Journal articles on the topic 'Sodium-ion batterie'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Sodium-ion batterie.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Chou, Shulei. "Challenges and Applications of Flexible Sodium Ion Batteries." Materials Lab 1 (2022): 1–24. http://dx.doi.org/10.54227/mlab.20210001.
Full textLi, Fang, Zengxi Wei, Arumugam Manthiram, Yuezhan Feng, Jianmin Ma, and Liqiang Mai. "Sodium-based batteries: from critical materials to battery systems." Journal of Materials Chemistry A 7, no. 16 (2019): 9406–31. http://dx.doi.org/10.1039/c8ta11999f.
Full textHu, Chunxi. "Nanotechnology based on anode and cathode materials of sodium-ion battery." Applied and Computational Engineering 26, no. 1 (November 7, 2023): 164–71. http://dx.doi.org/10.54254/2755-2721/26/20230824.
Full textZhao, Qinglan, Andrew Whittaker, and X. Zhao. "Polymer Electrode Materials for Sodium-ion Batteries." Materials 11, no. 12 (December 17, 2018): 2567. http://dx.doi.org/10.3390/ma11122567.
Full textRojo, Teofilo, Yong-Sheng Hu, Maria Forsyth, and Xiaolin Li. "Sodium-Ion Batteries." Advanced Energy Materials 8, no. 17 (June 2018): 1800880. http://dx.doi.org/10.1002/aenm.201800880.
Full textSlater, Michael D., Donghan Kim, Eungje Lee, and Christopher S. Johnson. "Sodium-Ion Batteries." Advanced Functional Materials 23, no. 8 (May 21, 2012): 947–58. http://dx.doi.org/10.1002/adfm.201200691.
Full textEl Moctar, Ismaila, Qiao Ni, Ying Bai, Feng Wu, and Chuan Wu. "Hard carbon anode materials for sodium-ion batteries." Functional Materials Letters 11, no. 06 (December 2018): 1830003. http://dx.doi.org/10.1142/s1793604718300037.
Full textTan, Suchong, Han Yang, Zhen Zhang, Xiangyu Xu, Yuanyuan Xu, Jian Zhou, Xinchi Zhou, et al. "The Progress of Hard Carbon as an Anode Material in Sodium-Ion Batteries." Molecules 28, no. 7 (March 31, 2023): 3134. http://dx.doi.org/10.3390/molecules28073134.
Full textZaidi, S. Z. J., M. Raza, S. Hassan, C. Harito, and F. C. Walsh. "A DFT Study of Heteroatom Doped-Pyrazine as an Anode in Sodium ion Batteries." Journal of New Materials for Electrochemical Systems 24, no. 1 (March 31, 2021): 1–8. http://dx.doi.org/10.14447/jnmes.v24i1.a01.
Full textZhang, Miao, Liuzhang Ouyang, Min Zhu, Fang Fang, Jiangwen Liu, and Zongwen Liu. "A phosphorus and carbon composite containing nanocrystalline Sb as a stable and high-capacity anode for sodium ion batteries." Journal of Materials Chemistry A 8, no. 1 (2020): 443–52. http://dx.doi.org/10.1039/c9ta07508a.
Full textKhusyaeri, Hafid, Dewi Pratiwi, Haris Ade Kurniawan, Anisa Raditya Nurohmah, Cornelius Satria Yudha, and Agus Purwanto. "Synthesis of High-Performance Hard Carbon from Waste Coffee Ground as Sodium Ion Battery Anode Material: A Review." Materials Science Forum 1044 (August 27, 2021): 25–39. http://dx.doi.org/10.4028/www.scientific.net/msf.1044.25.
Full textYang, Qingyun, Yanjin Liu, Hong Ou, Xueyi Li, Xiaoming Lin, Akif Zeb, and Lei Hu. "Fe-Based metal–organic frameworks as functional materials for battery applications." Inorganic Chemistry Frontiers 9, no. 5 (2022): 827–44. http://dx.doi.org/10.1039/d1qi01396c.
Full textGupta, Aman, Ditipriya Bose, Sandeep Tiwari, Vikrant Sharma, and Jai Prakash. "Techno–economic and environmental impact analysis of electric two-wheeler batteries in India." Clean Energy 8, no. 3 (May 3, 2024): 147–56. http://dx.doi.org/10.1093/ce/zkad094.
