation of a previous thesis effort, where the post-synchronization steps of the receiver were addressed. The software utilized for this purpose is the Open Source SCA Implementation::Embedded (OSSIE), developed by Virginia Tech. Each algorithm was created as a different component, allowing reuse and modularity for the development of future waveforms.
APA, Harvard, Vancouver, ISO, and other styles
4

Kumar, Sumit. "Architecture for simultaneous multi-standard software defined radio receiver." Electronic Thesis or Diss., Sorbonne université, 2019. http://www.theses.fr/2019SORUS160.

Full text
Abstract:
Motivés par les capacités du SDR, nous théorisons dans ce travail un récepteur de définition radio multi-standard simultané (SMS-SDR). Un récepteur SMS-SDR sera capable de décoder "simultanément" les informations de plusieurs standards sans fil hétérogènes utilisant le même frontal RF. Nos réseaux cibles sont des réseaux à accès aléatoire fonctionnant dans des bandes sans licence. Ces normes fonctionnent sans coordination centralisée et sont soumises à de graves brouillage entre canaux du même type de technologie (CT-CCI) car leurs bandes de fréquences de fonctionnement se chevauchent. Nous développons plusieurs nouveaux algorithmes de traitement du signal en bande de base afin d'éliminer l'ICC des récepteurs à une et plusieurs antennes. Nous avons choisi le cas de l'utilisation de signaux à bande étroite et à large bande, en accordant une attention particulière aux systèmes basés sur OFDM, l'OFDM étant une technique de couche physique essentielle des normes sans fil modernes telles que les familles IEEE 802.11 et 4G. Au cours du développement, nous nous concentrons sur les méthodes pouvant fonctionner de manière autonome dans le récepteur, c'est-à-dire sans aucune coopération de la part de l'émetteur ou de la station de base. De cette manière, ce sont des réseaux à accès aléatoire appropriés fonctionnant dans des bandes sans licence. De plus, les algorithmes peuvent être intégrés à l'infrastructure existante sans aucun effort significatif. Enfin, nos méthodes d'atténuation des interférences sont utilisées pour développer des arbres de décision qui recommandent la séquence d'étapes permettant d'atténuer les interférences entre deux signaux hétérogènes. Enfin, nous avons validé nos algorithmes en les implémentant à l'aide de SDR
Motivated by the capabilities of the SDR, we theorize in this work a simultaneous multi-standard radio definition receiver (SMS-SDR). An SMS-SDR receiver will be able to "simultaneously" decode the information of several heterogeneous wireless standards using the same RF front end. Our target networks are random access networks operating in unlicensed bands. These standards operate without centralized coordination and are subject to serious interference between channels of the same type of technology (CT-CCI) because their operating frequency bands overlap. We are developing several new baseband signal processing algorithms to eliminate ICC from single and multi-antenna receivers. We chose the case of the use of narrow-band and broadband signals, paying particular attention to OFDM-based systems, OFDM being an essential physical layer technique of modern wireless standards such as IEEE families 802.11 and 4G. During development, we focus on methods that can operate autonomously in the receiver, that is, without any cooperation from the transmitter or base station. In this way, they are appropriate random access networks operating in unlicensed bands. In addition, the algorithms can be integrated into the existing infrastructure without any significant effort. Finally, our interference mitigation methods are used to develop decision trees that recommend the sequence of steps to mitigate interference between two heterogeneous signals. Finally, we validated our algorithms by implementing them using SDR
APA, Harvard, Vancouver, ISO, and other styles
5

Warr, Paul. "Octave-band feedforward linearisation for software defined radio receiver amplifiers." Thesis, University of Bristol, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.340270.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Holstensson, Oskar. "Study of Interferer Canceling Systems in a Software Defined Radio Receiver." Thesis, Linköpings universitet, Institutionen för systemteknik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-92757.

Full text
Abstract:
This thesis describes the work related to an interferer rejection system employing frequency analysis and cancellation through phase-opposed signal injection. The first device in the frequency analysis chain, an analog fast Fourier transform application-specific integrated circuit (ASIC), was improved upon. The second device, a chained fast Fourier transform followed by a frequency analysis module employing cross-correlation for signal detection was specified, designed and implemented in VHDL.
APA, Harvard, Vancouver, ISO, and other styles
7

Koch, Mick V. "An Accessible Project 25 Receiver Using Low-Cost Software Defined Radio." Ohio University / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1464007525.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Shetye, Kalpesh Anil. "Design and implementation of a software defined radio receiver for AM band." Auburn, Ala., 2007. http://repo.lib.auburn.edu/2007%20Spring%20Theses/SHETYE_KALPESH_58.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Швець, Валеріян Анатолійович, Volodymyr Kondratiuk, Svitlana Ilnytska, and Oleksandr Kutsenko. "Radionavigation field monitoring in the landing area using software-defined radio receiver." Thesis, National Aviation University, 2018. http://er.nau.edu.ua/handle/NAU/36846.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Zhang, Chen. "An ECA-Based ZigBee Receiver." Thesis, Virginia Tech, 2008. http://hdl.handle.net/10919/31516.

Full text
Abstract:
Element CXI's Elemental Computing Array (ECA) delivers faster reconfiguration time and higher computational density than Field Programmable Gate Arrays (FPGAs) with similar computational power. It provides higher computational power than Digital Signal Processors (DSPs) with similar power consumption and price. It also utilizes a library-based graphical development environment promoting ease of use and fast development. In this thesis, the design and implementation of a ZigBee receiver on an Element CXI ECA-64 platform is presented. The ZigBee receiver is evaluated through simulations and implementation on an ECA device. During the design and implementation of the ZigBee receiver, some design experience and tips are concluded. The design methodology on the ECA is studied in detail to assure the implementationâ s correctness, since the methodology of the ECA is different from that of other platforms.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
11

Mikkelsen, Eivind Brauer. "The Design of a Low Cost Beacon Receiver System using Software Defined Radio." Thesis, Norwegian University of Science and Technology, Department of Electronics and Telecommunications, 2009. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-9984.

Full text
Abstract:

Due to increase in ship traffic and activities related to oil and gas there is currently grate interest in the northern regions of Norway. Satellite communications to these areas i.e. north of the polar circle is however challenging due to low elevation angles and restricted visibility of geostationary satellites. Limited work has been done to study the propagation effects at theses latitudes and low elevation angles, especially at millimeter frequencies and for maritime communications. Some measurements have been conducted at Svalbard [5] and in Canada [5.1]. The studies from Svalbard were conducted at Ku-band frequencies whilst the Canadian measurements were conducted at 38 GHz. Non of the two did however include maritime measurements. Further measurements are therefore needed to characterize the propagation effects under these conditions. A beacon receiver is radio which is used to detect and measure the signal strength of a transmitted radio beacon signal. Beacon signals transmitted by satellites are often low power continuous wave signals intended for antenna steering and power control purposes. These signals are well suited for propagation measurement due to their constant transmits power and frequency. Propagation research often relies on beacon measurements along with other information such as weather data and radiometer readings. This thesis discusses the design and implementation of a low cost beacon receiver based on digital signal processing techniques and software defined radio. The intention was originally to design a Ka-band (20 GHz) receiver. This was however extended to a general purpose beacon receiver intended to operate at an L-band intermediate frequency. Different architectures and realizations are discussed with emphasis on costs and performance. It is shown that a 1.2 m antenna, receiving a Ka-band beacon with, 9 dBW EIRP would produce a signal level of about -130 dBm at its output. This would in turn yield a C/N0 ratio of about 46 dBHz at 76°North, assuming a receiver with overall noise figure of 1.5 dB and clear air conditions. Based on the link budget calculations two different beacon receiver designs are proposed. One based on the superheterodyne receiver architecture realized with standard RF-components such as mixers and amplifiers with coaxial connectors. The second design is based on the universal software radio peripheral, (USRP), which is a software radio, intended to allow personal computers function as radio transceivers. It was found that building a complete beacon receiver from standard RF-components would require about 100.000 NOK to achieve the wanted performance. This includes a complete system with antenna, front-end and baseband receiver. Due to the relatively inexpensive hardware (4900 NOK) of the USRP and the availability of front-end plug inn boards in the required intermediate frequency range the USRP was chosen as the hardware portion of the receiver. Linearity measurments and observations of the USRP output spectrum shows a linear dynamic range of about 60 dB which is found sufficient for beacon measurements. A Ku-band antenna intended for television reception has been used to receive a 12.2 GHz beacon transmitted by Eutelsat W3A Software code was developed based on the GNU radio framework in order to use the USRP as a beacon receiver. A number of issues were discovered during this work: • GNU radio does not contain filters for spectral averaging • Attempts to implement additional functionality in software proved challenging due to limitations in computational speed Both of the two issues affected the performance of the beacon receiver. Modifications and additions to the GNU radio software is therefore suggested for future work

APA, Harvard, Vancouver, ISO, and other styles
12

Sun, Yi-Ran. "Generalized Bandpass Sampling Receivers for Software Defined Radio." Doctoral thesis, Stockholm, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Karve, Mrudula Prabhakar. "Evaluation of GNU Radio Platform Enhanced for Hardware Accelerated Radio Design." Thesis, Virginia Tech, 2010. http://hdl.handle.net/10919/36405.

Full text
Abstract:
The advent of software radio technology has enabled radio developers to design and imple- ment radios with great ease and flexibility. Software radios are effective in experimentation and development of radio designs. However, they have limitations when it comes to high- speed, high-throughput designs. This limitation can be overcome by introducing a hardware element to the software radio platform. Enhancing GNU Radio for Hardware Accelerated Radio Design project implements such a scheme by augmenting an FPGA co-processor to a conventional GNU Radio flow. In this thesis, this novel platform is evaluated in terms of performance of a radio design, as well as hardware and software system requirements. A simple and efficient Zigbee receiver design is presented. Implementation of this receiver is used as a proof-of-concept for the effectiveness and design methodology of the modified GNU Radio. This work also proposes a scheme to extend this idea for design of ultra-wideband radio systems based on multiband-OFDM.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
14

Nor, Azlan bin Mohd Aris. "Development of Software-Defined Multichannel Receiver for Equatorial Atmosphere Radar (EAR)." Kyoto University, 2020. http://hdl.handle.net/2433/253426.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Reed, Rachel E. "Real-Time Implementation and Analysis of Chip Shape-based Software Defined Receiver." University of Dayton / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1493634316594274.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Athari, Emad, and Petter Lerenius. "Design and implementation of an SDR receiver for the VHF band." Thesis, Linköping University, Department of Electrical Engineering, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-8386.

Full text
Abstract:

The purpose of this thesis work is to examine the possibility of building a software-defined radio (SDR) for the VHF-band. The goal is to accomplish this with as few components as possible, thus cutting down the size and the production cost.

An SDR solution means that the sampling of the signal is done as close to the antenna as possible. The wide bandwidth needed in such a product is achieved by using SP Devices algorithm for time-interleaved ADCs. Two hardware prototypes and two versions of the software were designed and implemented using this technology.

They were also analyzed within this thesis work. The results proved to be good, and the possibilities to produce a commercial software-defined radio receiver for the VHF-band are good.


Syftet med det här examensarbetet är att utreda möjligheten att bygga en mjukvarustyrd radiomottagare (SDR) för VHF-bandet. Målet är att göra detta genom att använda så få komponenter som möjligt, och därigenom minska storleken och produktionskostnaden.

En SDR lösning ger att samplingen kommer att ske så nära antennen som möjligt. Den stora bandbredd som behövs för en sådan produkt uppnås genom att använda SP Devices algoritm för att ''tidsinterleava'' höghastighets ADC:er. Två hårdvaruprototyper och två versioner av mjukvaran har designats och implementerats.

Analyserna har visat bra resultat, och möjligheterna att bygga en komersiell mjukvarudefinierade radiomottagare för VHF-bandet ses som goda.

APA, Harvard, Vancouver, ISO, and other styles
17

Bagheri, Rahim. "An 800-MHz to 6-GHz CMOS software-defined-radio receiver for mobile terminals." Diss., Restricted to subscribing institutions, 2007. http://proquest.umi.com/pqdweb?did=1320960921&sid=1&Fmt=2&clientId=1564&RQT=309&VName=PQD.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Hedlund, Richard. "Design of a UAV-based radio receiver for avalanche beacon detection using software defined radio and signal processing." Thesis, Uppsala universitet, Signaler och System, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-377025.

Full text
Abstract:
A fully functional proof of concept radio receiver for detecting avalanche beacons atthe frequency 457 kHz was constructed in the work of this master thesis. The radioreceiver is intended to be mounted on an unmanned aerial vehicle (UAV or drone)and used to aid the mountain rescue teams by reducing the rescue time in findingavalanche victims carrying a transmitting beacon. The main parts of this master thesisinvolved hardware requirement analysis, software development, digital signalprocessing and wireless communications. The radio receiver was customized to receive low power signal levels becausemagnetic antennas are used and the avalanche beacon will operate in the reactive nearfield of the radio receiver. Noise from external sources has a significant impact on theperformance of the radio receiver. This master thesis allows for straightforward further development and refining of theradio receiver due to the flexibility of the used open-source software development kitGNU Radio where the digital signal processing was performed.
APA, Harvard, Vancouver, ISO, and other styles
19

Alluri, Veerendra Bhargav. "MULTIPLE CHANNEL COHERENT AMPLITUDE MODULATED (AM) TIME DIVISION MULTIPLEXING (TDM) SOFTWARE DEFINED RADIO (SDR) RECEIVER." UKnowledge, 2008. http://uknowledge.uky.edu/gradschool_theses/499.

Full text
Abstract:
It is often required in communication and navigation systems to be able to receive signals from multiple stations simultaneously. A common practice to do this is to use multiple hardware resources; a different set of resources for each station. In this thesis, a Coherent Amplitude Modulated (AM) receiver system was developed based on Software Defined Radio (SDR) technology enabling reception of multiple signals using hardware resources needed only for one station. The receiver system architecture employs Time Division Multiplexing (TDM) to share the single hardware resource among multiple streams of data. The architecture is designed so that it can be minimally modified to support any number of stations. The Verilog Hardware Description Language (HDL) was used to capture the receiver system architecture and design. The design and architecture are initially validated using HDL post-synthesis and post-implementation simulation. In addition, the receiver system architecture and design were implemented to a Xilinx Field Programmable Gate Array (FPGA) technology prototyping board for experimental testing and final validation.
APA, Harvard, Vancouver, ISO, and other styles
20

Rastogi, Ashita. "ANALYSIS OF ANOMALOUS GLOBAL POSITIONING SYSTEM RECEIVER DATA." Ohio University / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1171647235.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Fujimaki, Akira, Koichi Nakazono, Hiroaki Hasegawa, Takashi Sato, Akira Akahori, Nobuo Takeuchi, Futoshi Furuta, Masaaki Katayama, and Hisao Hayakawa. "Broad Band Software-Defined Radio Receivers Based on Superconductive Devices." IEEE, 2001. http://hdl.handle.net/2237/7077.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Bauer, Zachary Obenour. "A Calibration Method for a Controlled Reception Pattern Antenna and Software Defined Radio Configuration." Ohio University / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1357402542.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Parker, Peter, John Nelson, and Mark Pippitt. "An Open Systems Architecture for Telemetry Receivers." International Foundation for Telemetering, 2012. http://hdl.handle.net/10150/581819.

Full text
Abstract:
An open systems architecture (OSA) is one in which all of the interfaces are fully defined, available to the public, and maintained according to a group consensus. One approach to achieve this is to use modular hardware and software and to buy commercial, off-the-shelf and commodity hardware. Benefits of an OSA include providing easy access to the latest technological advances in both hardware and software, enabling net-centric operations, and allowing a flexible design that can easily change as the needs of customers may change. This paper will provide details of an OSA system designed for a telemetry receiver and list the benefits of OSA for the telemetry community.
APA, Harvard, Vancouver, ISO, and other styles
24

Blais, Antoine. "Feasibility of a Direct Sampling Dual-Frequency SDR Galileo Receiver for Civil Aviation." Phd thesis, Toulouse, INPT, 2014. http://oatao.univ-toulouse.fr/14271/1/Blais.pdf.

Full text
Abstract:
This thesis studies the relevance of DS SDR architectures applied to Galileo receivers in the specific context of Civil Aviation, characterized in particular by strict requirements of robustness to interference, in particular, interference caused by DME or CW signals. The Software Defined Radio concept renders the major tendency, inside the receiver, to move the demodulation part from an analog technology to digital signal processing, that is software. The choice of this kind of design is nearly generalized in new receiver architectures so it was considered the case in this work. The Direct Sampling method consists in digitizing the signal as close as possible to the antenna, typically after the LNA and the associated RF bandpass filter. So this technique does not use any conversion to an intermediate frequency, using as much as possible the bandpass sampling principle in order to minimize the sampling frequency and consequently the downstream computational costs. What is more, this thesis aiming at the greatest simplification of the analog part of the receiver, the decision was made to suppress the analog AGC which equips the receivers of classical architecture. Only fixed gained amplifiers should precede the ADC. This document exposes the work done to determine if these choices can apply to a multifrequency (E5a and E1 signals) Galileo receiver intended for a Civil Aviation use. The structure of the document reflects the approach used during this thesis. It progresses step by step from the antenna down to the digital signal, to be processed then by the SDR part. After an introduction detailing the problem to study and its context, the second chapter investigates the Civil Aviation requirements of robustness to interference a satellite navigation receiver must comply with. It is the basis which completely conditions the design process. The third chapter is devoted to the determination of the sampling frequency. Two sampling architectures are proposed: the first implements coherent sampling of the two E5a and E1 bands while the second uses separate sampling. In both cases the necessity to use extra RF filters is shown. The minimum attenuation to be provided by these filters is also specified. These requirements are strong enough to justify a feasibility investigation. It is the subject of chapter four where an experimental study, based on a SAW filter chip available on the shelf, is related. The issue of the sampling clock jitter, of concern with the Direct Sampling technique because of the high frequency of the signal to digitize, is investigated in chapter five. Some simulation results are presented and a dimensioning of the quality of the sampling clock is proposed. In chapter six, quantization, a byproduct of digitization, is detailed. Precisely it is the calculation of the number of bits the ADC must have to digitally represent the whole dynamic of, not only the useful signal, but also of the potential interference. Considering the high binary throughput highlighted in chapters three and six, chapter seven evaluates the possibility to reduce the coding dynamic of the digital signal at the output of the ADC by means of compression functions. The last chapter is focused on the digital separation of the two E5a and E1 bands in the coherent sampling architecture presented in chapter two. Here also specifications of minimum attenuation are given. Lastly the conclusions synthesize the contributions of this thesis and proposes ideas for future work to enrich them and more generally the subject of DS-SDR Galileo receivers for Civil Aviation.
APA, Harvard, Vancouver, ISO, and other styles
25

Gong, Fei. "Front End Circuit Module Designs for A Digitally Controlled Channelized SDR Receiver Architecture." The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1322606039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Haghighitalab, Delaram. "Récepteur radio-logicielle hautement numérisé." Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066443.

Full text
Abstract:
Aujourd'hui, il y a une augmentation du nombre de normes étant intégré dans des appareils mobiles. Les problèmes principaux sont la durée de vie de la batterie et la taille de l'appareil. L'idée d'un Radio-Logiciel est de pousser le processus de numérisation aussi près que possible de l'antenne. Dans cette thèse, nous présentons la première mise en œuvre d'un récepteur radio-logiciel complet basé sur Sigma-Delta RF passe-bande, y compris un LNA à gain variable (VGLNA), un ADC Sigma-Delta RF sous-échantillonné, un mélangeur bas-conversion RF numérique et un filtre de décimation polyphasé multi-étage multi-taux. Le VGLNA élargit la gamme dynamique du récepteur multi-standard pour atteindre les exigences des trois normes sans fil ciblées. Aussi une architecture mixte, en utilisant à la fois Source-Coupled Logic (SCL) et des circuits CMOS, il est proposé d'optimiser la consommation des circuits RF numériques. Par ailleurs, nous proposons une architecture de filtre en peigne à plusieurs étages avec décomposition polyphase à réduire la consommation d'énergie. Le récepteur est mesuré pour trois normes différentes dans la bande de 2.4 GHz, la bande ISM. Les résultats des mesures montrent que le récepteur atteint 79 dB, 73 dB et 63 dB de plage dynamique pour les normes Bluetooth, ZigBee et WiFi respectivement. Le récepteur complet, mis en œuvre dans le procédé CMOS 130 nm, a une fréquence centrale accordable de 300 MHz et consomme 63 mW sous 1.2 V. Comparé à d'autres récepteurs, le circuit proposé consomme 30% moins d'énergie, la plage dynamique est de 21 dB supérieur, IIP3 est de 6 dB supérieur et le facteur de mérite est de 24 dB supérieur
Nowadays there is an increase in the number of standards being integrated in mobile devices. The main issues are battery life and the size of the device. The idea of a Software Defined Radio is to push the digitization process as close as possible to the antenna. Having most of the circuit in the digital domain allows it to be reconfigurable thus requiring less area and power consumption. In this thesis, we present the first implementation of a complete SDR receiver based on RF bandpass Sigma-Delta including a Variable-Gain LNA (VGLNA), an RF subsampled Sigma-Delta ADC, an RF digital down-conversion mixer and a polyphase multi-stage multi-rate decimation filter. VGLNA enlarges the dynamic range of the multi-standard receiver to achieve the requirements of the three targeted wireless standards. Also a mixed architecture, using both Source-Coupled Logic (SCL) and CMOS circuits, is proposed to optimize the power consumption of the RF digital circuits. Moreover, we propose a multi-stage comb filter architecture with polyphase decomposition to reduce the power consumption. The receiver is measured for three different standards in the 2.4 GHz ISM-band. Measurement results show that the receiver achieves 79 dB, 73 dB and 63 dB of dynamic range for the Bluetooth, ZigBee and WiFi standards respectively. The complete receiver, implemented in 130 nm CMOS process, has a 300 MHz tunable central frequency and consumes 63 mW under 1.2 V supply. Compared to other SDR receivers, the proposed circuit consumes 30% less power, the DR is 21 dB higher, IIP3 is 6 dB higher and the overall Figure of Merit is 24 dB higher
APA, Harvard, Vancouver, ISO, and other styles
27

Haghighitalab, Delaram. "Récepteur radio-logicielle hautement numérisé." Electronic Thesis or Diss., Paris 6, 2015. http://www.theses.fr/2015PA066443.

Full text
Abstract:
Aujourd'hui, il y a une augmentation du nombre de normes étant intégré dans des appareils mobiles. Les problèmes principaux sont la durée de vie de la batterie et la taille de l'appareil. L'idée d'un Radio-Logiciel est de pousser le processus de numérisation aussi près que possible de l'antenne. Dans cette thèse, nous présentons la première mise en œuvre d'un récepteur radio-logiciel complet basé sur Sigma-Delta RF passe-bande, y compris un LNA à gain variable (VGLNA), un ADC Sigma-Delta RF sous-échantillonné, un mélangeur bas-conversion RF numérique et un filtre de décimation polyphasé multi-étage multi-taux. Le VGLNA élargit la gamme dynamique du récepteur multi-standard pour atteindre les exigences des trois normes sans fil ciblées. Aussi une architecture mixte, en utilisant à la fois Source-Coupled Logic (SCL) et des circuits CMOS, il est proposé d'optimiser la consommation des circuits RF numériques. Par ailleurs, nous proposons une architecture de filtre en peigne à plusieurs étages avec décomposition polyphase à réduire la consommation d'énergie. Le récepteur est mesuré pour trois normes différentes dans la bande de 2.4 GHz, la bande ISM. Les résultats des mesures montrent que le récepteur atteint 79 dB, 73 dB et 63 dB de plage dynamique pour les normes Bluetooth, ZigBee et WiFi respectivement. Le récepteur complet, mis en œuvre dans le procédé CMOS 130 nm, a une fréquence centrale accordable de 300 MHz et consomme 63 mW sous 1.2 V. Comparé à d'autres récepteurs, le circuit proposé consomme 30% moins d'énergie, la plage dynamique est de 21 dB supérieur, IIP3 est de 6 dB supérieur et le facteur de mérite est de 24 dB supérieur
Nowadays there is an increase in the number of standards being integrated in mobile devices. The main issues are battery life and the size of the device. The idea of a Software Defined Radio is to push the digitization process as close as possible to the antenna. Having most of the circuit in the digital domain allows it to be reconfigurable thus requiring less area and power consumption. In this thesis, we present the first implementation of a complete SDR receiver based on RF bandpass Sigma-Delta including a Variable-Gain LNA (VGLNA), an RF subsampled Sigma-Delta ADC, an RF digital down-conversion mixer and a polyphase multi-stage multi-rate decimation filter. VGLNA enlarges the dynamic range of the multi-standard receiver to achieve the requirements of the three targeted wireless standards. Also a mixed architecture, using both Source-Coupled Logic (SCL) and CMOS circuits, is proposed to optimize the power consumption of the RF digital circuits. Moreover, we propose a multi-stage comb filter architecture with polyphase decomposition to reduce the power consumption. The receiver is measured for three different standards in the 2.4 GHz ISM-band. Measurement results show that the receiver achieves 79 dB, 73 dB and 63 dB of dynamic range for the Bluetooth, ZigBee and WiFi standards respectively. The complete receiver, implemented in 130 nm CMOS process, has a 300 MHz tunable central frequency and consumes 63 mW under 1.2 V supply. Compared to other SDR receivers, the proposed circuit consumes 30% less power, the DR is 21 dB higher, IIP3 is 6 dB higher and the overall Figure of Merit is 24 dB higher
APA, Harvard, Vancouver, ISO, and other styles
28

Mehrez, Hanen. "Interface Radio SDR pour récepteur GNSS multi constellations pour la continuité de positionnement entre l’intérieur et l’extérieur." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLL008/document.

Full text
Abstract:
Dans le but d’améliorer la disponibilité des services fournis par un récepteur, la conception d’un récepteur GNSS permettant de recevoir plusieurs signaux de toutes les bandes simultanément semble être la solution. Une architecture à sous échantillonnage RF optimisée de type SDR (Software Defined Radio) comportant un étage RF intégrable et reconfigurable et un étage de traitement numérique avec une implémentation logicielle du traitement en bande de base est défini pour ce récepteur GNSS, tout en répondant aux exigences des spécifications des standards GNSS : des réseaux radio cellulaires : GPS, Glonass, Galileo, Beidou. Un choix des composants discrets suite au dimensionnement system est effectué et ceci pour installer un prototype de validation expérimental. Ensuite nous nous s’intéressons à la caractérisation de la chaine RF afin d’étudier les limitations causés par la non linéarité et d’étudier la stabilité du prototype proposé. Un étage de traitement numérique des signaux IF, capturés à la sortie de l’ADC, est implémenté sous Matlab. L’acquisition de ces données permet la détermination des satellites visible à un instant donné qui nous permet éventuellement la détermination d’une position
In order to improve the availability of services provided by a receiver, designing a GNSS receiver to collect multiple signals from all bands simultaneously seems to be the solution. An optimized software-defined RF (SDR) sub-sampling architecture with an integral and reconfigurable RF stage and a digital processing stage with a software implementation of the baseband processing is defined for this GNSS receiver, while meeting the requirements GNSS standards specifications: cellular radio networks: GPS, Glonass, Galileo, Beidou. Many discrete components are selected after system dimensioning. Thus, experimental validation prototype is installed. Then we are interested in the characterization of the RF front-end in order to determine the limitations caused by the nonlinearity and to study the stability of the proposed prototype. A stage of digital processing of the IF signals, captured at the ADC output, is implemented under Matlab software. The acquisition of these data allows the determination of satellites visible at a given instant that allows us to determine a position
APA, Harvard, Vancouver, ISO, and other styles
29

Gunawardena, Sanjeev. "DEVELOPMENT OF A TRANSFORM-DOMAIN INSTRUMENTATION GLOBAL POSITIONING SYSTEM RECEIVER FOR SIGNAL QUALITY AND ANOMALOUS EVENT MONITORING." Ohio University / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1178558967.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Mailand, Marko. "Systemanalyse und Entwicklung Six-Port basierter Funkempfängerarchitekturen unter Berücksichtigung analoger Störeffekte." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2008. http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1199900991755-90088.

Full text
Abstract:
Due to the increasing demand of broadband capability and reconfigurability for mobile applications, there is an enormous interest to develop appropriate analog receiver front-ends. In this respect, one promising candidate group is the Six-Port-based direct conversion receiver. The presented work focuses on the investigation of Six-Port-based mobile receiver front-ends with their specific systematical signal processing. Thereby, issues of spurious interfering signals which are generated within the down conversion process of such receivers are of special interest. Based on a comprehensive description of the analog signal processing within additive frequency conversion, a reason could be identified why existing Six-Port receivers have not found any practical application in mobile communication yet – the dynamic DC-offset. With this insight compensation techniques were developed to overcome the negative influences of the dynamic DC-offset. Furthermore, this work presents novel Six-Port-based receiver architectures which, on the one hand, keep the advantages of additive mixing systems like: low power consumption, broadband capability and simplicity of implementation especially for mm-wave transmissions. On the other hand, these novel architectures comprise compensation techniques such that systematically generated spurious signals are inherently compensated in the analog part of the receiver. Moreover, the influence of impairments of phase and amplitude within the IQ-branches of a receiver was investigated. The resulting, unwanted IQ-imbalance was shown to be a mixing method (multiplicative or additive) independent spurious effect. It is suggested to compensate for IQ-imbalance in the digital part of the receiver system. This can be realized with the use of adaptive algorithms. The comparison with conventional analog receiver architectures (especially homodyne receivers) with respect to the reception of today’s and future digitally modulated transmission signals indicate the proposed Six-Port-based receiver architectures to be suitable candidates to fulfill the difficult tasks of modern mobile communication.
APA, Harvard, Vancouver, ISO, and other styles
31

Mailand, Marko. "Systemanalyse und Entwicklung Six-Port basierter Funkempfängerarchitekturen unter Berücksichtigung analoger Störeffekte." Doctoral thesis, Technische Universität Dresden, 2007. https://tud.qucosa.de/id/qucosa%3A24036.

Full text
Abstract:
Due to the increasing demand of broadband capability and reconfigurability for mobile applications, there is an enormous interest to develop appropriate analog receiver front-ends. In this respect, one promising candidate group is the Six-Port-based direct conversion receiver. The presented work focuses on the investigation of Six-Port-based mobile receiver front-ends with their specific systematical signal processing. Thereby, issues of spurious interfering signals which are generated within the down conversion process of such receivers are of special interest. Based on a comprehensive description of the analog signal processing within additive frequency conversion, a reason could be identified why existing Six-Port receivers have not found any practical application in mobile communication yet – the dynamic DC-offset. With this insight compensation techniques were developed to overcome the negative influences of the dynamic DC-offset. Furthermore, this work presents novel Six-Port-based receiver architectures which, on the one hand, keep the advantages of additive mixing systems like: low power consumption, broadband capability and simplicity of implementation especially for mm-wave transmissions. On the other hand, these novel architectures comprise compensation techniques such that systematically generated spurious signals are inherently compensated in the analog part of the receiver. Moreover, the influence of impairments of phase and amplitude within the IQ-branches of a receiver was investigated. The resulting, unwanted IQ-imbalance was shown to be a mixing method (multiplicative or additive) independent spurious effect. It is suggested to compensate for IQ-imbalance in the digital part of the receiver system. This can be realized with the use of adaptive algorithms. The comparison with conventional analog receiver architectures (especially homodyne receivers) with respect to the reception of today’s and future digitally modulated transmission signals indicate the proposed Six-Port-based receiver architectures to be suitable candidates to fulfill the difficult tasks of modern mobile communication.
APA, Harvard, Vancouver, ISO, and other styles
32

Brito, Filho Francisco de Assis. "VCO Banda Larga Integrado para Receptor a Cinco Portas." Universidade Federal do Rio Grande do Norte, 2009. http://repositorio.ufrn.br:8080/jspui/handle/123456789/15300.

Full text
Abstract:
Made available in DSpace on 2014-12-17T14:55:40Z (GMT). No. of bitstreams: 1 FranciscoAB.pdf: 846082 bytes, checksum: d9718796dd9ac807f8f053e7d371d2bb (MD5) Previous issue date: 2009-09-03
Conselho Nacional de Desenvolvimento Cient?fico e Tecnol?gico
This work presents an wideband ring VCO for cognitive radio five-port based receivers. A three-stage differential topology using transmission gate was adopted in order to maintain wide and linear tuning range and a low phase-noise. Monte-Carlo analysis were performed for phase-shift response of individual stages, which is an important figure of merit in five-port works. It was observed a fairly linear correlation between control voltage and oscillation frequency in the range between 200 MHz and 1800 MHz. The VCO was preliminarily designed for IBM 130nm CMOS technology
Este trabalho apresenta um VCO anel banda-larga para ser utilizado em receptores para R?dio Cognitivo baseados no correlator a cinco portas. Uma arquitetura diferencial de tr?s est?gios com porta de transmiss?o ? utilizada como forma de manter uma sintonia linear em larga faixa de frequ?ncias, bem como, um baixo ru?do de fase. An?lises de Monte-Carlo foram feita para avaliar as varia??es de fase em cada est?gio, o que constitui uma figura de m?rito importante em receptores baseados no correlator de cinco portas. Observou-se correspond?ncia razoavelmente linear entre tens?o de controle e freq??ncia de oscila??o na faixa compreendida entre 200 MHz e 1800 MHz. O VCO foi preliminarmente projetado para tecnologia CMOS IBM de 130 nan?metros
APA, Harvard, Vancouver, ISO, and other styles
33

Alhasan, Raghda. "Software defined radio." Thesis, Linnéuniversitetet, Institutionen för fysik och elektroteknik (IFE), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-53361.

Full text
Abstract:
Software Defined Radio (SDR) technology is used to receive and transmit radio signals. Radio signals can be received using the SDR_sharp software that can be downloaded to a personal computer and combined with the RTL-SDR dongle hardware that is connected to the computer. This report gives a brief explanation of the SDR receiver, the supported software, and some applications that can be implemented with SDR. Moreover, it is shown how to install the SDR_sharp software and the hardware Zadig. After installation, wideband FM (WFM) reception and adjustment of RF gain and frequency error is illustrated. The reception of some national, regional and community/commercial stations that can be received in Växjö Sweden is presented. Keyword: Software defined radio, FM radio.
APA, Harvard, Vancouver, ISO, and other styles
34

Nash, Christopher, and Christopher Hogstrom. "SOQPSK Software Defined Radio." International Foundation for Telemetering, 2015. http://hdl.handle.net/10150/596411.

Full text
Abstract:
ITC/USA 2015 Conference Proceedings / The Fifty-First Annual International Telemetering Conference and Technical Exhibition / October 26-29, 2015 / Bally's Hotel & Convention Center, Las Vegas, NV
This paper presents the results of laboratory experiments using a commercial-off-the-shelf software defined radio to demodulate SOQPSK-TG for aeronautical telemetry. Using the NI USRP N210 and Zynq™ processor, we achieved 900 kbits/s demodulation and found that the USRP N210 has a signal sensitivity of -71 dBm at a BER of 10⁻⁶.
APA, Harvard, Vancouver, ISO, and other styles
35

Antunes, Lúcia Margarida da Mata. "Software defined radio em FPGA." Master's thesis, Universidade de Aveiro, 2009. http://hdl.handle.net/10773/2150.

Full text
Abstract:
Mestrado em Engenharia Electrónica e Telecomunicações
Esta dissertação teve como objectivo o desenvolvimento de parte de um receptor para Digital Audio Broadcasting (DAB) recorrendo aos conceitos ditados por Software Defined Radio (SDR). O receptor de rádio inclui a conversão de digital para analógico e a subsequente desmodelação de banda- base,pelo que é possível aceder à bit stream em qualquer ponto do sistema. A dissertação foi dividida em duas fases. Na primeira, o receptor completo foi simulado em MATLAB. Na segunda, o mesmo sistema foi implementado e testado numa placa XtremeDSP Development Kit-IV, a qual contêm um Field-Programmable Gate Array (FPGA). O sistema simulado foi testado com dois tipos de amostras. As primeiras consistiram em sinais DAB gerados em MATLAB e posteriormente distorcidos por diferentes canais também simulados pelo mesmo software. Foi assim possível fazer um estudo da probabilidade de erro quando o sinal é exposto a diferentes perturbações, como ruído, desvios na frequência e no tempo. O sistema foi ainda testado com amostras DAB reais. As constelações desmodelados mostraram o correcto funcionamento do sistema. Apenas parte do receptor simulado foi implementado no FPGA. A parte já desenvolvida consiste nas funções de desmodelação: desmodelação OFDM, desmodelação diferencial, frequency deinterleaving e demapeamento QPSK. O sistema de sincronização DAB não foi implementado. O sistema já desenvolvido é assim capaz de desmodelar um sinal DAB gerado no MATLAB, desde que este não contenha qualquer distorção. ABSTRACT: The aim of this dissertation was the development of part of a Digital Audio Broadcasting (DAB) receiver by means of Software Defined Radio (SDR). This radio receiver includes the Intermediate Frequency (IF) to baseband conversion and the subsequent baseband demodulation, thus one may access the bit stream in any point of the system. This dissertation was divided in two phases. In the first one, the whole DAB system was simulated in MATLAB. In the second, the receiver was implemented and tested in an XtremeDSP Development Kit-IV platform, which includes a Field-Programmable Gate Array (FPGA). The simulated system was tested with two kinds of samples. The first ones were generated in MATLAB and subsequently distorted by different channel conditions also simulated in the same software. This well known DAB digital signal allowed us to perform a Bit Error Rate (BER) study with several channel conditions, such as noise, multipath, frequency and time offsets. Further on, real DAB samples were used for testing. The demodulated QPSK constellations showed the correct operation of the system. Only part of the simulated receiver was implemented in the FPGA. This part consists in the channel demodulation functions: OFDM demodulation, differential demodulation, frequency deinterleaving and QPSK demapper. The DAB synchronization block was not implemented. The developed system is able to recover the modulated bit stream from the digital signal produced in MATLAB, since this signal is free of noise, frequency and time offsets
APA, Harvard, Vancouver, ISO, and other styles
36

Danielsen, Trond. "Software-Defined GNSS Receiver based on Free Software Components." Thesis, Norwegian University of Science and Technology, Department of Electronics and Telecommunications, 2007. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-9621.

Full text
Abstract:

A acquisition module for the OpenGNSS software receiver has been implemented as GNU Radio module. It has been tested and the functionality has been verified with both simulated and real signal. A number of proposals for future work and modifications to the GNU Radio framework has also been presented.

APA, Harvard, Vancouver, ISO, and other styles
37

Smuts, Matthys. "Software modem for a software defined radio system." Thesis, Stellenbosch : University of Stellenbosch, 2007. http://hdl.handle.net/10019.1/1985.

Full text
Abstract:
Thesis (MScEng (Electrical and Electronic Engineering))--University of Stellenbosch, 2007.
The use of older and slower protocols has become increasingly difficult to justify due to the rapid pace at which telecommunications are advancing. To keep up to date with the latest technologies, the communications system must be designed to accommodate the transparent insertion of new communications standards in all the stages of a system. The system should, however, also remain compatible with the older standards so as not to demand an upgrade of the older systems. The concept of a software defined radio was introduced to overcome these problems. In a software defined radio system, the functionality of the communications system is defined in software, which removes the the need for alterations to the hardware during technology upgrade. To maintain interoperatibilty, the system must be based on a standardised architecture. This would further allow for enhanced scalability and provide a plug-andplay feature for the components of the system. In this thesis, generic signal processing software components are developed to illustrate the creation of a basic software modem that can be parameterised to comply fully, or partially, to various standards.
APA, Harvard, Vancouver, ISO, and other styles
38

Paffetti, Michele. "Software Defined Radio for NB-IoT." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/14315/.

Full text
Abstract:
The next generation of mobile radio systems is expected to providing wireless connectivity for a wide range of new applications and services involving not only people but also machines and objects. Within few years, billions of low-cost and low-complexity devices and sensors will be connected to the Internet, forming a converged ecosystem called Internet of Things (IoT). As a result, in 2016, 3GPP standardizes NB-IoT, the new narrowband radio technology developed for the IoT market. Massive connectivity, reduced UE complexity, coverage extension and deployment flexibility are the targets for this new radio interface, which also ensures harmonious coexistence with current GSM, GPRS and LTE systems. In parallel, the rise of open-source software combined with Software Defined Radio (SDR) solutions has completely changed radio systems engineering in the late years. This thesis focuses on developing the NB-IoT’s protocol stack on the EURECOM’s open-source software platform OpenAirInterface (OAI). First part of this work aims to implement NB-IoT’s Radio Resource Control functionalities on OAI. After an introduction to the platform architecture, a new RRC layer code structure and related interfaces are defined, along with a new approach for Signalling Radio Bearers management. A deep analysis on System Information scheduling is conducted and a subframe-based transmission scheme is then proposed. The last part of this thesis addresses the implementation of a multi-vendor platform interface based on Small Cell Forum’s Functional Application Platform Interface (FAPI) standard. A configurable and dynamically loadable Interface Module (IF-Module) is designed between OAI’s MAC and PHY layers. Primitives and related code structures are presented as well as corresponding Data and Configuration’s procedures. Finally, the convergence of both NB-IoT and FAPI requirements lead to re-design PHY layer mechanisms for which a downlink transmission scheme is proposed.
APA, Harvard, Vancouver, ISO, and other styles
39

Sundquist, Thomas. "Waveform Development using Software Defined Radio." Thesis, Linköping University, Department of Science and Technology, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-6464.

Full text
Abstract:

Software Defined Radio (SDR) is a conception of implementing radio functions in computer software, instead of having electronics performing the functions. This thesis aims to compare two different ways of implementing these functions, or waveforms.

The Software Communications Architecture (SCA) is an open standard developed by the United States Department of Defense. It uses a CORBA interface environment to make waveform applications interoperable and platform independent. This method of developing SDR is compared to an open-source initiative going by the name GNU Radio.

Two waveform applications are developed, one transmitter using SCA, and one receiver using GNU Radio. The analog radio interface is simulated using the sound cards of two regular PCs. The development is done using the C++ and Python programming languages.

This thesis examines pros and cons of the two SDR methods, as well as performing studies of Software Defined Radio in general.

APA, Harvard, Vancouver, ISO, and other styles
40

Dumont, Nathan. "Software defined radio for cognitive networks." Thesis, University of Bath, 2014. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.619232.

Full text
Abstract:
The introduction of software radio has meant that standards for radio communication can evolve in a much more natural way, changing only a little at a time without making all of the hardware obsolete. It has become apparent that these changes may affect some systems more favourably than others so allowing the software radio to decide how to adapt can actually improve the link quality. This development is known as cognitive radio and can improve the performance of a single radio link. As an extension of this progress is being made on designing cognitive networks where the software radios which make up the network not only optimise their own link but share information about their goals and situation with other nodes in the network, using all of this data together can optimise overall end-to-end performance of the network. These advances in network design and optimisation come at a time where many parts of the world are re-structuring the television broadcast bands. These have been allocated for a long time and are a generous allocation of a valuable resource. With the power of a cognitive network it is possible to design equipment that can automatically avoid the licensed TV transmitters which only take a fraction of the total bandwidth in any one area. This allows many smaller cells to be fitted between the main transmitters. Assessing the availability of bandwidth and generating maps of available spectrum for these new cognitive networks requires a new approach to radio propagation modelling in the TV bands. Previous models use a worst case scenario to make sure that there is at least enough signal to receive the public service broadcasts in the majority of homes. Predicting where the limits of reception are and where it would be safe to broadcast on these channels requires a better, terrain dependent transmission model. In this thesis the Parabolic Equation Model is applied to the problem of predicting TV band occupancy and the results of this modelling is compared to field measurement to get an idea of how accurate the model is in practice.
APA, Harvard, Vancouver, ISO, and other styles
41

Duarte, Miguel Filipe Batista. "Spectrum sensing through software defined radio." Master's thesis, Faculdade de Ciências e Tecnologia, 2014. http://hdl.handle.net/10362/12293.

Full text
Abstract:
Dissertação apresentada para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
A change in paradigm when it comes to controlling radio transmissions is in course. Tasks usually executed in an exclusive class of hardware systems are increasingly controlled by software systems. A deep change to the software domain is foreseeable, creating a true Software Defined Radio. At the same time this change occurs, the radioelectric spectrum is almost completely licensed. However, the spectrum is rarely used to its full extent over time, enabling its opportunistic use while the licensed devices do not communicate. This is a part of the notion of Cognitive Radio, a new kind of radio capable of using the spectrum in an opportunistic way. These two new paradigms in radio access can be combined to produce a exible and reliable radio, overcoming the issues with radioelectric spectrum scarcity. This dissertation starts an exploration in this area by combining these two paradigms through the use of an Energy Detector implemented in a Universal Software Radio Peripheral device and using the GNURadio suite. The performance of such a system is tested by calculating the Probabilities of Detection and False Alarm in real scenarios and comparing them to the expected theoretical values. A method for defining thresholds for narrowband signals is also tested based on works in Information Theory concepts, i.e.,the Akaike Information Criteria and the Minimum Description Length. The results are tested for a real transmission using two USRP platforms communicating with each other,one acting as the licensed user and the other acting as the secondary, opportunistic user. Finally, we highlight the technological work developed in this dissertation, which may support future research works through the use of the developed scripts, allowing a faster method to test algorithms with different parameterization.
APA, Harvard, Vancouver, ISO, and other styles
42

Tsoeunyane, Lekhobola Joachim. "RHINO software-defined radio processing blocks." Master's thesis, University of Cape Town, 2015. http://hdl.handle.net/11427/20102.

Full text
Abstract:
This MSc project focuses on the design and implementation of a library of parameterizable, modular and reusable Digital IP blocks designed around use in Software-Defined Radio (SDR) applications and compatibility with the RHINO platform. The RHINO platform has commonalities with the better known ROACH platform, but it is a significantly cut-down and lowercost alternative which has similarities in the interfacing and FPGA/Processor interconnects of ROACH. The purpose of the library and design framework presented in this work aims to alleviate some of the commercial, high cost and static structure concerns about IP cores provided by FPGA manufactures and third-party IP vendors. It will also work around the lack of parameters and bus compatibility issues often encountered when using the freely available open resources. The RHINO hardware platform will be used for running practical applications and testing of the blocks. The HDL library that is being constructed is targeted towards both novice and experienced low-level HDL developers who can download and use it for free, and it will provide them experience of using IP Cores that support open bus interfaces in order to exploit SoC design without commercial, parameter and bus compatibility limitations. The provided modules will be of particularly benefit to the novice developers in providing ready-made examples of processing blocks, as well as parameterization settings for the interfacing blocks and associated RF receiver side configuration settings; all together these examples will help new developers establish effective ways to build their own SDR prototypes using RHINO.
APA, Harvard, Vancouver, ISO, and other styles
43

Kohls, Nicholas Everett. "Software Defined Radio Short Range Radar." BYU ScholarsArchive, 2021. https://scholarsarchive.byu.edu/etd/9027.

Full text
Abstract:
High cost is a current problem with modern radar systems. Software-defined radios (SDRs) offer a possible solution for low-cost customizable radar systems. An SDR is a radio communi- cation system where, instead of the traditional radio components implemented in hardware, many of the components are implemented in software on a computer or embedded system. Although SDRs were originally designed for wireless communication systems, the firmware of an SDR can be configured into a radar system. With new companies entering the market, various types of low- cost SDRs have emerged. This thesis explores the use of a LimeSDR-Mini in a short-range radar through open software tools and custom code. The LimeSDR-Mini is successfully shown to detect targets at a short range. However, due to the instability of the LimeSDR-Mini, the consistent detection of a target is not possible. This thesis shows how the LimeSDR is characterized and how timing synchronization and instability issues are mitigated. The LimeSDR-Mini falls short of operating reliable in a radar system and other SDR boards need to be explored as viable options. Test setups using coaxial cables and test setups using antennas in an outdoor environment show the instability of the LimeSDR-Mini. The transmitter and the receiver are asynchronous. The timing difference varies slightly from run to run, which results in issues that are exacerbated in a short-range radar. The bleed-through signal is the signal leakage from the transmitter to the receiver. The bleed-through signal prevents the detection of targets at a short-range. Feed-through nulling is a signal processing technique used to eliminate the bleed-through signal so that short- range targets can be detected. The instability of the LimeSDR-Mini reduces the effectiveness of feed-through nulling techniques.
APA, Harvard, Vancouver, ISO, and other styles
44

Martins, Francisco Arrabaça. "Waveform generator for Software Defined Radio." Master's thesis, Universidade de Aveiro, 2012. http://hdl.handle.net/10773/11040.

Full text
Abstract:
Mestrado em Engenharia Eléctrónica e Telecomunicações
Esta dissertação insere-se na área de eletrónica de radio frequência, mais concretamente na geração de sinal para caracterizar sistemas com a arquitetura Software Denned Radio (SDR). Esta arquitetura tem como conceito a definição de um rádio completamente ajustável por software, através de conversão de blocos de domínio análgico para digital. Atendendo a importância que as novas tecnologias têm nos dias de hoje, os sistemas SDR aparecem como uma solução, uma vez que tendem a diminuir a parte de hardware, aproximando a conversão para o domínio digital cada vez mais próxima da antena. Neste trabalho propõem-se duas implementações, um gerador CW (Continuous Wave) que tem como funções estimular um dispositivo sobre teste e ainda de actuar como oscilador local. A outra implementação assemelhando-se com a arquitetura de um gerador AWG (Arbitrary Waveform Generator) que terá como função originar dois tons para estimular um dispositivo sobre teste. A gama de frequências encontra-se entre os 40 e 1000 MHz.
This dissertation is inserted into the area of radio frequency electronics, specially in signal generation to characterize systems with Software Defined Radio (SDR) architecture. This architecture has like a concept defining a radio completely adjustable by software, by converting blocks of the analog domain to the digital domain. This architecture has like a concept defining a radio completely adjustable by software, by converting blocks of the analog domain to the digital domain. Considering the importance that new technologies have nowadays, SDR systems appear as a solution since they tend to reduce the hardware part by approximating the conversion to the digital domain closer and closer to the antenna. In this work, two implementations are proposed, one is a CW (Continuous Wave) generator which has the function to stimulate a device under test and also to act as a local oscillator. In the other implementation, that has a similar architecture of an AWG (Arbitrary Waveform Generator) generator has as function generating two tones to stimulate a device under test.
APA, Harvard, Vancouver, ISO, and other styles
45

Becker, Brandon, and Charles Bennett. "Software Defined Radio MIMO Telemetry Transmitter." International Foundation for Telemetering, 2016. http://hdl.handle.net/10150/624241.

Full text
Abstract:
This paper describes the development of a small, low-cost, and flexible telemetry transmitter that can be used for multiple-input multiple-output (MIMO) communication systems. In the intended application, the transmitter will collect data from sensors on small quad copters or drones, regarding the vehicle’s attitude, location, movement, and other flight data. This will be combined into a single data stream, and base-band modulation applied by a field programmable gate array (FPGA). The FPGA output will control a separate RF modulation board, which will generate a pair of RF signals suitable for use in a 2x2 MIMO system. The original application uses the 902- 928MHz ISM band. The modulation format can be altered by changing the software for the FPGA.
APA, Harvard, Vancouver, ISO, and other styles
46

Pratt, Jason Michael. "A software defined radio for research into cognitive radio." Diss., Rolla, Mo. : University of Missouri-Rolla, 2007. http://scholarsmine.mst.edu/thesis/pdf/Pratt2_09007dcc8049b35e.pdf.

Full text
Abstract:
Thesis (M.S.)--University of Missouri--Rolla, 2007.
Vita. The entire thesis text is included in file. Title from title screen of thesis/dissertation PDF file (viewed December 7, 2007) Includes bibliographical references (p. 171-173).
APA, Harvard, Vancouver, ISO, and other styles
47

Cronje, Johannes Jacobus. "Software architecture design of a software defined radio system." Thesis, Stellenbosch : Stellenbosch University, 2004. http://hdl.handle.net/10019.1/50095.

Full text
Abstract:
Thesis (MScEng)--University of Stellenbosch, 2004.
ENGLISH ABSTRACT: The high pace of technological advancement enables the realisation of ever more advanced mobile communications standards with more functionality than simple voice communications. The hardware that is used to implement the radio sections of these systems generally require long design cycles, much longer than the design cycles of the other components of a communications system. Another problem is that, once new communications standards are introduced, the current hardware platforms used in the terminal equipment becomes obsolete because they can generally not be used with the new standards. This has serious cost implications for both the service provider and the consumer, because both parties have to acquire new equipment to be able to use the new standards. An elegant solution to the above issues is to use software-defined radio sections to replace the hardware radio components. New communications standards can then be supported by simply loading new software onto the equipment, provided the maximum processing capacity of the processor(s) that the software runs on can accommodate the bandwidth requirements of that specific standard. This thesis investigates the ideas behind software defined radio and also describes the design and implementation of a software architecture that can be used to implement software defined radios on general-purpose platforms such as personal computers.
AFRIKAANSE OPSOMMING: Die hoë tempo van tegnologiese vordering maak dit moontlik om baie gevorderde mobiele kommunikasie standaarde te implementeer wat meer funksionaliteit bied as blote spraakkommunikasie. Die hardeware wat gebruik word om die radios van sulke stelsels te implementeer neem gewoonlik langer om te ontwikkel as die ander komponente van die stelsels. Die ander probleem is dat hierdie hardeware gewoonlik nie hergebruik kan word wanneer nuwe kommunikasie standaarde in gebruik geneem word nie omdat die standaarde nie versoenbaar is nie. Dit het tot gevolg dat beide die verbruiker en die diensverskaffer groot bedrae geld moet spandeer om die nuwe tegnologie te kan gebruik. 'n Elegante oplossing vir hierdie probleme is om gebruik te maak van radios waarvan die funksionaliteit in sagteware gedefiniëer word. Nuwe kommunikasie standaarde kan dan gebruik word deur slegs die nodige sagteware op die toerusting te laai, solank die verwerkingskapasiteit van die mikroverwerkers in die stelsel die benodigde bandwydte kan akkommodeer. Hierdie tesis ondersoek die konsepte van sagteware-gedefiniëerde radio en beskryf die ontwerp en implementering van 'n sagteware argitektuur vir die implementering van sagteware-gedefiniëerde radios op veeldoelige platforms soos persoonlike rekenaars.
APA, Harvard, Vancouver, ISO, and other styles
48

Rhiemeier, Arnd-Ragnar [Verfasser]. "Modulares Software-defined Radio / Arnd-Ragnar Rhiemeier." Karlsruhe : Inst. für Nachrichtentechnik, 2005. http://d-nb.info/1001464257/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Patton, Lee K. "A GNU Radio Based Software-Defined Radar." Wright State University / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=wright1176142845.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Cruz, Pedro Miguel Duarte. "Characterization of systems for software defined radio." Master's thesis, Universidade de Aveiro, 2008. http://hdl.handle.net/10773/1938.

Full text
Abstract:
Mestrado em Engenharia Electrónica e Telecomunicações
Esta dissertação insere-se na área de electrónica de rádio frequência, mais precisamente na caracterização de sistemas para rádios definidos por software (SDR). Um SDR é aquele que possui a flexibilidade para sintonizar, filtrar, ajustar a taxa de transmissão e controlar o tipo de modulação através de software. O aparecimento de novas tecnologias no mercado obriga à utilização de uma quantidade considerável de hardware nos dispositivos de transmissão/recepção, assim uma solução consiste no uso de arquitecturas de SDR onde a conversão do sinal analógico para digital é executada o mais próximo possível da antena e, sendo depois todo o processamento efectuado digitalmente. Assim, nesta tese, é apresentado um modelo comportamental para receptores de SDR, que leva em conta os elementos chave da distorção não linear. Além disso, são apresentadas algumas comparações entre simulações e medidas usando sinais multi-seno e WiMax usando um receptor ideal de SDR. Finalmente, é proposto um novo sistema de caracterização para dispositivos de SDR. ABSTRACT: This dissertation is related to the radio frequency area, more specifically to the characterization of systems for software-defined radio. A software-defined radio is one that has the flexibility to tune, filter, set the transmission rate and control the modulation type only by software. The emergence of new technologies in the market forces the use of a considerable quantity of hardware in the transceivers systems, so a viable solution for this is to use SDR solutions where the analogue to digital conversion is made closest possible of the antenna and then make all the processing digitally. So, in this dissertation, a behavioral model for SDR front end receiver evaluation, that captures the key elements of the nonlinear distortion, is proposed. Moreover, some comparisons between measured and simulated results under multisine and WiMax excitations are presented using the ideal SDR receiver. Finally, a new instrumentation system for characterization of SDR front ends is proposed.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography