Academic literature on the topic 'Sodium-ion batterie'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Sodium-ion batterie.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Sodium-ion batterie"

1

Chou, Shulei. "Challenges and Applications of Flexible Sodium Ion Batteries." Materials Lab 1 (2022): 1–24. http://dx.doi.org/10.54227/mlab.20210001.

Full text
Abstract:
Sodium-ion batteries are considered to be a future alternative to lithium-ion batteries because of their low cost and abundant resources. In recent years, the research of sodium-ion batteries in flexible energy storage systems has attracted widespread attention. However, most of the current research on flexible sodium ion batteries is mainly focused on the preparation of flexible electrode materials. In this paper, the challenges faced in the preparation of flexible electrode materials for sodium ion batteries and the evaluation of device flexibility is summarized. Several important parameters including cycle-calendar life, energy/power density, safety, flexible, biocompatibility and multifunctional intergration of current flexible sodium ion batteries will be described mainly from the application point of view. Finally, the promising current applications of flexible sodium ion batteries are summarized.
APA, Harvard, Vancouver, ISO, and other styles
2

Li, Fang, Zengxi Wei, Arumugam Manthiram, Yuezhan Feng, Jianmin Ma, and Liqiang Mai. "Sodium-based batteries: from critical materials to battery systems." Journal of Materials Chemistry A 7, no. 16 (2019): 9406–31. http://dx.doi.org/10.1039/c8ta11999f.

Full text
Abstract:
In this review, we systematically summarize the recent advances in designing cathode/anode materials, exploring suitable electrolyte, and understanding the operation mechanisms of post-sodium batteries (Na–O2, Na–S, Na–Se, Na–CO2) as well as sodium-ion batteries. The current challenges and future perspectives for the sodium-based energy systems are also presented.
APA, Harvard, Vancouver, ISO, and other styles
3

Hu, Chunxi. "Nanotechnology based on anode and cathode materials of sodium-ion battery." Applied and Computational Engineering 26, no. 1 (November 7, 2023): 164–71. http://dx.doi.org/10.54254/2755-2721/26/20230824.

Full text
Abstract:
With the urgent need for carbon neutrality and the new energy vehicle industry's quick development around the world, the market demand for batteries is growing rapidly. At present, the batteries in the market are mainly lithium-ion batteries. However, the shortage and uneven distribution of lithium deposits worldwide result in high production costs. In recent years, sodium-ion batteries have developed rapidly for the sake of their similar principles and easy access to sodium resources, and are regarded as being able to replace lithium-ion batteries in the future. Nanotechnology is widely used in sodium-ion batteries to overcome the issue of extracting/inserting during charging/discharging due to the sodium ions large radius. This paper reviewed the application of nanotechnology in both anode and cathode materials of sodium-ion batteries. This paper covers widely used cathode materials such as layered transition metal oxides, polyanion compounds, and Prussian blue. Nanotechnologies employed in anode materials such as carbon-based materials and titanium-embedded materials are also introduced. It has turned out that sodium-ion batteries can improve the sodium storage capacity, energy density, and cycle performance efficiently via the application of nanomaterials.
APA, Harvard, Vancouver, ISO, and other styles
4

Zhao, Qinglan, Andrew Whittaker, and X. Zhao. "Polymer Electrode Materials for Sodium-ion Batteries." Materials 11, no. 12 (December 17, 2018): 2567. http://dx.doi.org/10.3390/ma11122567.

Full text
Abstract:
Sodium-ion batteries are promising alternative electrochemical energy storage devices due to the abundance of sodium resources. One of the challenges currently hindering the development of the sodium-ion battery technology is the lack of electrode materials suitable for reversibly storing/releasing sodium ions for a sufficiently long lifetime. Redox-active polymers provide opportunities for developing advanced electrode materials for sodium-ion batteries because of their structural diversity and flexibility, surface functionalities and tenability, and low cost. This review provides a short yet concise summary of recent developments in polymer electrode materials for sodium-ion batteries. Challenges facing polymer electrode materials for sodium-ion batteries are identified and analyzed. Strategies for improving polymer electrochemical performance are discussed. Future research perspectives in this important field are projected.
APA, Harvard, Vancouver, ISO, and other styles
5

Rojo, Teofilo, Yong-Sheng Hu, Maria Forsyth, and Xiaolin Li. "Sodium-Ion Batteries." Advanced Energy Materials 8, no. 17 (June 2018): 1800880. http://dx.doi.org/10.1002/aenm.201800880.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Slater, Michael D., Donghan Kim, Eungje Lee, and Christopher S. Johnson. "Sodium-Ion Batteries." Advanced Functional Materials 23, no. 8 (May 21, 2012): 947–58. http://dx.doi.org/10.1002/adfm.201200691.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

El Moctar, Ismaila, Qiao Ni, Ying Bai, Feng Wu, and Chuan Wu. "Hard carbon anode materials for sodium-ion batteries." Functional Materials Letters 11, no. 06 (December 2018): 1830003. http://dx.doi.org/10.1142/s1793604718300037.

Full text
Abstract:
Recent results have shown that sodium-ion batteries complement lithium-ion batteries well because of the low cost and abundance of sodium resources. Hard carbon is believed to be the most promising anode material for sodium-ion batteries due to the expanded graphene interlayers, suitable working voltage and relatively low cost. However, the low initial coulombic efficiency and rate performance still remains challenging. The focus of this review is to give a summary of the recent progresses on hard carbon for sodium-ion batteries including the impact of the uniqueness of carbon precursors and strategies to improve the performance of hard carbon; highlight the advantages and performances of the hard carbon. Additionally, the current problems of hard carbon for sodium-ion batteries and some challenges and perspectives on designing better hard-carbon anode materials are also provided.
APA, Harvard, Vancouver, ISO, and other styles
8

Tan, Suchong, Han Yang, Zhen Zhang, Xiangyu Xu, Yuanyuan Xu, Jian Zhou, Xinchi Zhou, et al. "The Progress of Hard Carbon as an Anode Material in Sodium-Ion Batteries." Molecules 28, no. 7 (March 31, 2023): 3134. http://dx.doi.org/10.3390/molecules28073134.

Full text
Abstract:
When compared to expensive lithium metal, the metal sodium resources on Earth are abundant and evenly distributed. Therefore, low-cost sodium-ion batteries are expected to replace lithium-ion batteries and become the most likely energy storage system for large-scale applications. Among the many anode materials for sodium-ion batteries, hard carbon has obvious advantages and great commercial potential. In this review, the adsorption behavior of sodium ions at the active sites on the surface of hard carbon, the process of entering the graphite lamellar, and their sequence in the discharge process are analyzed. The controversial storage mechanism of sodium ions is discussed, and four storage mechanisms for sodium ions are summarized. Not only is the storage mechanism of sodium ions (in hard carbon) analyzed in depth, but also the relationships between their morphology and structure regulation and between heteroatom doping and electrolyte optimization are further discussed, as well as the electrochemical performance of hard carbon anodes in sodium-ion batteries. It is expected that the sodium-ion batteries with hard carbon anodes will have excellent electrochemical performance, and lower costs will be required for large-scale energy storage systems.
APA, Harvard, Vancouver, ISO, and other styles
9

Zaidi, S. Z. J., M. Raza, S. Hassan, C. Harito, and F. C. Walsh. "A DFT Study of Heteroatom Doped-Pyrazine as an Anode in Sodium ion Batteries." Journal of New Materials for Electrochemical Systems 24, no. 1 (March 31, 2021): 1–8. http://dx.doi.org/10.14447/jnmes.v24i1.a01.