Full textAparicio, Pablo A., and Nora H. de Leeuw. "Electronic structure, ion diffusion and cation doping in the Na4VO(PO4)2 compound as a cathode material for Na-ion batteries." Physical Chemistry Chemical Physics 22, no. 12 (2020): 6653–59. http://dx.doi.org/10.1039/c9cp05559b.
Full textÅvall, Gustav, Jonas Mindemark, Daniel Brandell, and Patrik Johansson. "Sodium-Ion Batteries: Sodium-Ion Battery Electrolytes: Modeling and Simulations (Adv. Energy Mater. 17/2018)." Advanced Energy Materials 8, no. 17 (June 2018): 1870081. http://dx.doi.org/10.1002/aenm.201870081.
Full textLi, Ruofan, Xiaoli Yan, and Long Chen. "2D Conductive Metal–Organic Frameworks for Electrochemical Energy Application." Organic Materials 06, no. 02 (May 2024): 45–65. http://dx.doi.org/10.1055/s-0044-1786500.
Full textLin, Ziyang, and Zhuofan Wang. "Application of Solid Polymer Electrolytes for Solid-State Sodium Batteries." MATEC Web of Conferences 386 (2023): 03019. http://dx.doi.org/10.1051/matecconf/202338603019.
Full textDong, Xu, Dominik Steinle, and Dominic Bresser. "Single-Ion Conducting Polymer Electrolytes for Sodium Batteries." ECS Meeting Abstracts MA2023-01, no. 5 (August 28, 2023): 954. http://dx.doi.org/10.1149/ma2023-015954mtgabs.
Full textPeng, Bo, Zhihao Sun, Shuhong Jiao, Jie Li, Gongrui Wang, Yapeng Li, Xu Jin, Xiaoqi Wang, Jianming Li, and Genqiang Zhang. "Facile self-templated synthesis of P2-type Na0.7CoO2 microsheets as a long-term cathode for high-energy sodium-ion batteries." Journal of Materials Chemistry A 7, no. 23 (2019): 13922–27. http://dx.doi.org/10.1039/c9ta02966d.
Full textWang, Wanlin, Weijie Li, Shun Wang, Zongcheng Miao, Hua Kun Liu, and Shulei Chou. "Structural design of anode materials for sodium-ion batteries." Journal of Materials Chemistry A 6, no. 15 (2018): 6183–205. http://dx.doi.org/10.1039/c7ta10823k.
Full textShrivastava, Hritvik. "Viable Alternatives to Lithium-Based Batteries." Scholars Journal of Engineering and Technology 11, no. 05 (May 12, 2023): 111–14. http://dx.doi.org/10.36347/sjet.2023.v11i05.001.
Full textLibich, Jiří, Josef Máca, Andrey Chekannikov, Jiří Vondrák, Pavel Čudek, Michal Fíbek, Werner Artner, Guenter Fafilek, and Marie Sedlaříková. "Sodium Titanate for Sodium-Ion Batteries." Surface Engineering and Applied Electrochemistry 55, no. 1 (January 2019): 109–13. http://dx.doi.org/10.3103/s1068375519010125.
Full textRuan, Boyang, Jun Wang, Dongqi Shi, Yanfei Xu, Shulei Chou, Huakun Liu, and Jiazhao Wang. "A phosphorus/N-doped carbon nanofiber composite as an anode material for sodium-ion batteries." Journal of Materials Chemistry A 3, no. 37 (2015): 19011–17. http://dx.doi.org/10.1039/c5ta04366b.
Full textSlater, Michael D., Donghan Kim, Eungje Lee, and Christopher S. Johnson. "Correction: Sodium-Ion Batteries." Advanced Functional Materials 23, no. 26 (July 8, 2013): 3255. http://dx.doi.org/10.1002/adfm.201301540.
Full textZhang, Shuaiguo, Guoyou Yin, Haipeng Zhao, Jie Mi, Jie Sun, and Liyun Dang. "Facile synthesis of carbon nanofiber confined FeS2/Fe2O3 heterostructures as superior anode materials for sodium-ion batteries." Journal of Materials Chemistry C 9, no. 8 (2021): 2933–43. http://dx.doi.org/10.1039/d0tc05519k.
Full textSu, Dan, Hao Zhang, Jiawei Zhang, and Yingna Zhao. "Design and Synthesis Strategy of MXenes-Based Anode Materials for Sodium-Ion Batteries and Progress of First-Principles Research." Molecules 28, no. 17 (August 28, 2023): 6292. http://dx.doi.org/10.3390/molecules28176292.
Full textYang, Di, Yuntong Lv, Ming Ji, and Fangchu Zhao. "Evaluation and economic analysis of battery energy storage in smart grids with wind–photovoltaic." International Journal of Low-Carbon Technologies 19 (2024): 18–23. http://dx.doi.org/10.1093/ijlct/ctad142.
Full textWang, Jie, Ping Nie, Bing Ding, Shengyang Dong, Xiaodong Hao, Hui Dou, and Xiaogang Zhang. "Biomass derived carbon for energy storage devices." Journal of Materials Chemistry A 5, no. 6 (2017): 2411–28. http://dx.doi.org/10.1039/c6ta08742f.
Full textChe, Haiying, Suli Chen, Yingying Xie, Hong Wang, Khalil Amine, Xiao-Zhen Liao, and Zi-Feng Ma. "Electrolyte design strategies and research progress for room-temperature sodium-ion batteries." Energy & Environmental Science 10, no. 5 (2017): 1075–101. http://dx.doi.org/10.1039/c7ee00524e.
Full textWikner, Evelina, and Ritambhara Gond. "Simulating Hard Carbon for Sodium-Ion Batteries with the DFN Model." ECS Meeting Abstracts MA2023-02, no. 4 (December 22, 2023): 797. http://dx.doi.org/10.1149/ma2023-024797mtgabs.
Full textBALARAJU, M., B. V. SHIVA REDDY, T. A. BABU, K. C. BABU NAIDU, and N. V. KRISHNA PRASAD. "ADVANCED ORGANIC ELECTRODE MATERIALS FOR RECHARGEABLE SODIUM-ION BATTERIES." Journal of Ovonic Research 16, no. 6 (November 2020): 387–96. http://dx.doi.org/10.15251/jor.2020.166.387.
Full textChen, Wenshuai, Haipeng Yu, Sang-Young Lee, Tong Wei, Jian Li, and Zhuangjun Fan. "Nanocellulose: a promising nanomaterial for advanced electrochemical energy storage." Chemical Society Reviews 47, no. 8 (2018): 2837–72. http://dx.doi.org/10.1039/c7cs00790f.
Full textZhang, Kun, Guohua Gao, Wei Sun, Xing Liang, Yindan Liu, and Guangming Wu. "Large interlayer spacing vanadium oxide nanotubes as cathodes for high performance sodium ion batteries." RSC Advances 8, no. 39 (2018): 22053–61. http://dx.doi.org/10.1039/c8ra03514h.
Full textXie, Xing-Chen, Ke-Jing Huang, and Xu Wu. "Metal–organic framework derived hollow materials for electrochemical energy storage." Journal of Materials Chemistry A 6, no. 16 (2018): 6754–71. http://dx.doi.org/10.1039/c8ta00612a.
Full textLu, Bin, Chengjun Lin, Haiji Xiong, Chi Zhang, Lin Fang, Jiazhou Sun, Ziheng Hu, et al. "Hard-Carbon Negative Electrodes from Biomasses for Sodium-Ion Batteries." Molecules 28, no. 10 (May 11, 2023): 4027. http://dx.doi.org/10.3390/molecules28104027.
Full textLandmann, Daniel, Enea Svaluto-Ferro, Meike Heinz, Patrik Schmutz, and Corsin Battaglia. "(Digital Presentation) Elucidating the Rate-Limiting Processes in High-Temperature Sodium-Metal Chloride Batteries." ECS Meeting Abstracts MA2022-02, no. 5 (October 9, 2022): 578. http://dx.doi.org/10.1149/ma2022-025578mtgabs.
Full textBanerjee, Swastika, Siamkhanthang Neihsial, and Swapan K. Pati. "First-principles design of a borocarbonitride-based anode for superior performance in sodium-ion batteries and capacitors." Journal of Materials Chemistry A 4, no. 15 (2016): 5517–27. http://dx.doi.org/10.1039/c6ta01645f.
Full textChang, Bohao. "Study On Electrolyte of Low Temperature Sodium-Ion Battery." Highlights in Science, Engineering and Technology 71 (November 28, 2023): 249–53. http://dx.doi.org/10.54097/hset.v71i.12703.
Full textLim, Hyojun, and Sang-Ok Kim. "Heterostructure Design of Anode Materials for High-Performance Sodium-Ion Batteries." ECS Meeting Abstracts MA2023-02, no. 4 (December 22, 2023): 521. http://dx.doi.org/10.1149/ma2023-024521mtgabs.
Full textZhang, Chenrui, Jingrui Shang, Huilong Dong, Edison Huixiang Ang, Linlin Tai, Marliyana Aizudin, Xuhong Wang, Hongbo Geng, and Hongwei Gu. "Modulation of MoS2 interlayer dynamics by in situ N-doped carbon intercalation for high-rate sodium-ion half/full batteries." Nanoscale 13, no. 43 (2021): 18322–31. http://dx.doi.org/10.1039/d1nr05708a.
Full textCha, Seunghwan, Changhyeon Kim, Huihun Kim, Gyu-Bong Cho, Kwon-Koo Cho, Ho-Suk Ryu, Jou-Hyeon Ahn, Keun Yong Sohn, and Hyo-Jun Ahn. "Electrochemical Properties of Micro-Sized Bismuth Anode for Sodium Ion Batteries." Science of Advanced Materials 12, no. 9 (September 1, 2020): 1429–32. http://dx.doi.org/10.1166/sam.2020.3801.
Full textLE, Phung M.-L., Yan Jin, Thanh D. Vo, Nhan Tran, Yaobin Xu, Biwei Xiao, Mark H. Engelhard, Chongmin Wang, and Ji-Guang Zhang. "(Invited) Achieving Stable Interfacial Reactions in Sodium Batteries through Electrolyte Engineering." ECS Meeting Abstracts MA2023-01, no. 5 (August 28, 2023): 872. http://dx.doi.org/10.1149/ma2023-015872mtgabs.
Full textYang, Guanhua, Xu Wang, Yihong Li, Zhiguo Zhang, Jiayu Huang, Fenghua Zheng, Qichang Pan, Hongqiang Wang, Qingyu Li, and Yezheng Cai. "Self-supporting network-structured MoS2/heteroatom-doped graphene as superior anode materials for sodium storage." RSC Advances 13, no. 18 (2023): 12344–54. http://dx.doi.org/10.1039/d2ra08207a.
Full textWang, Qinghong, Jiantie Xu, Wenchao Zhang, Minglei Mao, Zengxi Wei, Lei Wang, Chunyu Cui, Yuxuan Zhu, and Jianmin Ma. "Research progress on vanadium-based cathode materials for sodium ion batteries." Journal of Materials Chemistry A 6, no. 19 (2018): 8815–38. http://dx.doi.org/10.1039/c8ta01627e.
Full textZhou, You, Ming Zhao, Zhi Wen Chen, Xiang Mei Shi, and Qing Jiang. "Potential application of 2D monolayer β-GeSe as an anode material in Na/K ion batteries." Physical Chemistry Chemical Physics 20, no. 48 (2018): 30290–96. http://dx.doi.org/10.1039/c8cp05484c.
Full textWei, Qijun. "Efficient power supply for electric vehicles: sodium-ion batteries." Applied and Computational Engineering 12, no. 1 (September 25, 2023): 214–19. http://dx.doi.org/10.54254/2755-2721/12/20230341.
Full textZhu, Yuan-En, Leping Yang, Xianlong Zhou, Feng Li, Jinping Wei, and Zhen Zhou. "Boosting the rate capability of hard carbon with an ether-based electrolyte for sodium ion batteries." Journal of Materials Chemistry A 5, no. 20 (2017): 9528–32. http://dx.doi.org/10.1039/c7ta02515g.
Full textKumar, Saurabh, R. Ranjeeth, Neeraj Kumar Mishra, Rajiv Prakash, and Preetam Singh. "NASICON-structured Na3Fe2PO4(SO4)2: a potential cathode material for rechargeable sodium-ion batteries." Dalton Transactions 51, no. 15 (2022): 5834–40. http://dx.doi.org/10.1039/d2dt00780k.
Full textZhao, Xu, Yundong Zhao, Ying Yang, Zihang Liu, Hong-En Wang, Jiehe Sui, and Wei Cai. "Fresh MoO2 as a better electrode for pseudocapacitive sodium-ion storage." New Journal of Chemistry 42, no. 18 (2018): 14721–24. http://dx.doi.org/10.1039/c8nj03570a.
Full textSun, Xiaolei, and Feng Luo. "Sodium Storage Properties of Carbonaceous Flowers." Molecules 28, no. 12 (June 14, 2023): 4753. http://dx.doi.org/10.3390/molecules28124753.
Full text