Full text
Abstract:
Lithium ion batteries cannot satisfy increasing demand for energy storage. A range of complementary batteries are needed which are environmentally acceptable, of moderate cost and easy to manufacture/recycle. In this case, we have chosen pyrazine to be used in the sodium ion batteries to meet the energy storage requirements of tomorrow. Pyrazine is studied as a possible anode material for bio-batteries, lithium-ion, and sodium ion batteries due to its broad set of useful properties such as ease of synthesis, low cost, ability to be charge-discharge cycled, and stability in the electrolyte. The heteroatom doped-pyrazine with atoms of boron, fluorine, phosphorous, and sulphur as an anode in sodium ion batteries has improved the stability and intercalation of sodium ions at the anode. The longest bond observed between sodium ion and sulphur-doped pyrazine at 2.034 Å. The electronic charge is improved and further enhanced by the presence of highly electronegative atoms such as fluorine and bromine in an already electron-attracting pyrazine compound. The highest adsorption energy is observed for the boron-doped pyrazine at -2.735 eV. The electron-deficient sites present in fluorine and bromine help in improving the electronic storage of the sodium ion batteries. A mismatch is observed between the adsorption energy and bond length in pyrazine doped with fluorine and phosphorus.
APA, Harvard, Vancouver, ISO, and other styles
10

Zhang, Miao, Liuzhang Ouyang, Min Zhu, Fang Fang, Jiangwen Liu, and Zongwen Liu. "A phosphorus and carbon composite containing nanocrystalline Sb as a stable and high-capacity anode for sodium ion batteries." Journal of Materials Chemistry A 8, no. 1 (2020): 443–52. http://dx.doi.org/10.1039/c9ta07508a.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Sodium-ion batterie"

1

Farina, Luca. "Sodium Ion battery for energy intensive application." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019.

Find full text
Abstract:
In questa tesi viene proposto uno studio sulle batterie agli ioni sodio e lo sviluppo di un innovativo metodo di studio che sfrutta il microscopio a scansione elettronica (SEM). Le batterie ioni sodio (SIB) sono una tecnologia innovativa che ha interessato gli studiosi soprattutto negli ultimi anni, in virtù della loro competitività rispetto alle più diffuse batterie agli ioni litio (LIB). Infatti, rispetto a queste ultime, caratterizzate dalla presenza di metalli rari e costosi e dal cobalto, un metallo altamente inquinante, le SIB sono costituite da sodio, tra i metalli più abbondanti sulla crosta terrestre, e soprattutto non necessitano di cobalto, risultando così molto più economiche. In questa tesi si proporrà lo studio di un substrato per lo sviluppo delle batterie anode-free. Negli ultimi studi sta prendendo piede l’idea di realizzare una batteria senza anodo in quanto risulta complesso un materiale con caratteristiche di intercalazione buone per questo elettrodo. Si procede poi a riportare la caratterizzazione del substrato in analisi. In particolare viene presentato un innovativo porta campioni per lo studio con SEM, completamente progettato e realizzato appositamente per il presente studio. Si tratta di un sistema air-tight che protegge il campione dall’ossidazione. La caratterizzazione d’immagine con il SEM risulta particolarmente utile in quanto permette di capire come procede la deposizione del sodio sul substrato studiato. Vengono infine presentati i risultati della caratterizzazione del substrato considerato. L’intera tesi è stata portata avanti all’interno dell’Energy Storage Group del College of Engineering, presso Swansea University, Swansea (UK).
APA, Harvard, Vancouver, ISO, and other styles
2

Michelet, Cédric. "Recherche exploratoire de nouveaux matériaux d'électrode négative pour batterie sodium-ion." Nantes, 2014. http://archive.bu.univ-nantes.fr/pollux/show.action?id=d046bc78-38d0-480a-9562-5ec81ce5bca2.

Full text
Abstract:
Les accumulateurs lithium-ion sont devenus indispensables ces dernières années. Pour des raisons d’accès aux ressources et de coût de l’élément alcalin, un nouveau champ de recherche s’intéressant aux accumulateurs sodium-ion a récemment émergé. Parmi les grands défis posés par ce nouveau dispositif, le travail développé durant cette thèse a pour but l’exploration de nouveaux matériaux d’électrode négative. Deux types de matériaux ont été étudiés : l’étain métallique, et les chalcogénures AV4S8 (A=Ga, Ge). L’étain a été obtenu sous forme dense ou dendritique par dépôt électrochimique. En batterie sodium-ion, ce matériau présente des propriétés intéressantes, puisque durant la première décharge, une capacité spécifique de 1 Ah/g à un potentiel de réaction inférieur à 0,6 V par rapport à Na+/Na0 est obtenue. Cependant, une expansion volumique de 350% durant la sodiation entraine une perte importante de capacité qui passe sous les 100 mAh/g après une dizaine de cycles. Les chalcogénures AV4S8 (A=Ga, Ge) ont été le principal sujet d’étude de ce travail de thèse. Le mécanisme de réaction avec le sodium, proche d’un mécanisme de conversion, a été étudié par diffraction des rayons X in situ, par spectroscopie d’absorption des rayons X et par spectroscopie de perte d’énergie des électrons afin d’observer l’évolution du degré d’oxydation des éléments intervenant dans la réaction avec le sodium. Ces matériaux possèdent des caractéristiques électrochimiques remarquables, avec une capacité spécifique initiale de plus de 800 mAh/g à bas potentiel et une très bonne tenue en cyclage
Lithium-ion batteries have become essential in recent years. Due to both the difficult access and the cost of the alkaline element, a new field of research concerning sodium-ion batteries has recently emerged. Among the major challenges inherent to this new battery type, the aim of the work developed during this PhD thesis is to explore new negative electrode materials. Two material types have been studied: metallic tin, and the chalcogenides AV4S8 (A=Ga, Ge). Tin was obtained with dense or dendritic form by electrolchemical deposition. In sodium-ion battery, this material presents interesting properties since during the first discharge, a specific capacity of 1 Ah/g at a working potential below 0. 6 V relative to Na+/Na0 can be obtained. However, a volume expansion of 350% during the sodiation causes a significant capacity loss, which is under 100 mAh/g after around ten cycles. The AV4S8 chalcogenides (A = Ga, Ge) have been the main subject of this PhD thesis. The reaction mechanism with sodium, close to a conversion mechanism, has been studied by in situ X -ray diffraction, X-ray absorption spectroscopy and electron energy loss spectroscopy in order to observe the oxidation number evolution of the elements involved in the reaction with sodium. These materials exhibit remarkable electrochemical properties, with an initial specific capacity of more than 800 mAh/g at low potential with excellent capacity retention upon cycling
APA, Harvard, Vancouver, ISO, and other styles
3

FIORE, MICHELE. "Nanostructured Materials for secondary alkaline ion batteries." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2020. http://hdl.handle.net/10281/262348.

Full text
Abstract:
Thanks to their superior energy and power density, lithium-ion batteries (LIBs) currently dominate the market of power sources for portable devices. The economy of scale and engineering optimizations have driven the cost of LIBs below the 200 $/KWh at the pack level. This catalyzed the market penetration of electric vehicles and made them a viable candidate for stationary energy storage. However, the rapid market expansion of LIBs raised growing concerns about the future sustainability of this technology. In particular, lithium and cobalt supplies are considered vulnerable, primarily because of the geopolitical implications of their high concentration in only a few countries. In the search for the next generation secondary batteries, known as post-lithium ion batteries, candidates that do not use rare metals have been extensively investigated in the last 10 years. Sodium-ion batteries (SIBs) attracted considerable attention thanks to the high abundance of the precursors and wide distribution of sodium on the earth's crust. As a matter of fact, as it will be pointed out during the dissertation, it is not straightforward to allocate the reduction of the price of the alkaline ion precursors to the reduction of the battery price. However, the difficulties in the supply of raw materials for LIBs, such as shortages in lithium carbonates and cobalt ores, could make lithium and cobalt-free systems, such as SIBs, attractive and cost-competitive alternatives. Compared to other, more exotic chemistries including Ca2+, Mg2+ and Al3+ batteries, SIBs are nowadays considered one as the most promising alternative to LIBs. Despite the extensive research, anode materials for SIBs still represent a serious problem for the commercial exploitation of this technology. Accordingly, the doctoral research on SIBs has been focused on anode materials. In particular, the attention was directed towards conversion oxides. Compared to intercalation materials, conversion-based ones have higher capacities but are more challenging to deal with because of the high volume variation during cycling. This challenge was addressed by material's nanostructuring and morphology control which proved to significantly reduce the pulverization of the active material. Different anode candidates have been studied during the doctoral work. Cobalt oxide nanofibers have been here explored as a first prototype for conversion materials in sodium ion batteries. The sodiation-desodiation mechanism is analyzed by means of ex situ XRD which led to a deeper understanding of the conversion reaction in SIBs. A cost-effective and environmentally benign alternative based on iron oxide is then considered. The limits of iron (III) oxide are tackled by combining the advantages of the nanostructuring and the doping with an aliovalent element. Si-doped Fe2O3 nanofibers are synthesized via an easy scalable process based on the electrospinning method. It is found that Si-addition improves the transport properties as well as induces changes in the crystal structure and morphology. In the final section of the thesis, potassium-ion batteries (KIBs) are examined as a promising alternative to sodium ion batteries. KIBs exhibit all the benefits of SIBs, with the additional advantage that graphite, can reversibly accommodate K-ions. On the positive side, Potassium manganese hexacyanoferrate (KMnHCF), has been reported to provide high operating voltages and satisfactory capacity retention. The proposed research activity presents the use of an ionic liquid based electrolyte compatible with the most promising anode and cathode for KIBs. In addition, a high-throughput optimization of the KMnHCF synthesis is reported. The selected candidates are then fully characterized, and their electrochemical properties investigated. The optimized material exhibits the highest ever reported coulombic efficiency for the KMHCF. This find, opens up the possibility of highly efficient, high energy potassium ion batteries.
Thanks to their superior energy and power density, lithium-ion batteries (LIBs) currently dominate the market of power sources for portable devices. The economy of scale and engineering optimizations have driven the cost of LIBs below the 200 $/KWh at the pack level. This catalyzed the market penetration of electric vehicles and made them a viable candidate for stationary energy storage. However, the rapid market expansion of LIBs raised growing concerns about the future sustainability of this technology. In particular, lithium and cobalt supplies are considered vulnerable, primarily because of the geopolitical implications of their high concentration in only a few countries. In the search for the next generation secondary batteries, known as post-lithium ion batteries, candidates that do not use rare metals have been extensively investigated in the last 10 years. Sodium-ion batteries (SIBs) attracted considerable attention thanks to the high abundance of the precursors and wide distribution of sodium on the earth's crust. As a matter of fact, as it will be pointed out during the dissertation, it is not straightforward to allocate the reduction of the price of the alkaline ion precursors to the reduction of the battery price. However, the difficulties in the supply of raw materials for LIBs, such as shortages in lithium carbonates and cobalt ores, could make lithium and cobalt-free systems, such as SIBs, attractive and cost-competitive alternatives. Compared to other, more exotic chemistries including Ca2+, Mg2+ and Al3+ batteries, SIBs are nowadays considered one as the most promising alternative to LIBs. Despite the extensive research, anode materials for SIBs still represent a serious problem for the commercial exploitation of this technology. Accordingly, the doctoral research on SIBs has been focused on anode materials. In particular, the attention was directed towards conversion oxides. Compared to intercalation materials, conversion-based ones have higher capacities but are more challenging to deal with because of the high volume variation during cycling. This challenge was addressed by material's nanostructuring and morphology control which proved to significantly reduce the pulverization of the active material. Different anode candidates have been studied during the doctoral work. Cobalt oxide nanofibers have been here explored as a first prototype for conversion materials in sodium ion batteries. The sodiation-desodiation mechanism is analyzed by means of ex situ XRD which led to a deeper understanding of the conversion reaction in SIBs. A cost-effective and environmentally benign alternative based on iron oxide is then considered. The limits of iron (III) oxide are tackled by combining the advantages of the nanostructuring and the doping with an aliovalent element. Si-doped Fe2O3 nanofibers are synthesized via an easy scalable process based on the electrospinning method. It is found that Si-addition improves the transport properties as well as induces changes in the crystal structure and morphology. In the final section of the thesis, potassium-ion batteries (KIBs) are examined as a promising alternative to sodium ion batteries. KIBs exhibit all the benefits of SIBs, with the additional advantage that graphite, can reversibly accommodate K-ions. On the positive side, Potassium manganese hexacyanoferrate (KMnHCF), has been reported to provide high operating voltages and satisfactory capacity retention. The proposed research activity presents the use of an ionic liquid based electrolyte compatible with the most promising anode and cathode for KIBs. In addition, a high-throughput optimization of the KMnHCF synthesis is reported. The selected candidates are then fully characterized, and their electrochemical properties investigated. The optimized material exhibits the highest ever reported coulombic efficiency for the KMHCF. This find, opens up the possibility of highly efficient, high energy potassium ion batteries.
APA, Harvard, Vancouver, ISO, and other styles
4

Huynh, Le Thanh Nguyen. "Les accumulateurs au sodium et sodium-ion, une nouvelle génération d’accumulateurs électrochimiques : synthèse et électrochimie de nouveaux matériaux d’électrodes performants." Thesis, Paris Est, 2016. http://www.theses.fr/2016PESC1123/document.

Full text
Abstract:
Les accumulateurs au lithium jouent un rôle important comme source d'alimentation pour les appareils électroniques portables en raison de leur forte capacité gravimétrique et volumétrique et leur haute tension. En outre, la technologie lithium-ion est la mieux placée pour une application à grande échelle, telle que le véhicule électrique, ce qui pose un problème de ressource et à terme, de coût. Une des réponses envisagées sur le plan économique et environnemental est le développement d’accumulateurs sodium-ion. Dans tous les cas, le problème scientifique consiste à proposer des matériaux d’insertion des ions sodium avec un caractère réversible de la réaction électrochimique, et une durée de vie compétitive par rapport aux systèmes au lithium. Le travail présenté se situe dans cet effort de recherche. Les potentialités de matériaux dérivés du pentoxyde de vanadium, de structure 2D, sont étudiées comme composés d’intercalation du sodium: le composé de référence V2O5, le bronze performant dérivé de V2O5 de formule K0,5V2O5, ε’-V2O5, ainsi que le composé au manganèse de type lamellaire : la birnessite sol-gel et sa forme dopée au cobalt. Les relations structure-électrochimie sont élucidées à travers une étude combinant propriétés électrochimiques, diffraction des Rayons X et spectroscopie Raman des matériaux à différents taux d’insertion, en fin de réaction et après cyclages galvanostatiques. De nouvelles phases sont obtenues et des capacités spécifiques comprises entre 100 et 160 mAh/g dans le domaine de potentiel 4V-1V peuvent être obtenues avec parfois une stabilité remarquable comme dans le cas de NaV2O5 et ε’-V2O5
Since commercialization, Li-ion batteries have been playing an important role as power source for portable electronic devices because of high gravimetric, volumetric capacity and high voltage. Furthermore, the lithium-ion technology is best suited for large-scale application, such as electric vehicles, which poses a resource problem and ultimately cost. On the contrary, sodium is a most abundant element, inexpensive and similarly properties as lithium. In order to solve the problem of lithium raw resource, sodium is proposed as a solution for next generation power source storage. This work investigates the potential derivative vanadium pentoxide materials as sodium intercalation compounds: the V2O5 reference compound, the promizing potassium bronze K0,5V2O5, ε'-V2O5, as well as a lamellar manganese oxide: the sol-gel birnessite and its doped cobalt form. The structure-electrochemistry relationships are clarified through a study combining electrochemical properties, X-ray diffraction and Raman spectroscopy of materials at different insertion rate, end of the reaction and after galvanostatic cycling. New phases are highlighted and specific capacities between 100 and 160 mAh / g in the field of 4V-1V potential can be obtained with sometimes remarkably stable as in the case of NaV2O5 and ε'-V2O5
APA, Harvard, Vancouver, ISO, and other styles
5

Desai, Parth. "Achieving Na-ion Battery Advancements Through Decoding Degradation Pathways and Electrolyte Engineering." Electronic Thesis or Diss., Sorbonne université, 2023. http://www.theses.fr/2023SORUS681.

Full text
Abstract:
La dépendance croissante à l’égard des batteries lithium-ion pour le stockage de l’énergie nécessite l’exploration de produits chimiques alternatifs en raison des ressources limitées et géopolitiquement sensibles en lithium. La batterie sodium-ion, est considérée comme une alternative prometteuse, avec d’abondants précurseurs de sodium. Après une analyse comparative des paramètres critiques, la chimie Na3V2(PO4)2F3(NVPF)|hard carbon(HC) a été sélectionnée pour cette étude, de par la durabilité structurelle du matériau NVPF, ses performances énergétiques robustes et sa stabilité air/eau. Cette thèse explore de manière exhaustive cette technologie en étudiant les mécanismes de dégradation, en améliorant les performances des piles boutons à l'échelle du laboratoire et en transférant les résultats aux cellules 18650 commerciales. Dans un premier temps, les instabilités des matériaux NVPF ont été examinées, avec des températures élevées provoquant la dissolution du vanadium, conduisant à une dégradation de l'électrode NVPF, à une instabilité de l'électrolyte et enfin à une contamination de l'électrode HC. Les co-sels d'imide et le revêtement de carbone uniforme atténuent la dissolution du vanadium mais ne parviennent pas à supprimer les réactions électrolytiques indésirables. Par conséquent, les électrolytes Gen-3 méticuleusement conçus avec des additifs améliorent le cycle et la durée de vie des cellules à des températures élevées sans dégagement gazeux excessif. Un cosolvant d'acétate de méthyle à faible viscosité a été infusé dans l'électrolyte pour améliorer encore plus la puissance et les performances à basse température. L'électrolyte optimisé présente une durée de vie, des performances en Crate, une tolérance de température étendue et une sécurité remarquables, ce qui le rend adapté à une possible commercialisation. La thèse se termine par l'évaluation de la stabilité à 0 V des batteries sodium-ion, la compréhension des mécanismes de décomposition du SEI et la proposition de solution pour y pallier. Enfin, des orientations futures sont décrites pour propulser le développement des batteries Na-ion et remettre en question la technologie Li-ion basée sur LiFePO4
The growing dependence on lithium-ion batteries for energy storage necessitates the exploration of alternative chemistries due to the limited and geopolitically sensitive lithium resources. The sodium-ion battery, considered a sustainable complement with abundant sodium precursors, is swiftly progressing towards commercialization. Following a comparative analysis of critical parameters, the Na3V2(PO4)2F3(NVPF)|hard carbon(HC) chemistry was selected for NVPF material's structural durability, robust power performance, and air/water stability. This thesis comprehensively navigates this technology by investigating degradation mechanisms, improving performance in lab-scale coin cells, and seamlessly transferring findings to commercial 18650 cells. At first, NVPF material instabilities were examined, with elevated temperatures causing vanadium dissolution, leading to NVPF electrode degradation, electrolyte instability, and finally, contamination of HC electrode. Imide co-salts and uniform carbon coating mitigate vanadium dissolution yet fail to suppress undesired electrolyte reactions. Hence, meticulously designed Gen-3 electrolytes with additives enhance cells' cycle and calendar life at elevated temperatures without excessive gassing. A low-viscosity methyl acetate cosolvent was infused in the electrolyte to enhance power and low-temperature performance further. The optimized electrolyte demonstrates remarkable cycle life, rate performance, extensive temperature tolerance, and safety, making it suitable for evaluation in commercial scenarios. The thesis concludes with assessing the 0V stability of sodium-ion batteries, comprehending SEI decomposition mechanisms, and proposing remedies. Lastly, future directions are outlined to propel Na-ion battery development and challenge LiFePO4-based Li-ion technology
APA, Harvard, Vancouver, ISO, and other styles
6

GENTILE, ANTONIO. "MXene-based materials for alkaline-ion batteries: synthesis, properties, applications." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2022. http://hdl.handle.net/10281/382748.

Full text
Abstract:
La produzione sempre maggiore di dispositivi portatili e auto elettriche chiede al mercato di produrre dispositivi efficienti in grado di poter accumulare l’energia elettrica. Per questo tipo di tecnologie in cui la miniaturizzazione del dispositivo è essenziale, le batterie litio ione (LIBs) sono diventate il mezzo di accumulare energia. La ricerca su queste batterie è focalizzata ad ottenere dispositivi sempre più performanti con materiali elettrodici ad alte capacità gravimetriche e volumetriche. Accanto all’aspetto tecnologico, legato alla ottimizzazione dei materiali, vi è anche quello dell’approvvigionamento dei componenti attivi della batteria, tra tutti il litio. La problematica attualmente è affrontata studiando batterie con altri metalli alcalini (Na e K). Di questi dispositivi non esistono però materiali già standardizzati malgrado la ricerca, specialmente sulle batterie sodio ione (SIB), sia partita solo qualche anno più tardi rispetto quella delle LIB; per cui queste tecnologie oggi sono destinate ad affiancare quelle delle LIB per sopperire all’enorme richiesta di mercato di batterie per i veicoli del futuro. L’obbiettivo del presente lavoro è stato quello di sviluppare materiali anodici a base di MXene per ottenere efficienti anodi per batterie sodio e litio ione. I MXenes sono una famiglia di carburi di metalli di transizione con una struttura 2D che sembrerebbe promettente per l’intercalazione di diversi ioni grazie ad una grande flessibilità ed adattabilità strutturale nei confronti del tipo di ione intercalante. L’intercalazione degli ioni avviene con un meccanismo pseudocapacitivo per cui i materiali hanno capacità limitate, ma hanno grande stabilità elettrochimica su migliaia di cicli ed efficienze coulombiche prossime al 100%. La produzione di questo materiale avviene per etching in HF di un precursore chiamato MAX phase. Questo è il metodo più facile e veloce per ottenere il materiale in scala di laboratorio ma presenta numerose criticità quando i volumi vengono rapportati su scala industriale. Una gran parte del lavoro è stata dedicata allo studio della tecnica sintetica per ottenere MXenes per SIB riducendo o sostituendo HF nella sintesi chimica. I materiali sono stati caratterizzati con varie tecniche di caratterizzazioni strutturali, morfologiche ed elettrochimiche. Data la struttura 2D, che ricorda quella del grafene, un uso frequente in letteratura è quello della realizzazioni di nanocompositi per SIB e LIB, al fine di produrre materiali ad alta capacità, come richiesto nel mercato delle batterie. Sono stati quindi ottenuti dei nanocompositi a base di antimonio-MXene e ossido di stagno-MXene testati rispettivamente in SIB e LIB. Antimonio e ossido di stagno sono due materiale dalla elevata capacità teorica, quando usati come anodi in batterie, ma allo stesso tempo sono estremamente fragili e tendono a polverizzarsi nei processi di carica e scarica. Il MXene è servito da buffer per limitare o evitare la frattura e distacco delle leghe dalla superficie elettrodica
The ever-increasing production of portable devices and electric cars asks to the market to produce efficient devices that can store electrical energy. For these types of technologies, where device miniaturization is essential, lithium-ion batteries (LIBs) have become leaders as energy storage systems. The research on the lithium-ion batteries is focused to obtain more performing devices with high gravimetric and volumetric capacities of the electrode materials. In addition to the technological aspect, related to the optimization of materials, there is the supply chain of active components of the battery to consider, starting from lithium. At the moment, the problem is tackled by studying batteries with other alkaline metal ions, i.e. Na+ and K+. However, there are no standardized active materials for these devices, especially on sodium-ion batteries (SIBs), started only a few years later than that of LIBs; therefore, today these technologies are intended to support the LIBs in order to satisfy the enormous market demand of the batteries for the future vehicles. The goal of this work was to develop MXene-based anode materials to obtain efficient anodes for sodium and lithium-ion batteries. MXenes are a family of inorganic transition metal carbides, nitrides, and carbonitrides with a 2D structure that would seem promising for the intercalation of different ions due to a great flexibility and adaptability towards several intercalating ions. The ion intercalations occur by a pseudocapacitive mechanism whereby the materials have limited capacity, but they have great electrochemical stability over thousands of cycles and coulombic efficiencies near to 100%. The production of this material was done by HF etching of a precursor called MAX phase. This is the easiest and fastest method to obtain the material in laboratory scale, but it has many criticalities when the process has to be scale-up to industrial scale. A large part of this work was spent studying the synthetic technique to obtain MXenes for SIB by reducing or replacing HF in the chemical synthesis. The materials have been characterized by various techniques such as X-ray diffractometry, electron microscopy, X-ray photoelectron spectroscopy, etc., and by electrochemical tests, such as cyclic voltammetry and galvanostatic cycling. Thanks to the 2D structure, a common use of MXene in the literature is in nanocomposite syntheses for SIBs and LIBs, in order to produce high-capacity materials, as required in the battery market. Therefore, two nanocomposites based on antimony-MXene and tin oxide-MXene tested for SIB and for LIB respectively, were synthesized. Antimony and tin oxide are two materials with high theoretical capacity when used as anodes in batteries, but at the same time, they are extremely fragile and tend to pulverize during charging and discharging processes. MXene is used as a buffer to limit or prevent cracking and separation of alloys from the electrode surface.
APA, Harvard, Vancouver, ISO, and other styles
7

Difi, Siham. "Phosphates de type NASICON comme matériaux d'électrode pour batteries sodium-ion à haute densité d'énergie." Thesis, Montpellier, 2016. http://www.theses.fr/2016MONTT212/document.

Full text
Abstract:
Ce mémoire est consacré à l’étude des composites à base de phosphates de type NASICON comme matériaux d’électrode pour batteries sodium-ion : Na1+xFexTi2-x(PO4)3/C et Na1+xFexSn2-x(PO4)3/C avec 0 ≤ x ≤ 1. Ces composites ont été synthétisés par voie solide suivie d’une pyrolyse avec le saccharose. Ils sont constitués de particules ayant une porosité élevée et enrobées par du carbone conférant à l’électrode une bonne conductivité ionique et électronique. Les mécanismes réactionnels se produisant lors des cycles de charge-décharge ont été analysés en mode operando par diffraction des rayons X, spectroscopies Mössbauer du 57Fe et de 119Sn et spectroscopie d’absorption X. Pour les composites fer-titane, ces mécanismes sont essentiellement basés sur la diffusion des ions Na+ dans les canaux des phases cristallisées avec changements d’état d’oxydation des métaux. Pour les composites fer-étain, les mécanismes sont plus complexes incluant insertion, conversion conduisant à la destruction des phases NASICON, puis formation d’alliages NaxSn. Les meilleures performances électrochimiques ont été obtenues pour Na1,5Fe0,5Ti1,5(PO4)3/C avec un potentiel de fonctionnement de 2,2 V vs Na+/Na0. Même si ces deux familles de matériaux peuvent être utilisées à plus bas potentiel, les performances doivent être améliorées pour envisager leur application comme électrode négative
This thesis is devoted to the study of phosphate based composites with NASICON type structure, that are used as electrode materials for sodium-ion batteries: Na1+xFexTi2-x (PO4)3/C et Na1+xFexSn2-x(PO4)3/C with 0 ≤ x ≤ 1. These composites were synthesized by solid state route followed by a pyrolysis reaction with sucrose. They consist of particles having high porosity and coated with carbon giving to the electrode good ionic and electronic conductivity. The reaction mechanisms occurring during charge-discharge cycles were analyzed in operando mode, by X-ray diffraction, 57Fe and 119Sn Mössbauer spectroscopies and X-ray absorption spectroscopy. For the iron-titanium composites, the mechanisms are essentially based on the diffusion of Na+ in the channels of the crystalline phases with changes of transition metal oxidation state. For iron-tin composites, the mechanisms are more complex including insertion, conversion leading to the destruction of the NASICON phases and then reversible formation of NaxSn alloys. The best electrochemical performances were obtained for Na1,5Fe0,5Ti1,5(PO4)3/C with an operating potential of 2.2 V vs. Na+/Na0. Although these two types of materials can be used at lower potential, the performances must be improved to consider their application as the negative electrode
APA, Harvard, Vancouver, ISO, and other styles
8

Beuvier, Thomas. "Des nanotitanates de sodium aux dioxydes de titane : électrode négative à base de TiO2(B) nanométrique pour accumulateur lithium-ion." Phd thesis, Université de Nantes, 2009. http://tel.archives-ouvertes.fr/tel-00454406.

Full text
Abstract:
Le dioxyde de titane, connu pour ses applications dans les domaines de la photoactivité et du photovoltaïque, est aussi un candidat d'électrode négative pour batteries lithium-ion. Les variétés anatase et TiO2(B) sont les plus prometteuses. Leurs capacités sont respectivement de 0,50 et 0,75 Li+ par motif de TiO2. Sous forme nanométrique, elles présentent des densités d'énergie et de puissance accrues. L'objet de ce travail de thèse concerne la synthèse par chimie douce de dioxydes de titane nanométriques selon la méthode développée initialement par Kasuga et al. et leur caractérisation. La méthode en trois étapes génère successivement deux intermédiaires tels que (i) le titanate (NaOH)xTiO2(H2O)y (x = 0,3-0,5 et y = 0,4-0,7) par reflux, et (ii) l'acide titanique TiO2(H2O)z (z = 0,7-0,8) après échange ionique, et finalement, après recuit, (iii) le TiO2 de morphologie proche de celle du titanate précurseur. Quatre titanates de sodium ont été identifiés, trois structures lamellaires, se différenciant par leur morphologie (nanotubes, semi-nanotubes et nanorubans) et une structure amorphe s'apparentant à des nanosphères. Après échange ionique et recuit, les nanotubes et les nanosphères se transforment en anatase, les semi-nanotubes en un mélange d'anatase et de TiO2(B), et les nanorubans en TiO2(B) exclusivement. La quantification par spectroscopie Raman du ratio anatase/TiO2(B) a été développée en calibrant les intensités avec les résultats d'électrochimie. Enfin, les nanorubans de TiO2(B) ont été testés au sein de demi-batterie lithium métal. Les performances sont prometteuses avec une capacité réversible de 200 mAh.g-1 à C/3 (soit 0,6 Li+ par TiO2) et de 100 mAh.g-1 à 15C.
APA, Harvard, Vancouver, ISO, and other styles
9

Fang, Runhe. "Effect of composition and morphology on the electrochemical performance of Na3V2(PO4)2F3/Na3V2(PO4)2FO2." Electronic Thesis or Diss., Sorbonne université, 2022. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2022SORUS001.pdf.

Full text
Abstract:
Dans le système de batterie à ions sodium (SIB), l'électrode positive joue un rôle important. Bien que plus faibles que les matériaux d'oxyde lamellaire sous certains aspects, comme la conductivité électrique, les matériaux polyanioniques sont devenus l'une des deux principales catégories de matériaux d'électrode positive grâce à leur excellente stabilité électrochimique et leur tension de fonctionnement élevée. La famille Na3V2(PO4)2F3-yOy (0 ≤ y ≤ 2) est notamment la plus remarquable en termes de performances électrochimiques. Cependant, les performances électrochimiques sont limitées en raison de la conductivité électronique plutôt faible induite par les unités de vanadium bi-octaèdre isolées au sein de la structure. De nombreuses études ont été menées pour améliorer les propriétés électrochimiques du Na3V2(PO4)2F3-yOy au moyen d'un revêtement de carbone et d'une morphologie spéciale, etc. Cependant, des améliorations inconscientes dans de multiples aspects peuvent conduire à négliger la compréhension d'un élément spécifique modifié, en raison de l'amélioration finale des performances électrochimiques. Par conséquent, cette thèse de doctorat consiste à bien contrôler toutes les variétés et à comparer l'impact de la morphologie et de la composition de Na3V2(PO4)2F3-yOy afin d'améliorer ses performances électrochimiques finales dans une perspective plus fondamentale. Ainsi, ce travail est composé des parties suivantes sous forme d'articles déposés. Dans le premier chapitre, qui constitue un état de l'art, le contexte du développement des batteries et en particulier des SIBs sera brièvement présenté. Les matériaux communs pour chaque partie différente de SIBs seront décrits plus en détail. Ensuite, l'attention sera portée sur le Na3V2(PO4)2F3-yOy et l'état actuel de ses recherches sera présenté en détail en termes de structure cristalline et de synthèse, etc. Ensuite, dans le deuxième chapitre, une série de synthèses légèrement ajustées avec les mêmes précurseurs a été réalisée pour obtenir des particules de Na3V2(PO4)2F3-yOy de différentes morphologies et de composition similaire, puis pour étudier l'effet des morphologies sur les performances de stockage d'énergie. Dans le chapitre III, à partir de la morphologie la plus performante trouvée dans le deuxième chapitre, l'effet de la teneur en oxygène sur les propriétés de transport et la performance électrochimique dans Na3V2(PO4)2F3-yOy (différents pourcentages de substitution de O2-) a été étudié, tout en gardant les morphologies inchangées. Dans le chapitre IV, les Na3V2(PO4)2FO2 trouvés dans le chapitre III ont été comparés avec ceux synthétisés par différentes méthodes avec la même composition de particules mais des morphologies et une fonctionnalisation de surface totalement différentes afin de mieux comprendre l'impact de la morphologie et du revêtement de surface sur la capacité de stockage d'énergie.Enfin, le solvant eutectique profond, un type de liquide ionique, a été utilisé comme nouveau moyen de synthèse pour atteindre une morphologie totalement nouvelle et spéciale qui n'avait pas été signalée auparavant et une nouvelle approche pour fabriquer un revêtement de carbone. En général, les différentes morphologies et compositions de Na3V2(PO4)2F3-yOy sont obtenues séparément en contrôlant et en affinant une série de méthodes de synthèse. Leurs influences sur l'électrochimie finale du matériau ont également été étudiées séparément. Ces études contribuent à la compréhension de ce matériau d'un point de vue fondamental, facilitant ainsi son optimisation ultérieure
In the sodium ion battery system, the positive electrode plays an important role. Although weaker than layered oxide materials in some aspects, such as electrical conductivity, polyanionic materials have become one of the two main categories of positive electrode materials with their excellent electrochemical stability and high operating voltage. Na3V2(PO4)2F3-yOy (0≤y≤2) family is especially the most outstanding in terms of electrochemical performance. However, the electrochemical performance is limited because of the rather poor electronic conductivity induced by the isolated vanadium bi-octahedra units within the structure. There have been many studies to improve the electrochemical properties of Na3V2(PO4)2F3-yOy by means of carbon coating and special morphology etc. However, unconscious improvements in multiple aspects can lead to neglected further understanding of one specific changed element, due to the ultimately electrochemical performance enhancements. Therefore, this PhD thesis is consistent of well controlling all the varieties and comparing the morphology and composition impact of Na3V2(PO4)2F3-yOy without any carbon coating in order to improve its final electrochemical performance through a more fundamental perspective. Thus, this work is composed of the next parts under the form of deposited articles. In the first chapter, which is a state of the art, the background of the development of batteries and especially the sodium ion batteries will be briefly introduced. The common materials for each different part of the sodium ion battery will be further described. Next, attention will be focused on Na3V2(PO4)2F3-yOy and show the current status of its research in detail in terms of crystal structure and synthesis, etc. Then in the second chapter, a series of slightly tuned synthesis with the same precursors were carried out to obtain the Na3V2(PO4)2F3-yOy particles with different morphologies and similar composition and then investigate the effect of morphologies on energy storage performance. In the subsequent chapter III, from one most performant morphology found in the second chapter, the effect of the oxygen content on transport properties and electrochemical performance within Na3V2(PO4)2F3-yOy (different O2- substitution percent) were investigated, while keeping the morphologies unchanged. In the next chapter IV, the Na3V2(PO4)2FO2 found in chapter III with those synthesized through different methods with the same particle composition but totally different morphologies and surface functionalization were compared to further understand the morphology and surface coating impact on the energy storage capacity. At last, deep eutectic solvent, one kind of ionic liquid, was used as a new synthesis medium to reach a totally new and special morphology does not reported before and a new approach to make a carbon coating. In general, the different morphologies and compositions of Na3V2(PO4)2F3-yOy are obtained separately by controlling and refining a series of synthesis methods. Their influences on the final electrochemistry of the material have also been investigated separately. These studies contribute to the understanding of this material from a fundamental point of view, thus facilitating further optimization
APA, Harvard, Vancouver, ISO, and other styles
10

Adelhelm, Philipp. "From Lithium-Ion to Sodium-Ion Batteries." Diffusion fundamentals 21 (2014) 5, S.1, 2014. https://ul.qucosa.de/id/qucosa%3A32397.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Sodium-ion batterie"

1

Gaddam, Rohit R., and George Zhao. Handbook of Sodium-Ion Batteries. New York: Jenny Stanford Publishing, 2023. http://dx.doi.org/10.1201/9781003308744.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chao, Dongliang. Graphene Network Scaffolded Flexible Electrodes—From Lithium to Sodium Ion Batteries. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-3080-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zhang, Jun. Carbon-Based Electrodes for High-Performance Sodium-Ion Batteries and Their Interfacial Electrochemistry. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-7566-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sodium-Ion Batteries. Materials Research Forum LLC, 2020. http://dx.doi.org/10.21741/9781644900833.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Xie, Man, Feng Wu, and Yongxin Huang. Sodium-Ion Batteries. De Gruyter, 2022. http://dx.doi.org/10.1515/9783110749069.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ji, X. Sodium-Ion Batteries - Technologies AndApplications. Wiley & Sons, Limited, John, 2023.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Titirici, Maria-Magdalena, Philipp Adelhelm, and Yong Sheng Hu. Sodium-Ion Batteries: Materials, Characterization, and Technology. Wiley & Sons, Incorporated, John, 2022.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Xie, Man, Yongxin Huang, Feng Wu, and Publishing House Publishing House of Electronics Industry. Sodium-Ion Batteries: Advanced Technology and Applications. de Gruyter GmbH, Walter, 2022.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Yu, Yang. Sodium-Ion Batteries: Energy Storage Materialsand Technologies. Wiley & Sons, Incorporated, John, 2022.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Titirici, Maria-Magdalena, Philipp Adelhelm, and Yong Sheng Hu. Sodium-Ion Batteries: Materials, Characterization, and Technology. Wiley & Sons, Incorporated, John, 2022.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Sodium-ion batterie"

1

Ferraro, Marco, and Giovanni Tumminia. "Techno-economics Analysis on Sodium-Ion Batteries: Overview and Prospective." In The Materials Research Society Series, 259–66. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-48359-2_14.

Full text
Abstract:
AbstractSodium-ion batteries are considered compelling electrochemical energy storage systems considering its abundant resources, high cost-effectiveness, and high safety. Therefore, sodium-ion batteries might become an economically promising alternative to lithium-ion batteries (LIBs). However, while there are several works available in the literature on the costs of lithium-ion battery materials, cells, and modules, there is relatively little available analysis of these for sodium ion. Moreover, most of the works on sodium ion focus on costs of material preparation and the electrodes/electrolytes taken in isolation, without considering the costs of the whole cell or battery system. Therefore, the lack of a cost analysis makes it hard to evaluate the long-term feasibility of this storage technology. In this context, this focus chapter presents a preliminary techno-economics analysis on sodium-ion batteries, based on the review of the recent literature. The main materials/components contributing to the price of the sodium-ion batteries are investigated, along with core challenges presently limiting their development and benefits of their practical deployment. The results are also compared with those of competing lithium-ion technology.
APA, Harvard, Vancouver, ISO, and other styles
2

Abraham, K. M. "Rechargeable Sodium and Sodium-Ion Batteries." In Lithium Batteries, 349–67. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118615515.ch16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Liu, Yumei, and Weibo Hua. "Sodium-Ion Batteries." In Advanced Metal Ion Storage Technologies, 25–59. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003208198-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zhang, Ye, Lie Wang, Yang Zhao, and Huisheng Peng. "Flexible Aqueous Sodium-Ion Batteries." In Flexible Batteries, 81–99. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003273677-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Rangom, Yverick, Timothy T. Duignan, Xin Fan, and X. S. (George) Zhao. "Cycling Stability of Sodium-Ion Batteries in Analogy to Lithium-Ion Batteries." In Handbook of Sodium-Ion Batteries, 389–466. New York: Jenny Stanford Publishing, 2023. http://dx.doi.org/10.1201/9781003308744-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Garg, Nisha, Venkatasailanathan Ramadesigan, and Sankara Sarma V. Tatiparti. "Principles of Electrochemistry." In Handbook of Sodium-Ion Batteries, 33–61. New York: Jenny Stanford Publishing, 2023. http://dx.doi.org/10.1201/9781003308744-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Soares, Davi Marcelo, Santanu Mukherjee, and Gurpreet Singh. "Transition Metal Dichalcogenides as Active Anode Materials for Sodium-Ion Batteries." In Handbook of Sodium-Ion Batteries, 293–321. New York: Jenny Stanford Publishing, 2023. http://dx.doi.org/10.1201/9781003308744-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Jiang, Yinzhu, Yao Huang, and Yuting Gao. "Prussian Blue Analogues as Cathode Materials for Sodium-Ion Bateries." In Handbook of Sodium-Ion Batteries, 183–242. New York: Jenny Stanford Publishing, 2023. http://dx.doi.org/10.1201/9781003308744-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zhao, Qinglan, and Minhua Shao. "Polymer Electrodes for Sodium-Ion Batteries." In Handbook of Sodium-Ion Batteries, 243–91. New York: Jenny Stanford Publishing, 2023. http://dx.doi.org/10.1201/9781003308744-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ramaprabhu, S., and Piriya V. S. Ajay. "Effect of Polymeric Binders on the Sodium-Ion Storage Performance of Positive and Negative Electrode Materials." In Handbook of Sodium-Ion Batteries, 323–44. New York: Jenny Stanford Publishing, 2023. http://dx.doi.org/10.1201/9781003308744-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Sodium-ion batterie"

1

Lagarde, Quentin, Serge Mazen, Bruno Beillard, Julien Leylavergne, Joel Andrieu, Jean-Pierre Cancès, Vahid Meghdadi, Michelle Lalande, Edson Martinod, and Marie-Sandrine Denis. "Étude et conception de système de management pour batteries innovantes, Batterie Sodium (NA-ion)." In Les journées de l'interdisciplinarité 2022. Limoges: Université de Limoges, 2022. http://dx.doi.org/10.25965/lji.581.

Full text
Abstract:
La transition énergétique passera notamment par l’autoconsommation et l’autoproduction. L’utilisation de sources d’origines solaire et/ou éolienne permettront d’atteindre les objectifs bas carbone (atteindre la neutralité carbone à l’horizon 20250). Cette production étant intermittente, il est indispensable de les stocker pour pouvoir les utiliser au moment opportun. Actuellement la technologie dominante est l’accumulation d’énergie dans des batteries au lithium qui sont nuisibles à l’environnement et tributaires de la disponibilité au niveau mondial.De nouvelles batteries innovantes, comme celles au sodium-ion paraissent plus écologiques. Néanmoins, elles présentent l’inconvénient d’une durée de vie plus faible. L’utilisation d’un système de management de batterie (BMS – Battery Management System) l’améliore, les rendant ainsi concurrentielles aux batteries lithium-ion.
APA, Harvard, Vancouver, ISO, and other styles
2

Šimek, Antonín. "Negative Electrode For Sodium-Ion Batteries." In STUDENT EEICT 2021. Brno: Fakulta elektrotechniky a komunikacnich technologii VUT v Brne, 2021. http://dx.doi.org/10.13164/eeict.2021.77.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

"Advancements in Electric Vehicle Battery Technology: A Systematic Review." In International Conference on Cutting-Edge Developments in Engineering Technology and Science. ICCDETS, 2024. http://dx.doi.org/10.62919/mtuo5644.

Full text
Abstract:
This paper presents a systematic review of the advancements in electric vehicle (EV) battery technology, highlighting the key innovations driving the evolution of EVs. As the cornerstone of EV performance and adoption, battery technology has seen significant progress in energy density, charging speed, lifecycle, and cost reduction. We explore cutting-edge developments in battery chemistries, including lithium-ion, solid-state, and emerging alternatives such as lithium-sulfur and sodium-ion batteries. The paper discusses the benefits of these advancements, such as extended driving range, enhanced safety, and environmental sustainability, as well as challenges like material scarcity, recycling, and integration with existing infrastructure. Case studies and comparative analyses of leading battery technologies provide insights into their practical applications and future potential. This review aims to provide a comprehensive understanding of the current state and future prospects of EV battery technology.
APA, Harvard, Vancouver, ISO, and other styles
4

Wang, Mengnan, Chantal Glatthaara, Magdalena Titirici, and Bernd M. Smarsly. "Lignin-derived Mesoporous Carbon for Sodium-Ion Batteries." In MATSUS Spring 2024 Conference. València: FUNDACIO DE LA COMUNITAT VALENCIANA SCITO, 2023. http://dx.doi.org/10.29363/nanoge.matsus.2024.365.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Raja, Arsalan Ahmad, Rana Abdul Shakoor, and Ramazan Kahraman. "Electrochemical Analyses of Sodium based Mixed Pyrophosphate Cathodes for Rechargeable Sodium Ion Batteries." In Qatar Foundation Annual Research Conference Proceedings. Hamad bin Khalifa University Press (HBKU Press), 2016. http://dx.doi.org/10.5339/qfarc.2016.eepp3291.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Moossa, Buzaina, Jeffin James Abraham, Ramazan Kahraman, Siham Al Qaradawi, and Rana Abdul Shakoor. "Synthesis & Performance Evaluation of Hybrid Cathode Materials for Energy Storage." In Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2021. http://dx.doi.org/10.29117/quarfe.2021.0045.

Full text
Abstract:
Research into the development of novel cathode materials for energy storage applications is progressing at a rapid rate to meet the ever-growing demands of modern society. Amongst various options, batteries are playing a vital role to replace conventional energy sources such as fossil fuels with green technologies. Among various battery technologies, lithium-ion batteries (LIBs) have been well explored and have succeeded in being adjusted with find many commercial applications. At the same time, as an alternative to LIBs, Sodium-Ion Batteries (SIBs) are also gaining popularity due to the presence of Sodium (Na) in abundance and its similar electrochemical characteristics with lithium (Li). However, SIBs are suffering from many challenges such as slow ionic movement, instability in different phases, and low energy density, etc. Many strategies in the literature have been proposed to address the aforementioned challenges of SIBs. Among them, the substitution of Na with Li to form hybrid cathode materials has turned out to be quite promising. The present work aims to investigate the effect of Na substitution with Li in a pyrophosphate framework. Towards this direction, Na(2-x) LixFeP2O7 (x=0,0.6) hybrid cathode materials were synthesized, and their structural, thermal, and electrochemical properties were studied. It is noticed that the incorporation of Li in the triclinic structure of Na2FeP2O7 has a significant effect on its thermal and electrochemical performance. This study can be considered as a baseline to develop some other pyrophosphate-based high-performance hybrid cathode materials.
APA, Harvard, Vancouver, ISO, and other styles
7

Tian, Wenchao, Mengjuan Li, Jiahao Niu, Wenhua Li, and Jing Shi. "The Research progress and comparisons between Lithium-ion battery and Sodium ion battery*." In 2019 IEEE 19th International Conference on Nanotechnology (IEEE-NANO). IEEE, 2019. http://dx.doi.org/10.1109/nano46743.2019.8993684.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Adelhelm, Philipp. "Inorganic Electrodes for Sodium-ion and Solid-state Batteries." In Materials for Sustainable Development Conference (MAT-SUS). València: FUNDACIO DE LA COMUNITAT VALENCIANA SCITO, 2022. http://dx.doi.org/10.29363/nanoge.nfm.2022.226.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ghiyami, S., and C. Mele. "Nanomaterials for Titanium-Based Anodes in Sodium-ion Batteries." In 2023 IEEE Nanotechnology Materials and Devices Conference (NMDC). IEEE, 2023. http://dx.doi.org/10.1109/nmdc57951.2023.10343883.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Noer, Zikri, Siti Utari Rahayu, Hilda Ayu Marlina, Fauzi Handoko, Susanto Sigit Rahardi, Rifki Septawendar, and Bambang Sunendar. "Electrochemical performance of sodium titanate nanorods for sodium-ion battery anode applications." In 2ND INTERNATIONAL CONFERENCE ON ADVANCED INFORMATION SCIENTIFIC DEVELOPMENT (ICAISD) 2021: Innovating Scientific Learning for Deep Communication. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0106386.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Sodium-ion batterie"

1

Dzwiniel, Trevor L., Krzysztof Z. Pupek, and Gregory K. Krumdick. Scale-up of Metal Hexacyanoferrate Cathode Material for Sodium Ion Batteries. Office of Scientific and Technical Information (OSTI), October 2016. http://dx.doi.org/10.2172/1329386.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wiley, Ted, Jay Whitacre, Eric Weber, Michael Eshoo, James Noland, David Blackwood, Williams Campbell, Eric Sheen, Christopher Spears, and Christopher Smith. Recovery Act - Demonstration of Sodium Ion Battery for Grid Level Applications. Office of Scientific and Technical Information (OSTI), August 2012. http://dx.doi.org/10.2172/1081309.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Liang, Xinghui, Rizki Ismoyojati, and Yang-Kook Sun. A Novel Lithium Substitution Induced Tunnel/Spinel Heterostructured Cathode Material for Advanced Sodium-Ion Batteries. Peeref, July 2022. http://dx.doi.org/10.54985/peeref.2207p9041979.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography